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Elucidating the causal
relationship between 486
genetically predicted blood
metabolites and the risk
of gastric cancer: a
comprehensive Mendelian
randomization analysis
Lei Qian1†, Jiawei Song2†, Xiaoqun Zhang3†, Yihuan Qiao4,
Zhaobang Tan5, Shisen Li5, Jun Zhu6* and Jipeng Li1,5*
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2School of Clinical Medicine, Xi’an Medical University, Xi’an, China, 3Department of Pharmacy, Shaanxi
Provincial Hospital of Chinese Medicine, Xi’an, China, 4Department of Digestive Surgery, Honghui
Hospital, Xi’an Jiaotong University, Xi’an, China, 5Department of Gastrointestinal Surgery, Xijing
Hospital, Fourth Military Medical University, Xi’an, China, 6Department of Digestive Diseases, Xijing
Hospital, Fourth Military Medical University, Xi’an, China
Background: Previous epidemiological studies have yielded inconclusive results

regarding the causality between blood metabolites and the risk of gastric cancer

(GC). To address this shortcoming, we conducted a two-sample Mendelian

randomization (MR) study, combined with metabolomics techniques, to

elucidate the causality between 486 genetically predicted blood metabolites

and GC.

Methods: MR analysis and metabolomics techniques such as ultra-high

performance liquid chromatography/tandem mass spectrometry (UPLC-MS/

MS) and gas chromatography/tandem mass spectrometry (GC-MS/MS)

technologies were employed to assess the causality of 486 genetically

predicted blood metabolites on the risk of GC. The genome-wide association

study (GWAS) summary data for 486 blood metabolites from 7,824 individuals.

The GWAS summary data for GC (ebi-a-GCST90018849) were obtained from the

IEU Open GWAS project, including 1,029 GC cases and 474,841 controls. Primary

causality estimates were obtained using inverse variance weighting (IVW),

supplemented with the weighted median, MR-Egger, weighted mode, and

simple mode. In addition, we conducted sensitivity analyses (including

Cochran’s Q, MR-Egger intercept, MR-PRESSO, and leave-one-out tests),

Steiger’s test, linked disequilibrium score regression, and multivariate MR

(MVMR) to improve the assessment of causality between GC and blood

metabolite. Finally, we recruited a total of 11 patients diagnosed with gastric

cancer from the First Affiliated Hospital of Air Force Military Medical University

between September and October 2024. The control group comprised 11 healthy

individuals. Serum samples were collected from both groups for the evaluation of

blood-related metabolite expression levels using advanced techniques such as
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ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-

MS/MS) and gas chromatography-mass spectrometry (GC-MS/MS).

Results: The MVMR analysis revealed a significant association between

genetically predicted elevated levels of tryptophan (odds ratio [OR] = 0.523,

95% confidence interval [CI] = 0.313–0.872, p = 0.013), nonadecanoate (19:0)

(odds ratio [OR] = 0.460, 95% confidence interval [CI] = 0.225–0.943, p = 0.034),

and erythritol (odds ratio [OR] = 0.672, 95% confidence interval [CI] = 0.468–

0.930, p = 0.016) with a decreased risk of gastric cancer. Based on metabolomic

techniques such as UPLC-MS/MS and GC-MS/MS analyses, it has been

demonstrated that the expression levels of tryptophan, nonadecanoate (19:0),

and erythritol are reduced in patients with gastric cancer. This finding aligns with

the results obtained from our MR analysis and provides further confirmation

regarding the protective role of tryptophan, nonadecanoate (19:0), and erythritol

against gastric cancer.

Conclusions: These findings indicate that three blood metabolites are causally

related to GC and provide new perspectives for combining genomics and

metabolomics to study the mechanisms of metabolite-mediated

GC development.
KEYWORDS

blood metabolites, gastric cancer, Mendelian randomization, causality, genomewide
association study
1 Introduction

Gastric cancer (GC), primarily characterized as an

adenocarcinoma, ranks as fifth most prevalent malignancy and

the third leading cause of cancer-related mortality globally in

2020 (1). For early-stage GC, endoscopic mucosal dissection is

the main therapeutic approach, boasting an impressive 5-year

postoperative survival rate of 92.6% (2). For patients with stage I/

II GC who undergo laparoscopic or open distal gastrectomy, the

survival rate is also commendable but slightly lower, ranging from

73% to 76% (3). However, it’s crucial to note that the overall 5-year

survival rate for GC patients, particularly those diagnosed at

advanced stages, remains suboptimal, with a median survival of

less than one year (4). This disparity underscores the critical need

for early detection and intervention to not only enhance survival

rates but also significantly reduce healthcare costs. By focusing on

prevention and early treatment, we can potentially alleviate the

economic burden of GC on both patients and healthcare systems.

