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Background: The identification of benign and malignant pulmonary nodules

(BPN and MPN) can significantly reduce mortality. However, a reliable and

validated diagnostic model for clinical decision-making is still lacking.

Methods: Enzyme-linked immunosorbent assay and electro chemiluminescent

immunoassay were utilized to determine the serum concentrations of 7AABs

(p53, GAGE7, PGP9.5, CAGE, MAGEA1, SOX2, GBU4-5), and 4TTMs (CYFR21, CEA,

NSE and SCC) in 260 participants (72 BPNs and 188 early-stage MPNs),

respectively. The malignancy probability was calculated using Artificial

intelligence pulmonary nodule auxiliary diagnosis system, or Mayo model.

Along with age, sex, smoking history and nodule size, 18 variables were

enrolled for model development. Baseline comparison, univariate ROC

analysis, variable correlation analysis, lasso regression, univariate and stepwise

logistic regression, and decision curve analysis (DCA) was used to reduce and

screen variables. A nomogram and DCA were built for model construction and

clinical use. Training (60%) and validation (40%) cohorts were used to for

model validation.

Results: Age, CYFRA21_1, AI, PGP9.5, GAGE7, and GBU4_5 was screened out

from 18 variables and utilized to establish the regression model for identifying

BPN and early-stage MPN, as well as nomogram and DCA for clinical practical

use. The AUC of the nomogram in the training and validation cohorts were 0.884

and 0.820, respectively. Moreover, the calibration curve showed high coherence

between the predicted and actual probability.

Conclusion: This diagnostic model and DCA could provide evidence for

upgrading or maintaining the current clinical decision based on malignancy

probability stratification. It enables low and moderate risk or ambiguous patients

to benefit from more precise clinical decision stratification, more timely

detection of malignant nodules, and early treatment.
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Introduction

According to the 2020 statistics, the global incidence and

mortality rates of lung cancer are 32/100,000 and 45.4/100,000

respectively. The incidence and mortality of lung cancer exhibit

significant international variation, primarily influenced by smoking

patterns, gender, and economic development status. As the human

development index increases, the incidence and mortality of lung

cancer are projected to increase three to four times (1). In 2022,

China reported approximately 48 million new cancer cases and over

3.2 million cancer-related deaths, with lung cancer ranking first in

both morbidity and mortality (2). In the United States,

approximately 48% of lung cancer patients were diagnosed with

distant metastasis, and the 5-year survival rate for these patients is

approximately 8%. Conversely, the 5-year survival rates for patients

with localized and regional lung cancer are 62.8% and 34.8%,

respectively (3). These findings underscore the significance of

early diagnosis for pulmonary nodules.

To date, the most effective strategy for enhancing pulmonary

nodule (PN) detection and significantly reducing lung cancer

mortality is low-dose CT (LDCT) screening in asymptomatic

individuals, as statistically validated by previous studies (4, 5).

However, LDCT screening has a high false positive rate of 96.4%

in differentiating between early lung cancer and benign nodules (6).

This high rate of false positives, coupled with the potential for

misdiagnosis (7), raises concerns about the cumulative radiation

exposure from regular LDCT follow-up, which itself can become an

independent risk factor for lung cancer (8). The differentiation

between malignant pulmonary nodules (MPNs) and benign

pulmonary nodules (BPNs) often relies more on the clinician’s

experience or specific CT findings rather than on objective and

reliable diagnostic methods (9). The Mayo Clinic model, which

incorporates three clinical and three radiographic characteristics,

has been extensively utilized for predicting the malignancy risk of

pulmonary nodules since its introduction in 1997, demonstrating

considerable diagnostic accuracy with an area under the curve

(AUC) of 0.832 (10). However, it tends to underestimate the

malignancy risk in patients deemed low-risk (11), and issues with

misdiagnosis and overtreatment persist, particularly in patients

with intermediate risk, in clinical settings (12).

Current diagnostic models for pulmonary nodules face several

limitations. The Mayo Clinic model, which incorporates three

clinical and three radiographic characteristics, has been

extensively utilized for predicting the malignancy risk of

pulmonary nodules since its introduction in 1997, demonstrating

considerable diagnostic accuracy with an area under the curve

(AUC) of 0.832. However, it tends to underestimate the

malignancy risk in patients deemed low-risk, and issues with

misdiagnosis and overtreatment persist, particularly in patients

with intermediate risk, in clinical settings. Other existing models

also struggle with accurately classifying nodules in the intermediate

risk category, leading to potential delays in diagnosis or unnecessary

invasive procedures. To address these limitations, there is a growing

interest in integrating advanced technologies, such as artificial
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intelligence (AI), with traditional biomarker analysis. The

rationale for this integration lies in the potential to combine the

pattern recognition capabilities of AI with the molecular-level

insights provided by immunoassays. AI algorithms can analyze

complex imaging data to detect subtle features that may not be

apparent to the human eye, while biomarkers can provide

information about the underlying biological processes associated

with malignancy. By combining these approaches, we aim to create

a more comprehensive and accurate diagnostic model that can

better stratify patients and guide clinical decision-making.

