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Introduction: We used habitat radiomics as an innovative tumor biomarker to

predict the outcome of neoadjuvant therapy for esophageal cancer.

Methods: This was a two-center retrospective clinical study in which

pretreatment CT scans of 112 patients with esophageal cancer treated with

neoadjuvant chemoimmunotherapy and surgery between November 2020 and

July 2023 were retrospectively collected from two institutions. For training (n =

85) and external testing (n = 27), patients from both institutions were allocated.

We employed unsupervised methods to delineate distinct heterogeneous

regions within the tumor area.

Results: To represent the prediction effect of different models, we plotted the

AUC curves. The AUCs of the habitat models were 0.909 (0.8418–0.9758, 95%

CI) and 0.829 (0.6423–1.0000, 95% CI) in the training and external test cohorts,

respectively. The AUCs of the nomogram models were 0.914 (0.8483–0.9801,

95% CI) and 0.849 (0.6752–1.0000, 95% CI) in the training and external test

cohorts, respectively.

Discussion: The results revealed that themodel based on habitat data outperforms

traditional radiomic analysis models. In addition, when the model is combinedwith

clinical features, it improves the predictive accuracy of pathological complete

response in patients undergoing neoadjuvant chemoimmunotherapy.
KEYWORDS

esophageal cancer, habitat, radiomics, neoadjuvant chemoimmunotherapy, pathologic
complete response
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Introduction

Esophageal cancer (EC) is the seventh most common cancer

and the sixth leading cause of cancer death worldwide (1).

Approximately 544,000 deaths from esophageal cancer were

reported in 2020. The 5-year survival rate for all stages of

esophageal cancer combined is approximately 20% (2). China has

a high incidence of esophageal cancer, of which squamous cell

carcinoma (SCC) is the main tissue subtype (3).

The clinical outcomes of patients have dramatically changed

with the application of anti-programmed death-ligand 1 (PD-L1)

antibodies in the treatment of EC. Recently, an increasing number

of studies have reported the use of chemoimmunotherapy in the

neoadjuvant treatment of locally advanced EC. Wang et al.

retrospectively analyzed the esophagectomy of patients with

esophageal squamous cell carcinoma after neoadjuvant

chemotherapy (NCT) or neoadjuvant chemoimmunotherapy

(NACI). Compared with NCT alone in the treatment of locally

advanced esophageal squamous cell carcinoma, NACI has a

superior pathological response rate and disease-free survival

(DFS) and overall survival (OS) of 3 years (4). For patients with

locally advanced EC, neoadjuvant chemoimmunotherapy is widely

used as a first-line treatment (5, 6). Nevertheless, the response of

esophageal cancer patients to NACI is highly variable, with an

average of 20% to 40% of patients estimated to have pathologic

complete response(PCR) (5). Previous studies have shown that

biomarkers such as CA-125, VEGF, CA-199, and Ki-67 are

predictive of esophageal cancer (7, 8). An alternative approach is

medical imaging, which is essential in the diagnosis of tumors prior

to neoadjuvant therapy and in the analysis of tumor heterogeneity

(9, 10).

The heterogeneity of esophageal cancer is a challenge for

clinical treatment decisions and aftercare support. Such

heterogeneity could also explain the variable response to NACI in

esophageal cancer patients (11). Radiomics is a process for

transforming images into high-volume extractable data.

Compared with several of the commonly used quantitative

parameters (e.g., CT values) in patient CT scans, current

advances in radiomics have demonstrated its potential added

value in tumor identification and prognostic assessment (12).

Recent studies have shown that the radiomic model can

effectively predict the pathological response of advanced tumors

after neoadjuvant therapy. Liu et al. established and verified a

machine learning model based on MR radiology, which can

accurately predict the PCR of patients with esophageal squamous
Abbreviations: NAT, Neoadjuvant therapy; NCT, Neoadjuvant chemotherapy;

NACI, Neoadjuvant chemoimmunotherapy; AUC, Area under the curve; PCR,

Pathological complete response; EC, Esophageal cancer; SCC, Squamous cell

carcinoma; FOV, Field of view; ROI, Region of interest; VOI, Volume of interest;