Currently, the diagnosis of GC relies primarily on endoscopic

and biopsy-based procedures. Although reliable, these methods

have drawbacks, such as high financial cost, invasiveness,

potential complications, and limited testing resources, which may

discourage patient compliance and make them unsuitable for

widespread screening initiatives. An ideal alternative would be

noninvasive blood tests. Currently used gastrointestinal tumor
02
markers include glycan antigen 199 (CA199) (5) and

carcinoembryonic antigen (CEA) (6). Unfortunately, although

highly specific, they have low sensitivity and significant rates of

false-negative and false-positive results. This calls for further

research, possibly in areas such as blood metabolomics, to

identify novel biomarkers indicative of GC and facilitate early

detection and treatment.

Metabolomics can identify cancer biomarkers and determinants

of tumorigenesis by detecting changes in relevant metabolites over

the course of disease progression (7). Ikeda et al. found pronounced

differences in the serum metabolic profiles of individuals with

gastrointestinal malignancies, including esophageal, gastric, and

colorectal cancers, compared with those of healthy volunteers (8).

Specifically, changes in 3-hydroxypropionic and pyruvic acid levels

were found to be sufficiently discriminative to differentiate gastric,

esophageal, and colorectal cancers, exceeding the sensitivity and

specificity of conventional biomarkers such as CA199 and CEA (8).

However, the scientific landscape is currently characterized by a

paucity of comprehensive investigations to establish a causal

relationship between blood metabolites and GC. Translating these

metabolic discoveries into pathophysiological mechanisms and

innovative therapeutic strategies remains challenging. Therefore,

there is a need for a comprehensive analysis of the interplay between

genetic elements and circulating blood metabolites in the etiology

of GC.
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Mendelian randomization (MR) has emerged as a key

methodology in epidemiological research. It derives putative

causal relationships between environmental exposure and health

outcomes by using distinctive single nucleotide polymorphisms

(SNPs) as instrumental variables (9). MR exploits genetic

variability to simulate the construct of randomized controlled

trials (RCTs). The use of independent genome-wide association

study (GWAS) datasets provides the flexibility to independently

assess SNPs associated with both exposure and outcome, thereby

facilitating two-sample analysis. This technique provides

compelling evidence for a causal relationship between disparate

phenotypes. By carefully exploring the potential causal relationships

between genetic predisposition to disease and various biological

traits (e.g., blood metabolomics), MR paves the way for the

identification of relevant disease-related biomarkers (10).

Numerous studies have investigated the association between

various exposures and GC using magnetic resonance imaging.

These investigations have predominantly focused on single

exposures or prevalent exposure factors, including body mass

index (11), interleukin-6 (12), vitamin D (13), lifestyle patterns

such as smoking and alcohol consumption (14), sleep habits (15),

and immunoproteins (16). However, investigations of blood

metabolites related to GC are scarce. Given the vague nature of

the causal link between blood metabolites and GC, we used a two-

sample MRmethodology, combined with metabolomics techniques,

to investigate the causal dynamics between 486 human blood

metabolites and GC.
2 Materials and methods

2.1 Study design

InMR research, the integrity of conclusions depends on three key

assumptions (Figure 1). (1)Correlation assumption:a robust and

statistically significant association between the SNP and exposure

of interest. (2)Independence assumption: the SNP is free of any

correlation with potential confounding variables. (3)Exclusivity

assumption: the influence of an SNP on outcomes is exclusively

mediated by exposure, ruling out any unaccounted pathways. Based

on these principles, our methodology included the selection of high-

quality comprehensive datasets from accessible GWASs. This allowed

us to obtain appropriate instrumental variables (IVs) for the MR

analyses, which were critical for identifying the relationships between

an array of 486 blood metabolites and susceptibility to GC.
2.2 GWAS data sources

A blood metabolite profiling dataset was obtained from the

Comprehensive Metabolomics GWAS repository (https://

metabolomics.helmholtz-muenchen.de/gwas/). This dataset

comprises a diverse European cohort of 7,824 individuals,

including 1,768 participants from the KORA F4 study in
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Germany and 6,056 from the UK Twin Study (17). Genome-wide

association and high-throughput metabolomic studies have

revealed approximately 2.1 million SNPs and 486 different

metabolites. Of these, 309 metabolites were identified and

characterized. The identified metabolites were systematically

classified into the following eight categories based on their

chemical properties: amino acids, carbohydrates, cofactors,

vitamins, energy substrates, lipids, nucleotides, peptides, and

xenobiot ics . These 486 metabol i tes are compi led in

Supplementary Table S1, with the designation “X-” indicating

those with yet-to-be-determined chemical properties.