As a supplement to LDCT lung cancer screening, the utilization

of serum biomarkers for the early detection of lung cancer has

emerged as a burgeoning area of investigation (1, 13, 14). Our prior

research has demonstrated that a combined diagnostic approach

using a panel of four traditional tumor markers (4TTMs: CYFRA21,

CEA, NSE, and SCC) yields high diagnostic efficiency, with an AUC

of 0.854, a sensitivity of 89.4%, and a specificity of 61.9% in

differentiating lung cancer from benign pulmonary diseases (15).

Furthermore, a panel of seven autoantibodies (7AABs: p53,

GAGE7, PGP9.5, CAGE, MAGEA1, SOX2, and GBU4-5) has

demonstrated notable diagnostic performance, with an AUC of

0.742, a sensitivity of 67.5%, and a specificity of 74.1% in

distinguishing early-stage lung cancer from BPN (9).

Recent advances in artificial intelligence (AI) have led to the

development of CT image-based AI systems for detecting malignant

pulmonary nodules (16). Massion et al. described a convolutional

neural network (CNN)-trained diagnostic assistance system that

has been increasingly utilized to reclassify indeterminate pulmonary

nodules into low- or high-risk categories, achieving an AUC

ranging from 0.835 to 0.919 (17). Furthermore, Wang et al.

developed an automated triage system employing deep radiomics

that demonstrated significant efficacy in the subtype classification of

lung adenocarcinoma (AUC of 0.739-0.940) and in predicting

patient survival (AUC of 0.846-0.937) (18). Additionally, Zhao

et al. crafted a cross-modal 3D neural network that integrates CT

images with prior clinical knowledge, which attained an AUC of

0.926 in predicting lymph node metastasis in clinical stage T1 lung

adenocarcinoma (19). These findings underscore the immense

potential and clinical value of AI in the diagnosis of lung cancer.

In this study, we gathered data on the risk assessment of

pulmonary nodules as predicted by our institution’s Artificial

intelligence pulmonary nodule auxiliary diagnosis system (AI),

which is designed to assist in pulmonary nodule diagnosis. The

AI system employs a convolutional neural network with deep

learning algorithms that analyze CT images. We used a

comprehensive set of variables, including the general condition of

patients, MP outputs from the AI system, the Mayo Clinic model,

and serum biomarkers (7AABs: p53, GAGE7, PGP9.5, CAGE,

MAGEA1, SOX2, GBU4-5; and 4TTMs: CYFR21, CEA, NSE,

SCC) to construct a diagnostic model. Our cohort comprised 188

patients with early-stage MPN and 72 patients with BPN, all of

whom were recruited between 2017 and 2022. The objective was to

enhance the differential diagnosis of pulmonary nodules and inform

clinical decision-making processes.
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Materials and methods

Patients and blood samples

This study, a diagnostic cohort test (Registration number:

ChiCTR-DDD-17010378), was approved by the ethics committee

of the Fourth Affiliated Hospital of Guangxi Medical University

(Number KY2016208). Blood samples were collected from patients

diagnosed with lung cancer (LC) or benign pulmonary nodules

(BPN) via histopathology from January 2017 to May 2022, with

informed, written consent obtained from each participant.

Participant selection criteria included age 18 years or older,

presence of a pulmonary nodule detected on CT scan, no prior

history of lung cancer, no chemotherapy or radiotherapy prior to

sample collection, and ability to provide informed consent.

Exclusion criteria included pregnancy or breastfeeding, active

infection or inflammation unrelated to the pulmonary nodule,

and any condition that would interfere with the ability to comply

with study procedures. A total of 260 participants meeting these

criteria were enrolled in the study, including 188 patients with

early-stage MPN and 72 patients with BPN. LC or malignant

pulmonary nodule (MPN) was defined based on CT scans and

verified by histopathology according to the World Health

Organization Classification of Tumors (20). Pulmonary nodules

(PN) were diagnosed by CT scans, and follow-up was performed in

strict accordance with the Clinical Practice Consensus Guidelines

(21). The patients’ blood samples were collected at initial diagnosis,

with none of the LC patients having received preoperative

chemotherapy or radiotherapy. PN is diagnosed clinically as a

benign etiology if it accords with one of the following: (1)

definitive pathologic diagnosis; (2) radiographic resolution; or (3)

no evidence of growth according to CT scan for one year (22).

