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Deep learning-assisted diagnosis
of benign and malignant parotid
gland tumors based on
automatic segmentation of
ultrasound images: a multicenter
retrospective study
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Jing Wu1, Tianjun Wei1, Huijun Feng1, Qiang Ma1, Feng Jiang1,
Xiangming Zhu1 and Xia Zhang1*

1Department of Ultrasound, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital),
Wuhu, China, 2Department of Radiology, The First Affiliated Hospital of Wannan Medical College
(Yijishan Hospital), Wuhu, China, 3Department of Ultrasound, WuHu Hospital, East China Normal
University (The Second People’s Hospital, WuHu), Wuhu, Anhui, China, 4Department of Ultrasound,
Linyi Central Hospital, Linyi, Shandong, China, 5Department of Ultrasound, Zibo Central Hospital, Zibo,
Shandong, China
Objectives: To construct deep learning-assisted diagnosis models based on

automatic segmentation of ultrasound images to facilitate radiologists in

differentiating benign and malignant parotid tumors.

Methods: A total of 582 patients histopathologically diagnosed with PGTs were

retrospectively recruited from 4 centers, and their data were collected for

analysis. The radiomics features of six deep learning models (ResNet18,

Inception_v3 etc) were analyzed based on the ultrasound images that were

obtained under the best automatic segmentation model (Deeplabv3, UNet++,

and UNet). The performance of three physicians was compared when the

optimal model was used and not. The Net Reclassification Index (NRI) and

Integrated Discrimination Improvement (IDI) were utilized to evaluate the

clinical benefit of the optimal model.

Results: The Deeplabv3 model performed optimally in terms of automatic

segmentation. The ResNet18 deep learning model had the best prediction

performance, with an area under the receiver-operating characteristic curve of

0.808 (0.694−0.923), 0.809 (0.712−0.906), and 0.812 (0.680−0.944) in the

internal test set and external test sets 1 and 2, respectively. Meanwhile, the

optimal model-assisted clinical and overall benefits were markedly enhanced

for two out of three radiologists (in internal validation set, NRI: 0.259 and 0.213

[p = 0.002 and 0.017], IDI: 0.284 and 0.201 [p = 0.005 and 0.043], respectively; in

external test set 1, NRI: 0.183 and 0.161 [p = 0.019 and 0.008], IDI: 0.205 and

0.184 [p = 0.031 and 0.045], respectively; in external test set 2, NRI: 0.297

and 0.297 [p = 0.038 and 0.047], IDI: 0.332 and 0.294 [p = 0.031 and

0.041], respectively).
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Conclusions: The deep learning model constructed for automatic segmentation

of ultrasound images can improve the diagnostic performance of radiologists

for PGTs.
KEYWORDS

automatic segmentation, deep learning, parotid gland tumors, ultrasound, net
reclassification index, integrated discrimination improvement
Introduction

Salivary gland tumors (SGTs) are relatively uncommon diseases

representing 3-12% of head and neck tumors (1), which most

frequently occur in the parotid gland, an important exocrine

organ. As data show, parotid gland tumors (PGTs) are the most

common type of SGTs, which are approximately 80% benign and

20%malignant (2). The most common malignant PGTs (MPTs) are

mucoepidermoid carcinoma and adenoid cystadenocarcinoma,

while the most common benign PGTs (BPTs) are pleomorphic

adenoma and Warthin tumor (3). Currently, the treatment for

PGTs is predominantly surgical, and their treatment strategies and

prognosis vary by histopathological types (4, 5). Specifically, BPTs

are treated with local excision or lateral parotidectomy, while MPTs

require more radical surgery such as extended resection and lymph

node dissection. Therefore, accurate preoperative diagnosis of BPTs

and MPTs is of utmost importance in adjusting treatment decisions.