The GWAS data for GC (ebi-a-GCST90018849) were obtained

from the IEU Open GWAS Project (https://gwas.mrcieu.ac.uk/).

The detailed attributes of the consolidated GC data are described in

Supplementary Table S2.
2.3 Selection of IVs

In accordance with the fundamental tenets of MR analysis, we

meticulously delineated a set of criteria for distinguishing the IVs

associated with the 486 metabolites. In keeping with the axiom of

relevance, our selection protocol strictly adhered to the established

genome-wide significance boundary, setting the threshold to a

robust p-value (P < 5 × 10-8). Recognizing the subtleties inherent

in the genetic underpinnings of certain metabolites, for which only

a few SNPs were uncovered, a more permissive threshold was

adopted (P < 1 × 10-5) (18, 19).

In a concerted effort to mitigate the confounding intricacies of

linkage disequilibrium, a judicious clustering strategy was used,

encompassing a swath of 500 kilobase pairs augmented by a

correlation coefficient ceiling of 0.01, to isolate SNPs of sovereign

genetic locations. In addition, we removed SNPs carrying

mismatched alleles or palindromic sequences, which are

indicative of genotyping inaccuracies. Simultaneously, we

excluded SNPs that had a statistical synergy with the outcome

variable or were absent from the outcome cohort, thus preserving

the integrity of the assay.

The veracity of each SNP as an IV was judged through the prism

of the F statistic (18), given by the following formula, where “ N”

represents the cohort size and “ R2 ” is the proportional variance

attributed to the SNPs within the exposome profile.

F =
R2 � (N − 2)

1 − R2

The calculation of “ R2 ” involved the following formula, where

“ EAF ” represents the frequency of the effect allele, “ b ” is the

regression coefficient explaining the magnitude of the SNP-

exposure association, and “ SD ” is the standard deviation.

R2 =
2� EAF � (1 − EAF)� b2

SD2

To mitigate bias associated with weak instrumental variables,

we excluded SNPs with F < 10. Subsequently, we identified and
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extracted the SNPs for our exposure of interest from the outcome

data while excluding those that were significantly related to the

outcome (p < 1 × 10−5). The SNPs that survived the rigorous

selection process are shown in Supplementary Table S2 (20).
2.4 Univariate MR analysis

In this study, a quintet of MR assays was used, with the

predominant analysis using the inverse variance-weighted (IVW)

paradigm for its statistical power. This approach synthesizes Wald

ratio calculations for each SNP-outcome conjugation, providing a

composite causal estimate (21). In addition, causal associations

between a compendium of 486 metabolites and GC susceptibility

were assessed using odds ratios (ORs) embedded within 95%

confidence intervals (CI).

To strengthen the robustness and credibility of our MR

conclusions, additional checks were performed using MR-Egger

and weighted median (WM) evaluations. An MR-Egger inspection

was implemented to detect and correct the putative pleiotropic

effects, thereby providing more reliable estimates. The use of the

weighted median method yields robust causal inferences, mitigates

Type I errors, and enhances the detection of authentic effects even

when a preponderance of the input comes from potentially

compromised IVs. Harmonization of the WM and MR-Egger

results (P < 0.05) with those of the IVW method, both in terms

of the trajectory and magnitude of effect, was essential for

confirming the validity of these findings.

MR scatter plots were generated to visualize the hypothesized

causal relationship between the identified metabolites and GC risk.
2.5 Sensitivity analysis

To unravel the intricacies of SNP heterogeneity, we used

Cochran’s Q test within the IVW and MR-Egger frameworks. A

P-value < 0.05 served as the arbiter of significant heterogeneity. It is

worth noting that this statistical test highlights differences in IV

effect sizes. In addition, the MR-Egger intercept coupled with the

MR-PRESSO analysis tools was used to expose the spectrum of

horizontal pleiotropy, with statistical significance determined using

a P-value < 0.05 (22). The robustness of our inferential scaffold was

tested using careful leave-one-out (LOO) analysis (23). This

rigorous technique ensures that the influence of any single SNP

does not unduly bias the overarching determination of causality.
2.6 Metabolic pathway analysis

To elucidate the underlying biological mechanisms through

which prominent blood metabolites influence GC susceptibility, we

expanded our analysis to include metabolic pathway exploration.