ICC, Intraclass correlation coefficient; TRG, Tumor Regression Grade; IBSI,

Imaging Biomarker Standardization Initiative; LR, Logistic regression; ROC,

Receiver operating characteristic; DCA, Decision curve analysis; ECOG,

Eastern Cooperative Oncology Group; PFS, Progression-free survival; DFS,

Disease-free survival; OS, Overall survival.
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cell carcinoma after neoadjuvant chemotherapy and radiotherapy

(nCRT) (13). Qi et al. used a machine learning model from 18F-

FDG PET and enhanced CT to predict the PCR of esophageal

squamous cell carcinoma after nCRT and treatment with an anti-

PD-1 inhibitor (14). Ou et al. established a CT radiomic model

to predict the efficacy of paclitaxel combined with cisplatin

in the treatment of advanced esophageal squamous cell

carcinoma (15).

Most studies related to radiomics, however, usually treat the

whole tumor as the object of study, with little consideration given to

extracting features from different subregions with different

metabolic profile. Caii et al. combines deep learning and habitat

radiomics techniques to establish a non-invasive model for

predicting immunotherapy response in patients with advanced

non-small cell lung cancer (16). Therefore, we made a hypothesis

that habitat analysis can predict the effect of neoadjuvant therapy

for esophageal cancer. In this study, we divided tumors into

subregions containing clusters of voxels with similar features.

This approach better quantifies the heterogeneity within the

tumor. Habitat radiomics is based on the presumption that

identified subregions composed of voxels with similar imaging

features will share common tumor characteristics (17–20).

Therefore, habitat analysis may be a valuable biomarker for

predicting clinical outcomes (called habitats).

In summary, our study introduces a new habitat model that

combines robust feature selection with clinical usability. These

advances significantly improve the prediction of neoadjuvant

therapy outcomes. (Figure 1)
Materials and methods

Datasets

This retrospective study was approved by the institutional

review board. Two cohorts of EC patients from The First

Affiliated Hospital of Anhui Medical University and The First

Affiliated Hospital of Anhui Medical University Gaoxin Branch

were retrospectively identified. Written informed consent was

waived because of the retrospective nature of this study.

The dataset used in this study consisted of pretreatment CT

scans of patients who received neoadjuvant chemoimmunotherapy

between January 2019 and May 2023 at two centers, both of which

are academic medical centers. The inclusion criteria for

all patients were as follows: a) biopsy-proven resectable

esophageal cancer (clinical stage cT1-4N1-3M0 or cT3-4N0M0),

b) enhanced CT within one month prior to neoadjuvant

therapy, and c) postoperative pathologic assessment of the

response to neoadjuvant therapy. The exclusion criteria were (a)

missing or poor-quality CT, (b) previous history of cancer,

(c) incomplete NACI, (d) lack of complete pre-NACI

histopathological data, (e) failure to undergo NACI, and (f) lack

of information on pathologic response. The patients received a

NACI regimen involving camrelizumab (200 mg) in combination

with albumin paclitaxel (260 mg/m²) and cisplatin (60 mg/m²

Q3W) (Figure 2).
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Image acquisition

All participants were informed and signed the consent form for

contrast agent injection before receiving an enhanced CT scan. CT

scans were obtained using a 256-slice CT scanner (GE Healthcare,

Revolution CT, USA). Preparation for the examination consisted of

fasting for more than 8 hours before the examination and breath-
Frontiers in Oncology 03
holding exercises. The scanning parameters were as follows: tube

voltage, 120 kV; tube current, automatic milliampere second

technology; pitch, 1.375/1.1; field of view (FOV), 500 mm; 512

mm × 512 mm matrix; scan thickness, 0.625 mm— to 5 mm; and

scan spacing, 0.625 mm— to 5 mm. The scan area included at least

the pharynx to the upper edge of the pelvis. For enhanced scanning,

90–100 mL of nonionic contrast agent was injected through the
FIGURE 2

Flow chart of patient selection process.
FIGURE 1

Overall workflow of this study.
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elbow vein via a high-pressure syringe (GE Medical Systems,

iohexol, 300 mg/mL).
Image processing and segmentation

Artery phase and vein phase CT images were isometrically

resampled using tri-linear interpolation in ITK-SNAP (version

3.8.0) software with a voxel size of 1 mm×1 mm×1 mm. On the

CT image, the region of interest (ROI) is outlined in layers, and the

3D ROIs are finally combined to form a volume of interest (VOI).