As all PGTs are generally asymptomatic, their nature is

distinguished before surgery primarily by ultrasound-guided core

needle biopsy (USCB) or fine-needle aspiration (FNA) and medical

imaging (6–9). Although USCB and FNA are considered minimally

invasive and safe, they confer a risk of facial nerve injury, mumps,

and tumor cell spread along the needle track, with the disadvantage

of limited sampling that causes uncertain histological or cytological

diagnosis (7, 8). Currently, preoperative imaging for PGTs includes

ultrasound, magnetic resonance imaging (MRI), and computed

tomography (CT). Despite the higher image quality of CT and

MRI in differentiating parotid gland lesions (10), they also have

some limitations, including exposure to ionizing radiation,

contraindications for patients with internal ferromagnetic devices,

high monetary cost, and prolonged examination times. These

limitations have restricted the clinical use of CT and MRI in

evaluating therapeutic effects in patients with PGTs (11, 12).

Notably, ultrasound is ideally applicable to patients with PGTs

since PGTs are typically located in the superficial lobe and

ultrasound is widely accepted to be preferred for superficial organ

examination. Additionally, ultrasound has the advantages of low

cost, non-invasiveness, and no ionizing radiation (12). Therefore,

ultrasound is often used for the diagnosis of PGTs. Nevertheless,

differential diagnosis of PGTs by ultrasound is challenging. A prior

study exhibited that the accuracy of ultrasound in diagnosing

malignant parotid masses was only 20%, despite its sensitivity and
02
specificity of 38.9% and 90.1%, respectively, in diagnosing parotid

masses (13). Therefore, it is urgent to develop a more reliable, non-

invasive, and rapid method for determining the nature of PGTs.

Recently, machine learning (ML) has been increasingly used to

analyze medical images. Deep learning (DL), an essential technology

in ML, involves multiple levels, which has attracted wide attention

because it can automatically learn semantic and spatial features of the

hidden layers of neural networks (14). Intriguingly, several studies

have yielded similar results in terms of the diagnostic performance of

DL systems in the medical imaging diagnosis of various diseases,

including thyroid diseases (15), breast diseases (16), and liver tumors

(17). Additionally, some previous studies have revealed that DL can

discriminate PGTs using medical image pairs, mainly involving CT

(6, 18) andMRI (1). Yet, few studies have assessed the performance of

DL methods based on ultrasound images in distinguishing BPTs

from MPTs. Basically, images of PGTs obtained by a method

involving DL are manually segmented by radiologists, which has

two chief drawbacks. First, manual segmentation is quite time-

consuming and error-prone. Second, accurate segmentation heavily

depends on the subjectivity of radiologists, signifying that image

segmentation quality is physician-dependent (19). Accordingly, it is

imperative to develop a model integrating the optimal automatic

segmentation model and DL methods for improving workflow

efficiency and assisting radiologists in diagnosis. This study

determined regions of interest (ROI) with an automatic

segmentation algorithm, evaluated popular image segmentation

algorithms including Deeplabv3, UNet, and UNet++, and

constructed a deep learning-assisted diagnostic model for PGTs

based on automatic segmentation of ultrasound images.
Materials and methods

Patients

A total of 582 patients histopathologically diagnosed with BPTs

andMPTs were retrospectively recruited from four centers (Figure 1),

consisting of 406 patients from center 1, 95 patients from center 2, 33

patients from center 3 (patients in centers 2 and 3 datasets were

included in external test set 1), and 48 patients from center 4

(Supplementary Table S1 for classification of histopathological

types and numbers). Inclusion criteria for patients were as follows
frontiersin.org
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(1): patients with complete imaging and clinical data; (2) patients who

received ultrasound within one month before surgery; (3) patients

who did not receive any other treatments before the ultrasound.