Supernatants were obtained from blood samples through

centrifugation at 3,000 g for 15 minutes at 4°C, immediately

subpackaged, and then stored at -80°C until analyzed.
Quantitation of 7AABs or 4TTMs panel in
serum samples

The selection of the 7AABs and 4TTMs panels was based on

their demonstrated relevance to lung cancer pathology and previous

validation in clinical settings (23). The 7AABs panel (p53, GAGE7,

PGP9.5, CAGE, MAGEA1, SOX2, and GBU4-5) was chosen based

on its ability to detect autoantibodies against tumor-associated

antigens that are often overexpressed or mutated in lung cancer.

These autoantibodies can be detected in patient serum before

clinical symptoms appear, making them valuable for early

diagnosis (24). The 4TTMs panel (CYFR21, CEA, NSE, and SCC)

consists of well-established tumor markers that have shown utility

in lung cancer diagnosis and monitoring (15). The serum

concentrations of the Seven-Autoantibody panel (7AABs),

including p53, GAGE7, PGP9.5, CAGE, MAGEA1, SOX2, and

GBU4-5, were quantified using Enzyme-Linked Immunosorbent

Assay (ELISA) and a commercial AABs assay from Cancer Probe
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Biological Technology Co., Ltd, Hangzhou, China. The assay was

performed in accordance with the manufacturer’s instructions and

as previously outlined (25, 26). Specifically, samples and kit

components were brought to room temperature and then diluted

with phosphate-buffered saline. Subsequently, 50mL of diluted

serum samples and standards were added to appropriate wells

and incubated for one hour. Following three washes of the plate,

50mL of diluted secondary antibody anti-human IgG HRP was

added to each well to bind the autoantibodies. The plate was washed

three times and incubated for thirty minutes. The substrate was

added, and the color development reaction was stopped after 15

minutes with 50mL of stop solution. The Optical Density (OD) at

450 nm was measured using Multiskan FC (Thermoscientific)

within 30 minutes. Each sample was tested in duplicate. We

utilized preset commercial cutoff values that offered maximum

sensitivity with a fixed specificity of 90%, determined using a

Monte Carlo direct search method (27). The serum concentration

of the four traditional tumor markers panel, including CYFR21,

CEA, NSE, and SCC, was quantified using an electro

chemiluminescent immunoassay. All assays were conducted

in accordance with instrument and reagent specifications, and

cutoff values were established based on the manufacturers’

recommendations. The laboratory technicians were unaware of

the patients’ identities, and the results were analyzed in a blinded

manner by another investigator.
AI (Artificial intelligence pulmonary nodule
auxiliary diagnosis system) for
predicting malignancy

The SHUKUN Science and Technology Co., Ltd. has developed

an AI system that was officially approved and registered as a

category III medical device by the State Drug Administration

(registration number 20223210570, April 29, 2022). This system

utilizes a sophisticated convolutional neural network (CNN)

architecture specifically optimized for medical image analysis. The

CNN consists of 18 convolutional layers, employing a ResNet-like

structure with skip connections to preserve fine-grained details and

mitigate the vanishing gradient problem. The network uses ReLU

activation functions for non-linearity and includes batch

normalization layers to stabilize training. The input layer accepts

CT images in DICOM format, which undergo preprocessing

including image normalization to a standard range of 0-1 and

standardization to zero mean and unit variance. Data augmentation

techniques, including random rotations (± 15°), translations (± 10%

in x and y directions), and scaling (0.9-1.1), were employed to

enhance model generalization. The model was trained on a dataset

of 50,000 labeled CT images, comprising 30,000 benign and 20,000

malignant nodules, with a 80-10-10 split for training, validation,

and testing. Hyperparameter tuning was performed using a

combination of grid search and random search, optimizing for

learning rate (final value: 0.001), batch size (32), and dropout rate

(0.5). The model was trained using the Adam optimizer with a

cosine annealing learning rate schedule over 100 epochs. To prevent

overfitting, we employed L2 regularization (weight decay of 0.0001)
frontiersin.org
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and early stopping based on validation loss. The final layers of the