During segmentation, the esophageal lumen and mucosa,

periesophageal fat and blood vessels should be avoided. The

segmentation of VOIs was performed by a radiologist with 5

years of experience in diagnostic chest imaging. For interobserver

consistency analysis, when the radiologist performed the first

segmentation of the full dataset, another radiologist (with 10

years of experience in diagnostic chest imaging) performed the

segmentation of the selected 30 patients at the same time. For

intraclass correlation coefficient (ICC) analysis, the segmentation

was repeated 1 month after the initial segmentation.
Data preprocessing

Our study implemented crucial techniques to enhance medical

image analysis. We standardized the pixel values to a range of 0— to

2048, reducing the impact of outliers. Additionally, we employed

fixed-resolution resampling to achieve a uniform voxel spacing of ,

ensuring precise comparisons across images. These refinements

significantly bolstered the reliability and accuracy of our analysis.
Histopathologic response evaluation

Two trained pathologists (with 10 and 20 years of experience)

evaluated the resected surgical specimens and scored the response

according to Mandal’s tumor regression grade (TRG) five-grade scale.

If the residual tumor is graded TRG 1 (i.e., no remaining cancer cells

are replaced by extensive fibrosis), this indicates PCR (21).
Frontiers in Oncology 04
Habitat-oriented radiomics approach

Local features, includingmeasures such as local entropy and energy

values, were computed for every voxel inside the VOI, forming feature

vectors that encapsulated different voxel properties. These features were

calculated using a 3 × 3 × 3 nonoverlapping moving window applied to

each voxel in the CT images. This process generated a 19-dimensional

feature vector for every voxel. Subsequently, employing the K-means

method, we partitioned the VOI into three distinct regions for each

sample. To prevent overparameterization and draw on insights from

prior habitat-related literature, we preset three clustering centers as the

number of habitat regions (22). We posit that experimenting with

different numbers of clustering centers may enhance model

performance (Figure 3).

The manual features in this study include three categories:

geometric features, intensity features, and texture features. For the

internal analysis of the tumor (the VOI was considered as a whole),

we extracted the radiomic features described above. For the habitat

features, we extracted features for each subregion. Since the

clustering algorithm used is unsupervised, there is no guarantee

that each subregion retains the same label after clustering. For

example, as shown in Figure 4, we computed the maximum of the

features for each subregion to represent the final features. Most of

the features were compliant with the Imaging Biomarker

Standardization Initiative (IBSI), and all features were extracted

using the Irradiomics Tool (version 3.0.1) (23).

To assess the robustness of the image features, we performed a

test-replicate analysis and an interrater analysis to ensure that the

selected features were not affected by segmentation uncertainty. In

the test-replicate analysis, one rater performed two separate

segmentations on each set with 30 randomly assigned patients,

whereas the interrater evaluation consisted of two raters

independently segmenting the VOI subregions of another set of

30 randomly assigned patients. Features extracted from multiple

segmentation subregions were evaluated using the ICC, and features

with an ICC ≥ 0.85 were considered robust to segmentation

uncertainty. After initial screening using the ICC, all the features

were standardized to ensure that they were normally distributed.

Then, p-values were calculated for all the imaged features using a t-

test. Only radiomic features with a p-value < 0.05 were retained.
FIGURE 3

Presents the peritumoral regions generated and the habitat regions generated.
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Features of high reproducibility were then analyzed for strong

correlations using Pearson correlation. If any two features

correlated more than 0.9, only one feature was left standing. A

recursive deletion strategy was used, removing the most redundant

features at each step to maximize feature representativeness while

reducing redundancy. The LASSO regression model was used to

select the final set of features to construct the radiomic signature.

Based on the regularization weight l, LASSO regression shrinks the

regression coefficients to 0, effectively setting many coefficients for

irrelevant features to 0. The ideal l was determined using 10-fold

cross-validation, selecting the value associated with the lowest mean

standard error.