We performed Kyoto Encyclopedia of Genes and Genomes

pathway enrichment analysis using MetaboAnalyst (version 5.0;

https://www.metaboanalyst.ca/).
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2.7 Genetic correlation and
direction validation

In the context of dissecting genetic correlations between

determinants and clinical outcomes, MR estimation could

potentially bias the interpretation of causality (24). To circumvent

the confounding complications introduced by the coinheritance of

significant metabolites and GC risk, we adopted the Linkage

Disequilibrium Score Regression (LDSC) methodology.

Additionally, we used the Steiger test to assess the potential for

reverse causation, which is a critical step in determining whether

genetic variants have a stronger association with the determinant

than with the consequence (25). Within the confines of the Steiger

framework, a P-value of less than 0.05 is statistically significant,

supporting the primacy of genetic instruments in modulating the

determinant, thus strengthening our primary hypothesis.
2.8 Multivariate Mendelian
randomization analysis

Given the interrelationships among the salient metabolites that

emerged as statistically significant, we conducted a series of

multivariate MR (MVMR) analyses to elucidate the distinct causal

contributions of multiple metabolite exposure to GC risk. Our

baseline MVMR analysis used an IVW strategy, and we refined

our investigation using the MR-PRESSO method to identify and

correct for potential genetic-level heterogeneity and the

confounding effects of outliers. This meticulous approach refines

precision and strengthens the integrity of causal inferences.
2.9 Statistical analysis

Each MR study used the “TwoSampleMR” (version 0.4.22)

software package for R (version 4.1.2) as the computational

framework. LDSC was performed using LDSC software (version

1.0.1). The criterion for statistical significance was set at P < 0.05.

The magnitude and direction of the causal associations between

variables were quantified using ORs and their respective 95% CIs.
2.10 Metabolomic analysis

From September to October 2024, 11 preoperative blood

samples from GC patients admitted to the First Affiliated

Hospital of Air Force Military Medical University and 11 blood

samples from healthy controls were selected for analysis. All

samples were stored at -80°C. This study was approved by the

Ethics Committee of the First Affiliated Hospital of Air Force

Military Medical University (approval number KY20222083-F-1).

Subsequently, an untargeted metabolomic analysis was conducted

utilizing ultra-high performance liquid chromatography/tandem

mass spectrometry (UPLC-MS/MS) and gas chromatography/

tandem mass spectrometry (GC-MS/MS) technologies based on the
frontiersin.org
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HD4 high-resolution accurate mass analysis platform. The analysis

focused on baseline serum metabolites, including tryptophan,

nonadecanoate (19:0), and erythritol. All metabolite data were

transformed using a logarithm and normalized on a batch basis.

For further details regarding the specific metabolomic analysis

methodology, please refer to reference (1, 26).

A comprehensive quality control and management system was

implemented throughout the experiment to ensure accurate and

consistent identification of the true chemical components and to

eliminate any potential interference due to misattribution,

background noise or system artifacts. The stability of the

instrument’s performance was evaluated by calculating the relative

standard deviation (RSD) of the internal standards introduced to

each sample prior to injection into the mass spectrometer.
3 Results

3.1 IVs for exposures

After an exhaustive and methodological selection process, 486

serum metabolites were selected for evaluation using MR analysis.

The number of SNPs associated with thesemetabolites ranged from 3 to

503. Metabolites with the identifiers #00577, #32322, #33188, #34453,

and #37459 were distinguished using the sparsest array of genetic tools,

each of which was underpinned by only three correlated SNPs.

Conversely, metabolite #33178 was located at the apex, with a

substantial endowment of 496 SNPs, conferring genetic

instrumentation. The F-statistics for all SNPs involved in the

correlation analyses uniformly exceeded the threshold of 10, heralding

the robust statistical power of the selected IVS andmitigating the risk of

bias that could come from weak instruments. For a more detailed view

of the IV data, please see Supplementary Table S2.
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3.2 Primary analysis

Using IVW analysis, we identified 17 metabolites with potential

relevance to GC etiology. Of these, 10 were characterized, whereas the

remaining seven were not. These 17 metabolites had compelling

associations with susceptibility to GC (Figure 2), and spanned a

diverse spectrum of chemical classifications, such as amino acids,

peptides, lipids, nucleotides, and xenobiotics, including tryptophan

(OR = 0.523, 95% CI = 0.313−0.872, P = 0.013), tyrosine (OR = 2.489,

95% CI = 1.173−5.283, P = 0.018), C-glycosyltryptophan (OR = 0.