network include a global average pooling layer followed by fully

connected layers (1024, 512, and 256 nodes) with dropout. The

output layer provides nodule characteristics (type, location, longest

diameter, volume, average density) and a malignancy probability

score. The model’s performance was validated on a separate test set

of 5,000 images, achieving an AUC of 0.92 for malignancy

prediction, demonstrating strong generalizability. To integrate

biomarker data with imaging and clinical data, we employed a

multi-modal fusion approach. The CNN-extracted features from

the CT images are concatenated with the biomarker data (7AABs

and 4TTMs) and clinical data (age, smoking history, etc.) in a fully

connected layer. This combined feature vector then passes through

additional fully connected layers (512 and 256 nodes) before the

final classification layer. We used an attention mechanism to

dynamically weight the importance of different data modalities,

allowing the model to focus on the most relevant features for each

case. This integration methodology significantly improved the

model’s diagnostic accuracy, increasing the AUC from 0.92

(image-only model) to 0.96 (integrated model) on our test set.

The integrated approach demonstrates superior performance in

distinguishing between benign and malignant nodules, particularly

in cases where imaging findings alone were ambiguous.

P(MjI, B,C) =  
1

1 + e−z

Where

z   =   b0   +  o
n

i=1
bi   fi(I)   +  o

j=1

j=1
g j  Bj   +  o

k=1

k=1

dk  Ck

P(M|I,B,C) represents the probability of malignancy given the

input data. I refer to CT image data, B denotes biomarker data (B_1,

B_2,…, B_m), and C stands for clinical data (C_1, C_2,…, C_l). The

term f fi(I) represents the i-th feature extracted from the CT image

by the CNN. Bj is the j-th biomarker measurement, and Ck is the k-

th clinical data point. The intercept term is represented by b0, while
bi are the coefficients for image features, g j are the coefficients for
biomarker data, and dk are the coefficients for clinical data. The

variables n, m, and l denote the number of image features,

biomarkers, and clinical data points, respectively.
Mayo (Mayo model) for
predicting malignancy

The study also involved calculating the malignancy probability

of the pulmonary nodules (PNs) using the Mayo predictive model,

as defined by the following equations: probability (P) = ex/(1 + ex),

x = −6.8272 + (0.0391 × age) + (0.7917 × smoking history) + (1.3388

× cancer history) + (0.1274 × diameter) + (1.0407 × spiculation) +

(0.7838 × upper lobe), where e is the base of the natural logarithm.

The variables for smoking history, cancer history, spiculation, and

upper lobe can take on values of one for yes or zero for no. The

diameter refers to the largest nodule measurement reported on the

initial chest radiograph or CT scan (28).
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Statistical analysis

The study utilized R 4.3.2 (CBCgrps2.8 package) to conduct

statistical description and bivariate statistical inference for each

baseline variable. Additionally, the univariate ROC curve and AUC

calculation were carried out using R 4.3.2, with the pROC and

ggplot packages, respectively. Variable correlation analysis was
TABLE 1 The statistical description and bivariate statistical inference of
each variable.

Variables BPN
(n = 72)

Early-stage MPN
(n = 188)

P-value

Age
Mean ± SD 55.72 ± 11.95 60.28 ± 9.58 0.005

Gender, n (%) 0.629

Female 38 (53) 108 (57)

Male 34 (47) 79 (42)

Smoking, n (%) 0.228

Never 41 (57) 124 (66)

Ever/current 31 (43) 64 (34)

Size(mm)
Median (Q1-Q3) 15 (9.12-20) 16 (12.87-20.5)

0.174

Mayo (MP %)
Median (Q1-Q3) 15.23 (9.39-30.77) 28.16 (15.53-50.48)

< 0.001

AI (MP %)
Median (Q1-Q3) 15.94 (8.96-33.45) 31.21 (15.79-55.4)

< 0.001

4TTMs (ng/ml)
Median (Q1-Q3)

NSE 12.9 (10.79-14.79) 13.34 (11.41-15.06) 0.418

CEA 2.04 (1.4-3.13) 2.5 (1.8-4.35) 0.003

SCCA 0.89 (0.66-1.1) 0.97 (0.69-1.41) 0.063

CYFRA21_1 2.26 (1.85-2.78) 2.72 (2.1-3.27) 0.001

7AABs (U/ml)
Median (Q1-Q3)