Our comparison of the capabilities of various types of tumor

region analysis: tumor region as a whole (Intra) and tumor habitat

(Habitat) analysis in a PCR prediction task.

Establishment of the intraradiomics
signature (Rad)

Machine learning approaches were used to obtain the final features

after Lasso feature screening. We used commonly used machine

learning models, such as XGBoost for tree models and logistic

regression (LR) for linear models, to build the risk model.

Establishment of habitat signature(Habitat)

Since the characterization of the internal tumor habitat relies on

unsupervised clustering algorithms, we cannot be sure that clusters

with the following centers have the same physical meaning. We

calculated an average for the features to mitigate this effect. In

addition, because of the unsupervised nature of the clustering, the
Frontiers in Oncology 05
feature selection process for the habitat feature did not include ICC

scoring, although the other configurations mirrored those of

the intramodel.

Use of the clinical signature

To investigate the role of clinical features, we used all available

clinical parameters for modelling. Owing to the limited number of

clinical features, no selection was made during the modelling phase.

All other procedures were consistent with the radiomic and habitat

modelling workflow.

Development of a radiomics nomogram

By integrating clinical features and handcrafted habitat-based

radiomic signatures, we developed a radiomic nomogram. Receiver

operating characteristic (ROC) curves were used to assess the

diagnostic performance of the radiomic nomogram in the test

cohort. Calibration curves were generated to assess the calibration

accuracy, and the Hosmer–Lemeshow goodness-of-fit test was

employed to evaluate the calibration ability. Decision curve analysis

(DCA) was also performed to evaluate the clinical benefit of the use of

the predictive models.
Results

Baseline data

We conducted statistical tests to assess the normality of the

clinical features, employing the Shapiro−Wilk method. We used the t
FIGURE 4

Various samples with three clustering labels are shown, but with different labels assigned. Our clustering algorithm categorizes regions into interior,
intermediate, and edge regions. In the figure, the red area to the left represents the intermediate region while the green area to the right represents
the middle region.
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test for significance analysis for characteristics that followed a normal

distribution. For nonnormally distributed characteristics, we used the

test to compare clinical features. To identify significant clinical

features, we employed both univariate and stepwise multiple

regression analyses for feature selection. All analyses were

performed using Python v.3.7.12 and statsmodels v. 0.13.2. The

machine learning models were developed based on the scikit-learn

v1.0.2 interface. Table 1 displays the baseline features of the patients.
Frontiers in Oncology 06
Use of clinical features

We performed univariate analysis on all the clinical features and

calculated the odds ratio (OR) and corresponding p-value for each

feature. Among these variables, the number of neoadjuvant therapy

cycles had p-values less than 0.05 and was therefore chosen to

construct the nomogram. The p-value for the neoadjuvant therapy

cycle was 0.014, which was statistically significant (Supplementary
TABLE 1 Baseline features of the patients. The Eastern Cooperative Oncology Group (ECOG) categorizes patients’ activity status into a total of 6
grades from 0 to 5. Surgery is feasible for patients with a general physical status of 0-1.

feature_name PCR none-PCR P-value PCR none-PCR P-value

age 68.78±6.78 65.55±8.21 0.121 62.50±7.23 65.95±7.97 0.598

Tumor_length 5.87±2.38 7.02±2.42 0.037 4.55±1.80 6.33±2.10 0.09

Weight 58.94±9.46 60.82±10.64 0.609 62.33±10.58 60.19±11.18 0.861

Height 163.72±8.09 164.84±7.36 0.771 165.50±7.42 165.95±6.95 1.0

Gender 1.0 0.853

male 14(77.78) 51(76.12) 4(66.67) 17(80.95)

female 4(22.22) 16(23.88) 2(33.33) 4(19.05)

ECOG_score 0.645 0.318

0 3(16.67) 17(25.37) 3(50.00) 4(19.05)

1 15(83.33) 50(74.63) 3(50.00) 17(80.95)

Tumor_location 0.079 0.643

upper 1(5.56) 4(5.97) 0 (0.0) 0 (0.0) 0(0.0)

mid 13(72.22) 39(58.21) 4(66.67) 18(85.71)