500, 95% CI = 0.263−0.951, P = 0.035), serine (OR = 1.622, 95% CI =

1.014−2.724, P = 0.044), gamma-glutamylmethionine (OR = 1.709,

95% CI = 1.093−2.671, P = 0. 019), X-13431-nonanoylcarnitine (OR

= 0.784, 95% CI = 0.635−0.967, P = 0.023), nonadecanoate (19:0) (OR

= 0.460, 95% CI = 0.225−0.943, P = 0.034), guanosine (OR = 0. 779,

95% CI = 0.607−0.999, P = 0.049), paraxanthine (OR = 0.778, 95% CI

= 0.691−0.979, P = 0.032), and erythritol (OR = 0.672, 95% CI = 0.486

−0.930, P = 0.016) (Figure 3).

Within the framework of the IVW method, the concordance of

the results derived from the MR-Egger method and weighted

median estimations underscored the robustness of the

associations between these metabolites and GC risk (Table 1).
3.3 Sensitivity analysis

To substantiate the robustness of our findings, we conducted a

comprehensive series of sensitivity analyses, including Cochran’s Q

test, MR-Egger intercept test, MR-PRESSO, and LOO analysis.

Cochran’s Q test showed no significant heterogeneity, confirming

the uniformity of the dataset. In addition, the MR-Egger intercept test

showed no statistical evidence of horizontal pleiotropy (Table 1).
FIGURE 1

Overview of the research workflow.
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In the LOO analysis, the systematic exclusion and subsequent

recalculation of MR estimates for each SNP in isolation confirmed

the stability of our findings, indicating that no SNP introduced a

consequential bias (Figure 4). The MR-PRESSO test, a sentinel test

for outlier SNPs that potentially induce heterogeneity, did not

reveal any significant differences (Supplementary Table S3).
3.4 Metabolic pathway analysis

Using insights from the 10 established metabolites, we

uncovered a quintet of metabolic pathways potentially integral to

GC (Table 2): aminoacyl-tRNA biosynthesis; phenylalanine,

tyrosine, and tryptophan biosynthesis; ubiquinone and other

terpenoid quinone biosynthesis; phenylalanine metabolism; and

caffeine metabolism. These pathways may provide the foundation

for the biological edifice within which GC emerges.

Notably, L-tyrosine was a recurrent participant in the first four

enumerated pathways, L-tryptophan was critical to the aminoacyl-

tRNA biosynthesis pathway, and 1,7-dimethylxanthine was exclusive

to the caffeine metabolism pathway. These results suggest a potential

direct involvement in malignant transformation processes that

characterize gastric carcinogenesis and invite more exhaustive

investigative efforts.
3.5 Evaluation of genetic correlation
and directionality

Our results indicated a lack of statistically significant genetic

correlation, underscoring the elusive nature of the genetic

underpinnings that may link these metabolites to GC. Specifically,

the regression coefficients (Rg) for tryptophan, tyrosine, guanosine,

serine, nonadecanoate (19:0), and X-13431-nonanoylcarnitine were

−0.0728, −0.0399, −0.3576, 0. 0674, −0.0276, and −0.1312,

respectively, paired with the standard errors (Se) that underscore
Frontiers in Oncology 06
the imprecision of these estimates (0.0814, 0.1810, 0.2496, 0.2646,

0.1689, and 0.2297, respectively). None reached statistical significance,

with p-values exceeding 0.05 (0.3709, 0.8255, 0.1518, 0.7988, 0.8701,

and 0.5680, respectively). This finding suggests that the current cohort

size was insufficient to detect a clear genetic association. The SNP

heritability estimates for these metabolites ranged from 0.0725

(serine) to 0.9757 (tryptophan) (Supplementary Table S4).