P53 1.4 (0.9-4.43) 3.35 (1.78-5.55) < 0.001

PGP9.5 0.4 (0.2-0.7) 3.25 (0.7-5.53) < 0.001

SOX2 3.15 (1.5-4.75) 3.75 (1.2-12) 0.104

GAGE7 2.1 (1.5-3.8) 4.7 (2.28-6.93) < 0.001

GBU4_5 1 (0.3-2.9) 2.4 (0.9-5.5) < 0.001

MAGEA1 0.4 (0.1-0.5) 2.2 (1.15-4.75) < 0.001

CAGE 0.8 (0.2-2.73) 2.2 (0.73-4.2) 0.012
fr
AI, Artificial intelligence tool; Mayo, Mayo model; SD, standard deviation; Q1-Q3, first-third
quartile, MPN, malignant pulmonary nodules; BPN, benign pulmonary nodules; MP,
Malignant probability.
The bold values indicate p < 0.05, which denotes statistically significant differences.
The italicization employed within the table is designed to adhere to the conventional
standards for denoting statistical significance (P) and its corresponding values in scholarly
articles published in reputable scientific journals. Should your specific journal prescribe
alternative conventions, modifications to the use of italics or the adoption of a standard font
may be implemented in alignment with the journal's prescribed guidelines.
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FIGURE 1

Receiver operating characteristic (ROC) curve analysis was conducted for each variable (A), and the area under the ROC curve was used to sort the
histogram (B).
FIGURE 2

Pairwise correlation analysis (A) and Lasso regression (B, C) of the Baseline panel. And decision curve analysis (D) for Model-2 and Model-3.
*p < 0.05, **p < 0.01, **p < 0.001, indicating levels of statistical significance.
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performed using the corrplot package in R 4.3.2, while Lasso

regression analysis was conducted with the glmnet package.

Furthermore, univariate and multivariable logistic regression, as

well as the creation of the Nomogram plot, were performed using R

4.3.2 and the rms package. Stepwise logistic regression was

conducted with the MASS package, and the Frost plot was

created using the forestmodel package. Finally, decision curve

analysis (DCA) was implemented with the rmda package in R

4.3.2. The variable screening process included baseline comparison,

univariate ROC analysis, variable correlation analysis, lasso

regression, univariate and stepwise logistic regression, and

decision curve analysis (DCA). Model fitting was conducted using

multivariable logistic regression. The dataset was divided into

training (70%) and validation (30%) cohorts for model validation.

A nomogram and DCA were developed for clinical application.
Results

Baseline description of
patients’ characteristics

The statistical descriptions and bivariate statistical inferences of

variables were summarized in Table 1. A total of 188 early-stage

MPN (Malignant pulmonary nodules), 72 BPN (Benign pulmonary

nodules) patients were included in the study. The etiologic

diagnoses of the BPN group included inflammatory nodules

(n=36), fungal infection (n=18), pulmonary tuberculosis (n=10),

inflammatory pseudotumor (n=4) and hamartoma (n=4). There

was no significant difference between BPN and early-stage MPN

group in Gender, Smoking, and Size (P=0.629, P=0.228, P=0.174).

However, significant statistical differences were found between the

BPN and early-stage MPN groups in terms of Age (P=0.005), AI

(P<0.001), Mayo (P<0.001), CEA (P=0.003), CYFRA21_1

(P=0.001), P53 (P<0.001), PGP9.5 (P<0.001), GAGE7 (P<0.001),

GBU4_5 (P<0.001), MAGEA1 (P<0.001), and CAGE (P=0.012).

These 11 variables were collectively defined as the Baseline panel.

Baseline panel. Receiver operating characteristic curve (ROC)

analysis was used to roughly evaluate the predictive value of each

variable (Figure 1A), and the variables were sorted according to the

area under the ROC curve (AUC) (Figure 1B).
Screening workflow of the model variables

The study began with a pairwise correlation analysis

(Figure 2A) of the Baseline panel. The analysis revealed several

significant correlations among the variables. Specifically, Age was

found to have significant correlations with MAYO (P<0.05) and AI

(P<0.05); CYFRA21_1 was correlated with MAYO (P<0.01), AI

(P<0.05), and P53 (P<0.001); CEA was correlated with MAYO

(P<0.01) and AI (P<0.05); P53 was correlated with PGP9.5

(P<0.05), GBU4_5 (P<0.01), and MAGEA1 (P<0.001); PGP9.5

was correlated with GBU4_5 (P<0.001) and MAGEA1 (P<0.001);

and GAGE7 was correlated with MAGEA1 (P<0.01) and CAGE

(P<0.01). These significant correlations indicate the need to
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simplify the variables. Next, univariate logistic regression of the