Exclusion criteria for patients were as follows: (1) patients with tumor

recurrence or complicated with other diseases; (2) patients with

tumors less than 5 mm in maximum diameter; (3) patients with

simultaneous bilateral PGTs; (4) patients with diffuse lesions.
Ultrasonic instrument

Ultrasound of all patients was performed on ultrasound

equipment (Supplementary Table S2) at these 4 centers.
Ultrasound image acquisition

All ultrasound images were stored in JPG or BMP format in the

picture archiving and communication system (PACS). Before

ultrasound, patients were placed in a supine position, with the neck
Frontiers in Oncology 03
slightly tilted to fully expose the parotid gland examination area. The

sonographer performed crossing, multi-section, and bilateral contrast

scanning of the parotid gland. The following features of the lesion were

visualized with conventional ultrasound: maximum diameter, side (left/

right), number (single/multiple), margin (clear/unclear), shape

(regular/irregular), echo (uniform/uneven), posterior echogenicity

enhancement (presence/absence), cystic or necrotic areas (presence/

absence), calcification (presence/absence), Alder (20) grade (Alder 0/I/

II/III), abnormal lymph nodes (presence/absence).
Clinical model construction and validation

Statistical analysis was conducted. The independent samples t-

test was used only for comparisons of continuous variables between

two groups, and the c² test was utilized to analyze discrete variables.
All clinical characteristics were subjected to univariate analyses,

followed by the calculation of odds ratios (OR) and corresponding p

values for each variable. Then, clinical characteristics with p < 0.05

were included to construct clinical models. The features identified
frontiersin.or
FIGURE 1

Flow chart of patient recruitment. Center 1, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital); External test set 1: center 2,
WuHu Hospital, East China Normal University (The Second People’s Hospital, WuHu) and center 3, the Zibo Central Hospital; External test set 2, the
Linyi Central Hospital. BPTs, benign parotid gland tumors; MPTs, malignant parotid gland tumor.
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in the univariate analyses were modeled with three ML algorithms

(Logistic Regression [LR], Random Forest, and XGBoost).
Analysis of radiological and clinical data

The images and clinical data of all patients were attained from

the routine clinical records and PACS of hospitals. All images were

stored. Combined with the medical history of patients, the lesions

were directly evaluated by three physicians from center 1

(radiologist A: XZ, a senior radiologist with 20 years of

ultrasound experience; radiologist B: FHJ, an attending radiologist

with 13 years of ultrasound experience; radiologist C: JW, a junior

radiologist with 5 years of ultrasound experience). Meanwhile, all

sonographic features were independently reviewed by ultrasound

radiologists A and B, and all images were read by two radiologists in

a double-blind manner. If the two radiologists disagreed on the

image features of the lesion, they consulted and reached a

consensus. Afterward, DL analysis was conducted with B-mode

images containing lesions with the largest diameter or planes of

suspected malignant features. Radiologists were blinded to the final

histopathological findings throughout the study.
ROI segmentation

ROIs were identified with an automatic segmentation

algorithm. Common image segmentation algorithms, including

Deeplabv3, UNet, and UNet++, were evaluated. Additionally,

different algorithms were combined with a post-fusion algorithm

to obtain more accurate ROI segmentation results.
Training process

Data augmentation was performed. Concretely, sub-volumes

were randomly cropped from the images and labeled according to

their positive and negative labels, with spatial size and number of

samples specified. Online data augmentation was used during the

training process, such as spacing and random crop methods, which

generated many different images as training iterations. DiceCELoss

combining Dice Loss and Cross-Entropy Loss functions (Loss

functions in Supplementary S3) was utilized. The weights of

unlabeled pixels were set to zero, enabling unlabeled pixels to

learn from only the labeled ones and, hence, to be generalized to

the whole volume.

Hyperparameters were selected. The Adam optimizer was used

at an initial learning rate of 1e-3. Our model was trained with 32

rounds of early stopping.
DL procedure

All 2D rectangular ROIs were cropped from raw US images as

per the 2D automatic segmentation mask of the tumor. Figure 2

summarizes the overall flow of this study. Five commonly used pre-
Frontiers in Oncology 04
trained convolutional neural network (CNN) models including

DensNet201, Inception_V3, ResNet101, ResNet18, ResNet50, and

VGG19 were used and all initially trained in the ILSVRC-2012

dataset. The slice with the largest ROI was chosen to represent each

patient. After that, gray values were normalized to the range [-1, 1]

through min-max transformation. Each cropped sub-volume image

was resized to 224 × 224 with nearest-neighbor interpolation to

obtain images suited for model input. Due to the limited image data,

the learning rate was determined with caution to improve

generalization. In this study, the cosine decay learning rate

algorithm was implemented (learning rate in Supplementary S4).