We also applied the Steiger test to the cohort of 10 recognized

metabolites to identify potential reverse causal vectors. Substantial

results from the Steiger test rejected the hypothesis of an inverse

effect, whereby GC perturbed the levels of these circulating

metabolites. The available evidence (Supplementary Table S5)

does not lend credence to such inverse dynamics.
3.6 MVMR analysis

To delineate the potential causal relationship between the

selected metabolites and GC incidence, we performed MVMR

analysis using the IVW method. Simultaneously, we screened the

indicators of genetic instrument heterogeneity using the MR-

PRESSO approach. Converging evidence from both the IVW and

MR-PRESSO analyses suggested that the genetic proxies for

tryptophan, nonadecanoate (19:0), and erythritol harbored direct

and independent causal links to GC susceptibility, devoid of the

confounding effects of other metabolites considered in our

investigation (Figure 5, Supplementary Table S6).
3.7 The relative content of tryptophan,
nonadecanoate (19:0) and erythritol in
human blood samples

The relative content of tryptophan, nonadecanoate (19:0) and

erythritol was determined by untargeted metabolomics analysis of

blood samples collected from hospitals (Figure 6). The results
FIGURE 2

A forest plot of the causal effect of blood metabolites on gastric cancer (GC) risk from univariate Mendelian randomization with inverse variance
weighting (IVW).
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demonstrated that the levels of these three substances in the blood

of GC patients were markedly diminished in comparison to those

observed in healthy control groups (p < 0.05). This finding is

consistent with the results of our MR analysis, which provides

further confirmation of the role of tryptophan, nonadecanoate

(19:0) and erythritol as protective factors against GC.
Frontiers in Oncology 07
4 Discussion

Based on primary analyses utilizing Inverse Variance Weighting

(IVW), weighted median approaches, and MR-Egger regression,

along with sensitivity analysis, we identified 17 metabolites that are

causally associated with gastric cancer (GC). Among these, 10 are
FIGURE 3

A scatterplot of the significant causal relationship (P < 0.05) between blood metabolites and gastric cancer (GC).
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TABLE 1 Detection of causal relationships between 17 blood metabolites and GC risk using two MR models and tests for heterogeneity and
horizontal pleiotropy.

Metabolites Number of SNPs MR analysis Heterogeneity Pleiotropy

Method OR (95% CI) P-value Q P Intercept p

Amino acid

Tryptophan 197 ME 0.798 (0.211– 3.020) 0.740 211.685 0.196 −0.00234672261246323 0.501

WM 0.781 (0.320– 1.907) 0.587

Tyrosine 35 ME 4.419 (0.214–91.054) 0.343 36.552 0.307 −0.00562161200575098 0.703

WM 2.872 (0.934– 8.837) 0.066

C-glycosyltryptophan* 23 ME 0.553 (0.165–1.851) 0.347 15.287 0.808 −0.00158207855094606 0.850

WM 0.616 (0.252–1.508) 0.289

Serine 39 ME 6.728 (1.889–23.967) 0.006 0.850 0.857 −0.0187715047558943 0.025

WM 1.241 (0.560– 2.747) 0.595

Peptide

Gamma-
glutamylmethionine*

9 ME 1.426 (0.550–3.699) 0.489 4.973 0.663 0.007 0.687

WM 2.037 (1.137–3.651) 0.017

Lipid

X-13431–nonanoylcarnitine* 22 ME 0.689 (0.447–1.062) 0.107 16.186 0.705 0.006 0.513

WM 0.762 (0.569–1.021) 0.068

nonadecanoate (19:0) 16 ME 0.412 (0.060–2.847) 0.384 10.669 0.712 0.002 0.905

WM 0.397 (0.142–1.108) 0.078

Nucleotide

Guanosine 12 ME 0.989 (0.498–1.964) 0.975 1.527 0.999 −0.0132003086022429 0.481

WM 0.770 (0.562–1.057) 0.106

Xenobiotics

Paraxanthine 13 ME 0.883 (0.440–1.768) 0.731 4.723 0.944 −0.007517064025338 0.714

WM 0.839 (0.610–1.154) 0.281

Erythritol 28 ME 0.832 (0.491–1.409) 0.500 11.851 0.992 −0.00721226588820352 0.323