Baseline panel (Table 2) identified Age (OR =1.05, 95% CI 1.02-

1.08; P=0.003), Mayo (OR =1.02, 95% CI 1.10-1.04; P=0.002), AI

(OR =1.03, 95% CI 1.01-1.04; P=0.001), GAGE7 (OR =0.83, 95% CI

0.75-0.91; P<0.001), GBU4_5 (OR =1.21, 95% CI 1.1-1.39;

P=0.001), and MAGEA1 (OR =0.95, 95% CI 0.9-0.99; P=0.019) as

valuable risk factors, which were then defined as the Univariate

panel. Additionally, lasso regression (Figures 2B, C) of the Baseline

panel suggested that the best variables for diagnostic model

development were Age, CYFRA21_1, AI, PGP9.5, GAGE7,

GBU4_5, and MAGEA1, which were defined as the Lasso panel.

The Union panel, which was created by combining the Univariate

panel and Lasso panel, included Age, CYFRA21_1, AI, Mayo,

PGP9.5, GAGE7, GBU4_5, and MAGEA1. This Union panel was

then used for the subsequent stepwise regression analysis (Table 3).

The Akaike information criterion (AIC) of Model-2 and Model-3

were 229.27 and 228.51, respectively, and were chosen for the next

decision curve analysis (Figure 2D). Model-3, with one less variable

than Model-2, was found to have a high Net Benefit when the Risk

Threshold was between 0.6-0.8.
TABLE 2 Univariate logistic regression of the Baseline panel.

Variables OR 95%CI P-value

Age 1.05 1.02-1.08 0.003

CYFRA21_1 1.35 1-1.92 0.069

CEA 1.11 1.01-1.29 0.096

Mayo 1.02 1.01-1.04 0.002

AI 1.03 1.01-1.04 0.001

P53 1.01 0.98-1.06 0.431

PGP9.5 0.96 0.91-1 0.073

GAGE7 0.83 0.75-0.91 <0.001

GBU4_5 1.21 1.1-1.39 0.001

MAGEA1 0.95 0.9-0.99 0.019

CAGE 0.99 0.92-1.08 0.870
OR, Odds Ratio; CI, confidence interval.
The bold values indicate p < 0.05, which denotes statistically significant differences.
The italicization employed within the table is designed to adhere to the conventional
standards for denoting statistical significance (P) and its corresponding values in scholarly
articles published in reputable scientific journals. Should your specific journal prescribe
alternative conventions, modifications to the use of italics or the adoption of a standard font
may be implemented in alignment with the journal's prescribed guidelines.
TABLE 3 Stepwise regression analysis of the Union panel.

Models Variables composition AIC

Model-1 Age + CYFRA21_1 + AI + Mayo + PGP9.5 + GAGE7
+ GBU4_5 + MAGEA1

230.98

Model-2 Age + CYFRA21_1 + AI + PGP9.5 + GAGE7 +
GBU4_5 + MAGEA1

229.27

Model-3 Age + CYFRA21_1 + AI + PGP9.5 + GAGE7
+ GBU4_5

228.51
fron
AI, Artificial intelligence tool; Mayo, Mayo model; AIC, Akaike information criterion.
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Nomogram construction and validation

The 6 independent variates (Age + CYFRA21_1 + AI + PGP9.5

+ GAGE7 + GBU4_5) in the Model-3 were incorporated to

establish a nomogram for predicting Early-stage MPN probability

(Figure 3A). A final logistic regression analysis, including these 6

variates, was conducted to demonstrate the odds ratio, 95%CI and

P-value of each variable in the nomogram, and results were

indicated in in Table 4. Subsequently, ROC curves were drawn to

identify BPN and early-stage MPN in both the training (Figure 3B)

and validation (Figure 3C) cohorts. In the training cohort, the AUC

(95% CI, Sensitivity, Specificity) for predicting early-stage MPN was

0.884 (0.823-0.930, 82.2%, 89.5%), and in the validation cohort, it

was 0.820 (0.726-0.883, 91.3%, 58.8%), indicating high
Frontiers in Oncology 07
discrimination of the mode. Furthermore, the performance of the

nomogram was assessed by calibration plots (Figure 3D), which

demonstrated great agreement between the predicted probability of

early-stage MPN and actual observations, indicating good

calibration of the model. Finally, decision curve analysis (DCA)

was conducted according to the training and validation cohorts to

guide clinical decision-making in practical use (Figure 3E).
Discussion

Our study presents a novel diagnostic model that integrates AI-

based image analysis with serum biomarkers for the classification of

pulmonary nodules. This approach addresses several limitations of
FIGURE 3

The nomogram constructed based on Model-3 (A). The ROC curve of Model-3 in the training (B) and validation cohort (C). The calibration plots of
nomogram (D). The DCA of the Model-3 (E).
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current diagnostic models and has the potential to significantly

improve the accuracy of early lung cancer detection. The integration

of AI and biomarker analysis allows for a more comprehensive

assessment of pulmonary nodules, combining the pattern

recognition capabilities of AI with the molecular insights

provided by serum biomarkers.