Distal 2(11.11) 23(34.33) 2(33.33) 3(14.29)

Gastroesophageal junction 2(11.11) 1(1.49) 0 (0.0) 0 (0.0) 0 (0.0)

T_stage 1.0 1.0

3 18(100.00) 66(98.51) 6(100.00) 20(95.24)

4 0 (0.0) 1(1.49) 0 (0.0) 1(4.76)

N_stage 0.325 0.916

1 14(77.78) 40(59.70) 2(33.33) 6(28.57)

2 3(16.67) 16(23.88) 2(33.33) 9(42.86)

3 1(5.56) 11(16.42) 2(33.33) 6(28.57)

Neoadjuvant therapy cycle 0.026 0.778

2 8(44.44) 48(71.64) 5(83.33) 14(66.67)

3 9(50.00) 19(28.36) 1(16.67) 7(33.33)

4 1(5.56) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)

Histological_types 0.659 1.0

Squamous cell carcinoma 18(100.00) 64(95.52) 6(100.00) 20(95.24)

Adenocarcinoma 0 (0.0) 1(1.49) 0 (0.0) 0 (0.0) 0 (0.0)

Other type 0 (0.0) 2(2.99) 0 (0.0) 1(4.76)
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Table S1, Supplementary Figure S1). The correlation matrix

presented in Supplementary Figure S2 depicts the relationships

among different clinical features.
Extraction of habitat features

Altogether, 1834 hand-crafted radiomic features were extracted.

They were categorized into shape, first-order and texture categories.

Among these, there were 360 first-order features, 14 shape features,

and various texture features. The feature extraction process utilized

an in-house program implemented in PyRadiomics (http://

pyradiomics.readthedocs.io) (Supplementary Figure S3).

We then established radiomic features through the application

of Lasso with 10-fold cross-validation to select tumor features and

habitat-related features, as depicted in Figure 5.

Supplementary Figure S4 shows the MSE path of LASSO in a 10-

fold cross validation of the Radiomics Signature and Habitat Signature.

For the training set, we applied a 5-fold cross-validation. The

cross-validation results clearly revealed that the models based on

habitat segmentation significantly outperform traditional radiomic

models (Supplementary Figure S7).

The four presented figures correspond to the performance of the

models on intratumorally training and testing datasets, as well as

habitat analysis training and testing datasets across various models.

The outcomes demonstrate that integrating habitat analysis into the

models results in a significant enhancement (Figure 6).
Signature comparison

Model efficiency
The model based on habitat outperforms traditional radiomic

models. Additionally, when this model is combined with clinical

features, it achieves enhanced predictive accuracy.

We produced AUROCs for different features in the test cohort

and compared the efficacy of each model. In the test set, the

sensitivity of habitat analysis is 66.7%, the specificity is 90.5%,

and the sensitivity is the highest among all models. However, the

sensitivity and specificity of the traditional radiomics model are

only 33.3% and 95.2%, which is the highest specificity among all

models. In the nomogram model, both sensitivity and specificity are

high. The AUC of nomogram model is 0.914 in training set and

0.849 in test set, which is obviously higher than other models, and it

is considered as better performance, showing higher accuracy and

AUC value in training and test set. As can be seen from the curve,

the AUC of the nomogram is the largest (Figure 7, Table 2).

Calibration curve
The HL test statistics represent the degree of discrepancy

between the predicted probabilities and the observed outcomes. A

higher HL test statistic indicates better calibration, suggesting that

the models’ predicted probabilities align closely with the actual

outcomes. In this context, the nomogram model demonstrates the
Frontiers in Oncology 07
highest calibration performance, with an HL test statistic of 0.321

(Supplementary Figure S5, Supplementary Table S2).