WM 0.786 (0.496–1.246) 0.306

Unknown

X-05907 13 ME 4.891 (1.487–16.090) 0.024 12.980 0.295 −0.0176623721801645 0.194

WM 1.662 (0.699– 3.951) 0.250

X-06351 6 ME 0.583 (0.334–1.017) 0.130 0.943 0.918 −0.00823932365242328 0.539

WM 0.537 (0.303–0.951) 0.033

X-11315 28 ME 1.886 (1.059–3.359) 0.041 22.996 0.633 −0.00754445825407327 0.325

WM 1.782 (1.119–2.839) 0.015

X-11858 17 ME 0.839 (0.607–1.160) 0.305 13.384 0.573 −0.00150060089220439 0.932

WM 0.826 (0.687–0.992) 0.041

X-12428 9 ME 1.388 (0.744–2.590) 0.337 6.630 0.468 −0.00338631534292095 0.850

WM 1.190 (0.824–1.719) 0.353

(Continued)
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well-documented, including tryptophan, tyrosine, C-

glycosyltryptophan, serine, gamma-glutamylmethionine, X-13431-

nonanoylcarnitine, nonadecanoate (19:0), guanosine, paraxanthine,

and erythritol. Notably, After adjusting for relevant covariates using

multivariate MR analysis, the associations of tryptophan,

nonadecanoate (19:0), and erythritol with GC risk remained

significant. Furthermore, the results of UPLC-MS/MS andvGC-

MS/MS showed that compared with the healthy control group, the

blood content of these three substances in GC patients was

significantly reduced (p < 0.05). This finding is consistent with

our MR Analysis and further confirms the role of tryptophan,

palmitate (19:0) and erythritol as protective factors for GC. To

our knowledge, this is the inaugural MR study to systematically

investigate the prospective causal interactions between circulating

metabolites and GC risk, highlighting the potential of

these metabolites as biomarkers for both screening and

therapeutic intervention.

The conclusions drawn from our rigorous MVMR analysis

suggested that increased tryptophan, nonadecanoate (19:0), and

erythritol levels were associated with a decreased risk of GC

progression. This suggestion is supported by literature that

implicates tryptophan metabolism as a potential antagonist in

oncogenesis. Some tryptophan derivatives are implicated in

orchestrating immune responses and limiting neoplastic

proliferation. One example is the reduction of glutathione

peroxidase 2, which triggers an increase in kynurenine, a

tryptophan byproduct. This increase leads to the accumulation of

reactive oxygen species via the tryptophan metabolic pathway,

impeding the progression and metastatic potential of gastric

malignancies (27). Nevertheless, the influence of tryptophan

metabolism on carcinogenesis is not unambiguous, with

bifurcated pathways toward either oncogenic or tumor-

suppressive roles that depend on many elements, including

distinct metabolic trajectories, neoplastic typology, tumor

microenvironment, and host immune constitution (28).

Nonadecanoate (19:0), a long-chain fatty acid ester, was

recently identified as the predominant constituent of essential oil

derived from the fruits of Pistacia terebinthus, which exhibits

promising antineoplastic properties against lung carcinoma cell

lines (29). Unfortunately, the literature on the mechanistic

insights related to this monomeric component is scarce.

Erythritol , a tetrahydric alcohol sugar synthesized

endogenously from glucose via the pentose phosphate pathway in
Frontiers in Oncology 09
human cells, is available through dietary channels as a synthetic

sweetener. Research has shown that erythritol may exert a critical

influence on cerebral oncogenesis and the modulation of hydrogen

peroxide, with its action depending on its concentration in

biological systems (30).

We also identified a cadre of established metabolites that

provide protection against gastric carcinoma. In particular, C-

glycosyltryptophan, a metabolite within tryptophan metabolism,

has historically been used as an index of renal function (31, 32),

with empirical associations suggesting an increase in the infectious

and inflammatory burden (33). Its role against GC is supported by

correlations with cardiovascular and thyroid pathologies (34, 35).

X-13431-nonanoylcarnitine represents a research gap, and its

functional parity with recognized acylcarnitines is based on its

structural cognate. The physiological and pathophysiological

implications of acylcarnitines are manifold, such as influencing

the sequelae of myocardial ischemia, glucose homeostasis, and

inflammatory processes (36).

In this study, we found an association between elevated levels of

tyrosine, serine, and gamma-glutamylmethionine in blood

metabolites and an increased risk of GC progression. Tyrosine is

involved in gluconeogenesis and ketogenesis, linking energy, lipid,

and glucose metabolism. Disorders of tyrosine metabolism have

been identified as biomarkers for hepatocellular carcinoma and

gastroesophageal malignancies, and alterations in metabolism and

related pathways play a key role in cancer development and

progression (37, 38). Serine, which is essential for the rapid

growth of tumor cells, contributes to the proliferation of colon

cancer by providing single-carbon units. In addition, there is

evidence that glycine supplementation may alter serine

metabolism in tumor cells and that serine deprivation may inhibit

tumor growth by affecting lipid metabolism pathways, particularly

those involving palmitoyltransferases (39–41). Moreover, a negative

correlation between plasma gamma-glutamylmethionine levels and

the risk of lethal prostate cancer progression has been observed (42).