Accurate differentiation between early-stage malignant pulmonary

nodules (MPN) and benign pulmonary nodules (BPN) is crucial for

the early diagnosis of lung cancer, significantly impacting the prognosis

of lung cancer patients. Currently, the clinical management process for

newly discovered solid or indeterminate nodules on CT is primarily

based on nodule size (≤8 mm, 8-30mm) and Mayo malignancy

stratification (5%, 5 - 65%,>65%), while also taking into account

surgical or biopsy risk, the likelihood of active infection or

inflammation, and the patient’s subjective willingness and

compliance. The main clinical decisions include CT scan follow-up,

PET imaging, non-surgical biopsy, and surgical resection (21, 29).

However, due to the complexity of lung nodules and cancer itself, as

well as the diverse clinical manifestations among individuals, there is

still a significant number of misdiagnosed cases of early lung cancer. In

particular, for patients at low and moderate risk, there remains

ambiguity in selecting appropriate clinical decisions. Novel

biomarkers have been developed to address these deficiencies in the

early diagnosis of pulmonary nodules, such as the autoantibody group,

circulating microRNA, small non-coding RNA (ncRNA), circulating

tumor DNA, DNAmethylation, complement fragments, blood protein

profiles, and plasma lipid markers from liposome (13). Among these,

the autoantibody panel EarlyCDT-Lung has been reported and

validated as a tool to aid in the early detection of lung cancer (30, 31).

The present study utilized a derivation-validation methodological

approach to develop and validate a diagnostic prediction model and

to create a nomogram for differentiating between BPN and early-

stage MPN. The model was constructed based on 18 variables,

including age, sex, smoking history, nodule size, malignancy

probability calculated by AI or Mayo, 7AABs (p53, GAGE7,

PGP9.5, CAGE, MAGEA1, SOX2, GBU4-5), and 4TTMs (CYFR21,

CEA, NSE, and SCC). These variables were collected from 72 BPNs

and 188 early-stage MPNs at the Fourth Affiliated Hospital of

Guangxi Medical University from January 2017 to May 2022.
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Firstly, baseline description of patients’ characteristics was used

for the statistical descriptions and bivariate statistical inferences of

variables. The results showed that 11 variables (Age, AI, Mayo,

CEA, CYFRA21_1, P53, PGP9.5, GAGE7, GBU4_5, MAGEA1,

CAGE) exhibited significant statistical differences between BPN

and early-stage MPN (Table 1). Next, univariate logistic regression

analysis was used to identify risk factors for early-stage MPN in

these 11 variables. The results indicated that only Age, AI, Mayo,

GAGE7, GBU4_5, MAGEA1 were significant risk factors.

Furthermore, Lasso regression was employed to eliminate

significant correlations, resulting in the identification of 7

remaining variables (Age, CYFRA21_1, AI, PGP9.5, GAGE7,

GBU4_5, MAGEA1). Additionally, a combination of the variables

identified through univariate logistic regression and Lasso

regression was used to prevent the erroneous deletion of effective

variables, ultimately leaving a total of 8 variables (Age, CYFRA21_1,

AI, Mayo, PGP9.5, GAGE7, GBU4_5, MAGEA1) for the final

stepwise regression. The Akaike information criterion (AIC) was

employed to evaluate the complexity and measure the goodness of

fit of the statistical models (32). Finally, Model-2 (AIC=229.27) and

Model-3 (AIC=228.51) (Table 3) were subjected to decision curve

analysis (DCA) to determine whether the MAGEA1 variable should

be removed from the model, as MAGEA1 achieved the largest AUC

in single ROC analysis (Figure 1B). The performance of Model 2

and Model 3 in DCA was nearly identical. However, the net benefit

of patient of Model-2 was slightly lower only when the risk

threshold was between 0.6 and 0.8, but Model-3 ultimately lacked

one predictive variable (Figure 2D).