DeLong test
When the training and testing sets are examined, the nomogram,

which integrates both clinical and machine learning outcomes, clearly

shows superior model performance. In the training cohort, all the

signatures demonstrated significant enhancement compared with the

clinical signature (p-value < 0.05). However, the improvement in the

test set is not as pronounced. This could be attributed to the limited

impact of the clinical model in the linear fusion process

(Supplementary Figure S6).
Clinical use

We used decision curve analysis (DCA) to assess the

effectiveness of the model (Figure 8). The results indicate that our

fusion model (nomogram) yields noticeable benefits on the basis of

the predicted probabilities. Additionally, compared with other

signatures, it has greater potential for obtaining net benefit.
Establishment of the nomogram

We integrated all the clinical features with the signature to

construct a nomogram, which facilitates clinical utilization (Figure 9).
Discussion

In this study, we developed a model that combines habitat

analysis, radiomics scores and clinical variables and successfully

predicts the prognosis of patients receiving neoadjuvant therapy.

Our findings can be used to assess the benefits of NACI prior

to treatment and provide patients who are insensitive to NACI

with the opportunity to adjust to an appropriate strategy in a

timely manner.

In our study, the probability of PCR occurring after patients

were treated with NACI was 21%. A limited surgical strategy can be

used to minimize surgical complications and economic burdens in

patients who are expected to achieve PCR after NACI. To assess the

response to NACI, a widely used clinical tool to evaluate changes in

tumor size is RECIST (24, 25). Several studies have shown that the

esophageal cancer response to NACI is associated with clinical

TNM stage and Ki-67 (8, 26). However, the efficacy of NACI is not

accurately predicted by RECIST or traditional clinicopathological

features. Radiomics has been shown to be an excellent tool for

assessing the response of EC patients to NACI in several studies

(27–30). Hou et al. used d18F-fluorodeoxyglucose PET-CT to

predict radiation pneumonitis in patients with esophageal

squamous cell carcinoma receiving neoadjuvant chemotherapy

(28). Wang et al. reported that CT-based radiomics has predictive

value for PCR after NACI in patients with esophageal squamous cell

carcinoma (30). Intratumoural heterogeneity can be reflected to
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some extent by the unique texture and spatial greyscale patterns of

radiomic features extracted from CT images. However, these

theoretical assumptions have not been fully elucidated by habitat

analysis studies. Our study has several significant advantages

over previous studies: we systematically studied the tumor

microenvironment. By integrating information from these

subregions, we achieved good results in the prediction task of
Frontiers in Oncology 08
PCR. In addition, we compared image-based habitat analysis

under different algorithmic models in detail.

Habitat analysis methods are now used in many studies of

medical images. Wang et al. applied PET/CT habitat radiomics

analysis to predict progression-free survival (PFS) status and Ki-67

(31). WEI et al. used MRI habitat radiomic features to predict the

preoperative MGMT methylation status and validated its value for
FIGURE 5

Coefficients of lasso in 10 fold cross validation in Radiomics Signature and Habitat Signature. (A) Lasso Coefficients for radiomics signature. (B) Lasso
Coefficients for habitat signature.
FIGURE 6

The four presented figures correspond to the performance of the models on intratumoral training and testing datasets, as well as habitat analysis
training and testing datasets across various models. The outcomes demonstrate that integrating habitat analysis into the models results in a
significant enhancement. (A) Indicates the performance of model on the intratumoral training set. (B) Indicates the performance of model on the
intratumoral test set. (C) Indicates the performance of different models on the habitat analysis training set. (D) Indicates the performance of different
models on the habitat analysis test set.
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assessing the outcome of chemotherapy (32). Habitat-based

radiomic analysis for evaluating immediate response in colorectal

cancer lung metastases treated by radiofrequency ablation, Huang

et al. (33). However, to our knowledge, no studies have combined
Frontiers in Oncology 09
radiomics with habitat analysis to predict the efficacy of

neoadjuvant therapy for esophageal cancer.

Local features are computed for each of the voxels inside the

VOI, including metrics such as local entropy and energy values, to
TABLE 2 Metrics on different signature. With higher accuracy and AUC values, nomogram models are considered to be better performers.