Our study has several strengths. First, it adopted an innovative

approach by integrating metabolomics and genomics, which differs

from previous MR analyses that focused only on single or

conventional exposure factors. Moreover, by employing rigorous

MR analysis and Steiger’s analysis, we effectively addressed inherent

limitations of traditional observational studies, such as reverse

causality and confounding biases. Finally, we validated specific

metabolite levels in the blood of patients with gastric cancer using
TABLE 1 Continued

Metabolites Number of SNPs MR analysis Heterogeneity Pleiotropy

Method OR (95% CI) P-value Q P Intercept p

Unknown

X-12855 20 ME 0.803 (0.606–1.063) 0.143 13.474 0.763 −0.00233762913162488 0.768

WM 0.816 (0.624–1.067) 0.137

X-14541 16 ME 0.889 (0.405–1.952) 0.774 19.105 0.161 0.021 0.287

WM 1.108 (0.802–1.531) 0.535
frontier
GC, gastric cancer; ME, MR-Egger.
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metabolomics techniques, further supporting the reliability of the

results obtained by Mendelian analysis.

Nevertheless, our study has certain limitations. First, there were

a limited number of available SNPs for the exposures at the

genome-wide level. To counteract this, we made a deliberate

decision to moderately adjust the p-value thresholds in our MR
Frontiers in Oncology 10
analysis. Nonetheless, it is crucial to emphasize that the F-statistic

value for all SNPs we selected surpassed 10, which is a reassuring

indicator of the strength and reliability of our instrumental

variables. Second, our study did not account for potential

confounding factors known to influence gastric cancer incidence,

such as smoking and alcohol consumption. Nevertheless, the
FIGURE 4

Leave-one-out plots for the causal association between blood metabolites and gastric cancer (GC).
frontiersin.org

https://doi.org/10.3389/fonc.2024.1418283
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Qian et al. 10.3389/fonc.2024.1418283
intercept test from the MR-Egger method yielded P-values above

0.05, indicating that the SNPs associated with the metabolites we

selected are not pleiotropic. In other words, these SNPs are unlikely

to influence outcomes through pathways unrelated to the
Frontiers in Oncology 11
metabolites of interest. Despite this, we recognize the importance

of considering these confounding factors in future research to gain a

more comprehensive understanding of the causal links between

blood metabolites and gastric cancer development. Finally,our

analysis identified several metabolites as potential risk predictors

for GC; however, these metabolites remained uncharacterized.

Detailed studies on their molecular structures and functions may

reveal novel biomarkers or therapeutic targets, thereby advancing

the field of GC research.

In conclusion, our investigation sheds light on the potential

causal associations between 10 known metabolites and GC

through primary analysis. In addition, MVMR analysis

andvmetabolomics techniques suggested that 3 metabolites

affect the progression of GC. Our findings highlight the

importance of GC in mediating the interplay between

metabolites and GC, thereby opening new avenues for research

on the etiology of GC, particularly its intersection with

environmental factors.
FIGURE 6

The beanplots of the relative amounts of tryptophan (A), nonadecanoate (19:0) (B), and erythritol (C) in blood samples from patients with gastric
cancer (GC) compared to those from healthy controls ‘*’ means p < 0.05; ‘**’ means p < 0.01; ‘***’ means p < 0.001.
TABLE 2 Significant metabolic pathways involved in the pathogenesis of
gastric cancer (GC).

Metabolic pathways Involved
metabolites

P-value

Aminoacyl-tRNA biosynthesis L-Tryptophan/
L-Tyrosine

0.005417

Phenylalanine, tyrosine and
tryptophan biosynthesis

L-Tyrosine 0.010293

Ubiquinone and other terpenoid-
quinone biosynthesis

L-Tyrosine 0.023046

Phenylalanine metabolism L-Tyrosine 0.025582

Caffeine metabolism 1,7-Dimethylxanthine 0.025582
FIGURE 5

A forest plot of the causal effects of blood metabolites on gastric cancer (GC) risk from multivariate Mendelian randomization with inverse variance
weighting (IVW).
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