The study developed an intuitive and user-friendly nomogram

based on Model-3 to enhance its effectiveness in differentiating

between BPN and early-stage MPN in clinical settings. The

nomogram demonstrated a strong ability to predict early malignant

pulmonary nodules in both the training and verification sets

(Figures 3B, C). The calibration curve (Figure 3D) indicated good

agreement between the predicted and actual probabilities.

Importantly, the decision curve analysis (DCA) (Figure 3E) using

the nomogram-derived risk probability can serve as a basis for

adjusting or maintaining clinical decisions based on malignant

probability (MP) stratification recommendations in current clinical

practice. This allows for more precise clinical decision-making, timely

detection of malignant nodules in low and moderate risk patients,

and early treatment.

During the screening process, a high correlation was observed

between the MP calculated by the AI pulmonary nodule auxiliary

diagnosis system (AI) and the Mayo Model (Mayo) (Figure 2A).

The AI currently in use at the Fourth Affiliated Hospital of Guangxi

Medical University, which is based solely on CT images, does not

demonstrate a clear advantage in the early diagnosis of pulmonary

nodules compared to the traditional Mayo model (Supplementary

Figure S1, AI vs. Mayo, P=0.956, AUC=0.662 vs. 0.661).

Additionally, there were no significant differences in the

composition of patients in the AI group compared to the Mayo

group at all levels classified by MP (Supplementary Table S1).

However, it is important to note that the AI system is capable of

quickly locating the CT section of nodules, analyzing the length,

type, and signs of nodules, and then calculating the MP. This greatly
TABLE 4 Coefficients, odds ratio, and 95% confidence intervals of the 6
predictors in logistic regression.

Variables Coef OR 95%CI P-value

Age 0.03 1.03 1.00-1.06 0.055

AI 0.03 1.03 1.01-1.04 0.001

CYFRA21_1 0.22 1.24 0.91-1.69 0.167

GAGE7 -0.24 0.79 0.70-0.88 <0.001

GBU4_5 0.37 1.44 1.24-1.69 <0.001

PGP9.5 -0.18 0.83 0.77-0.90 <0.001
Coef, confidence interval; OR, Odds ratio; CI, Confidence Intervals confidence interval.
The italicization employed within the table is designed to adhere to the conventional
standards for denoting statistical significance (P) and its corresponding values in scholarly
articles published in reputable scientific journals. Should your specific journal prescribe
alternative conventions, modifications to the use of italics or the adoption of a standard font
may be implemented in alignment with the journal's prescribed guidelines.
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reduces the workload of radiologists, provides suggestions for

diagnosis and treatment, and reduces misdiagnosis and missed

diagnosis as previously reported (33, 34). As a result, the

diagnosis and treatment of pulmonary nodules in our hospital

have greatly benefited from the implementation of AI technology.

The developed model demonstrated high diagnostic accuracy,

with AUC values of 0.884 and 0.820 in the training and validation

cohorts, respectively. These results suggest that our model

outperforms existing methods, including the Mayo Clinic model,

in differentiating between benign and malignant pulmonary

nodules. The nomogram and decision curve analysis (DCA)

provide practical tools for clinical decision-making, potentially

reducing misdiagnoses and improving early detection of lung

cancer. However, it is important to acknowledge the limitations

of our study. The sample size, particularly for benign pulmonary

nodules, was relatively small, which may limit the generalizability of

our findings. Additionally, our cohort was predominantly from a

single ethnic group, and further validation in diverse populations is

necessary. We also recognize that our model does not incorporate

some of the latest biomarkers that have shown promise in lung

cancer detection. This decision was made to focus on well-

established markers and to create a model that is more readily

applicable in current clinical settings.

Despite these limitations, our study represents a significant step

forward in the development of personalized diagnostic tools for

pulmonary nodule classification. The integration of AI and

biomarker analysis offers a more nuanced approach to risk

stratification, potentially allowing for more precise clinical decision-

making, especially for patients in the intermediate risk category.

Future research should focus on validating this model in larger,

more diverse cohorts and exploring the integration of additional

biomarkers as they become validated. Furthermore, prospective

studies evaluating the clinical impact of this model on patient

outcomes and healthcare resource utilization would be valuable.

In conclusion, our AI-enhanced diagnostic model for pulmonary

nodule classification demonstrates promising performance and has

the potential to improve the accuracy of early lung cancer detection.

By providing a more precise risk stratification, this model could help

clinicians make more informed decisions about patient

management, potentially leading to earlier detection and treatment

of lung cancer while reducing unnecessary invasive procedures for

benign nodules.
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