Signature Accuracy AUC 95% CI Sensitivity Specificity PPV NPV Cohort

Clinical 0.588 0.739 0.6244 - 0.8540 0.889 0.567 0.327 0.944 Train

Radiomics 0.859 0.899 0.7945 - 1.0000 0.944 0.836 0.607 0.982 Train

Habitat 0.718 0.909 0.8418 - 0.9758 1.000 0.642 0.429 1.000 Train

Nomogram 0.741 0.914 0.8483 - 0.9801 1.000 0.672 0.450 1.000 Train

Clinical 0.630 0.627 0.3779 - 0.8761 0.500 0.667 0.300 0.824 Test

Radiomics 0.815 0.746 0.5120 - 0.9801 0.333 0.952 0.667 0.833 Test

Habitat 0.815 0.829 0.6423 - 1.0000 0.667 0.857 0.571 0.900 Test

Nomogram 0.815 0.849 0.6752 - 1.0000 0.500 0.905 0.600 0.864 Test
FIGURE 7

Different signatures’ AUROC on test cohort. (A) represents AUC of each model in the training sets. (B) represents AUC of each model in the test sets.
The model based on habitat outperforms traditional radiomics models. Nomogram models are considered better performers, showing higher
accuracy and AUC values across both the training and test sets. As can be seen from the curve, the AUC of Nomogram is the largest.
FIGURE 8

Different signatures’ decision curve on test cohort. (A) shows the DCA for the training set. (B) shows the DCA for the test set.
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form a feature vector that encompasses the attributes of different

voxels. We predetermined three clustering centers as the number of

habitat areas. We believe that experimenting with different numbers

of clustering centers may enhance the efficiency of the model

(Figure 10). This finding suggests that the tumor habitat in CT

images typically reflects the activity profile of active tumor cells and

is strongly associated with tumor progression and death (31, 34, 35).

While some of this was due to a potential partial volume effect, it is

worth noting that some of the low-activity CT regions were usually

located at the tumor margin, suggesting that the heterogeneity of

the tumor margin on CT images, which may be caused by

inflammation, is also important for prognostic assessment. The

higher the entropy value of the lung cancer margins is, the worse the

prognosis, as previous studies have shown (36).

This study has several limitations. First, this was a retrospective

study with potential limitations associated with retrospective data

collection, including selection bias and sample representativeness.

To investigate the effect of neoadjuvant therapy for esophageal

cancer based on CT radiomics prediction, further prospective

analyses should be conducted. Second, manual tumor

segmentation by different experts may affect the stability of

radiomic features. Although we addressed this issue by selecting

features with intraclass correlations above 0.85, it is essential to
Frontiers in Oncology 10
adopt an automated and accurate tumor segmentation method that

not only improves the efficiency of quantitative image analysis but

also ensures the stability and consistency of the analysis process.

In summary, this model combines clinical, radiomic and habitat

radiomic features and has the best ability to predict PCR in

esophageal cancer patients. Future studies should incorporate

multimodal data and increase external validation.

Habitat analysis can quantitatively analyze the correlation

between habitat area and clinical data by extracting relevant

features from medical images, which provides a new method for

noninvasive evaluation of tumor types, prediction of metastasis risk,

identification of gene status and prediction of prognosis. However,

there are still several challenges in this field, such as small sample

sizes, a lack of external verification and time-consuming

segmentation and extraction. Therefore, further exploration is

needed in the field of tumor research. With the gradual

standardization of medical image data collection, processing,

feature extraction and analysis, the uncertainty of research results

will also be reduced. Moreover, with the continuous development of

artificial intelligence and imaging, future habitat analysis can extract

more accurate habitat features from automatically segmented

regions of interest to display tumors and peritumoral conditions

more comprehensively.
FIGURE 10

Intratumoral subregions were clustered and regions with the same characteristics were color-coded.
FIGURE 9

The nomogram for clinical use.
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Conclusions

We established and evaluated a model of habitat radiomic

analysis in patients with EC and applied this model to predict the

efficacy of NACI in EC patients. The developed model has

excellent predictive power and may improve individualized

treatment for EC patients. We packaged the developed

algorithm into a Web system, which can direct users to directly

input the patient’s image data and judge the patient through our

trained model. In clinical practice, doctors can combine the

judgement of the AI system and make comprehensive diagnostic

conclusions as much as possible. We also intend to use habitat

analysis to create a new method for noninvasive evaluation of

tumor types, prediction of metastasis risk, identification of gene

status and prediction of prognosis.
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