To increase the visibility of DL models and deepen the

understanding of the underlying decision-making process, the

goal of achieving model visualization and verification is of

tremendous significance in model development (21). Therefore, to

more transparently study the interpretability of DL-based

radiomics, the model was visualized with gradient-weighted class

activation mapping (Grad-CAM). The gradient information from

the last convolutional layer of CNN was used for weighted fusion to

acquire a class activation map, highlighting the important regional

images for the classification target.

The entire training process was performed on an NVIDIA 4090

GPU with the use of MONAI 0.8.1 and PyTorch 1.8.1.
Visual evaluations and DL model–assisted
diagnosis of radiologists

All ultrasound images of PGTs were reviewed independently by

three radiologists (radiologists A, B, and C) who were blinded to the

histopathological findings. These radiologists comprehensively

interpreted the condition of the recruited patients with BPTs or

MPTs based on ultrasound images and clinical information,

combined with or without the prediction of the optimal model. In

the process of our test, our overall process is as follows: step 1: provides

two main types of information. First of all, the ultrasound images and

clinical data. Secondly, the prediction results of the AI model are

presented, focusing on the prediction label (probability of benign

or malignant; for example, 0.147 for BPT and 0.853 for MPT) and

the corresponding confidence score. step 2: At the request of the

radiologist, we provided 2 pieces of supplementary information. The

first is the Grad-CAM visualization generated by our deep learning

model, which helps radiologists initially focus on salient parts of the

image. The second is to provide by our automatic segmentation

algorithm to identify region of interest (ROI). Additionally, under

the assistance of the optimal DLmodel, the independent diagnosis was

carried out again in a random order. After the assistance of the model,

the values of Net Reclassification Index (NRI) and Integrated

Discrimination Improvement (IDI) were calculated for the three

radiologists to assess the clinical benefit.
Statistical analysis

The data were analyzed with Python software (version 3.9.16), R

software (4.1.0), and SPSS software (version 27.0, IBM Corporation,
frontiersin.org
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Armonk, New York, USA). Differences were considered statistically

significant at two-sided p < 0.05. Statistical analysis is detailed in the

Supplementary S5.
Results

Analysis of baseline characteristics and the
XGBoost model

Supplementary Table S3 shows Cohen’s kappa consistency

analysis results of subjective morphological features of ultrasound

by senior radiologists and attending radiologists (radiologists A and
Frontiers in Oncology 05
B). The baseline clinical radiological characteristics are listed in

Table 1. Univariate analyses were performed on all clinical features,

and OR and corresponding p values were calculated for each variable.

Features including shape, echogenicity, calcification, margin, and

lymphatic metastasis (LM) had p-values below 0.05. Then,

multivariate logistic regression analyses were conducted to screen

the independent risk factors for predicting MPTs, followed by the

construction of a clinical diagnostic model. It was found that shape,

margin, and LM were independent risk factors for ultrasound

diagnosis of MPTs (Supplementary Table S4). Therefore, clinical

models were constructed based on these features with three ML

algorithms. The results manifested that the performance of the

nonlinear model was superior to that of the linear model. The
A

B

D

C

FIGURE 2

The overall flow of this study. (A) Construction process for clinical machine learning model of baseline ultrasound features. (B) Selection of segmentation
models, automatic segmentation algorithms including Deeplabv3, UNet, and UNet++, to identify regions of interest. Optimal segmentation modeling
results were obtained with quantization. (C) The construction process for the deep learning model. Ultrasound images were obtained with the results
based on the automatic segmentation model and used as the input of different pre-trained models, six classical convolutional neural networks
(DenseNet 121, Inception_V3, ResNet 101, ResNet18, ResNet 50, and VGG19). The predicted probability for BPTs and MPTs was the output. In addition,
Grad-CAM (gradient-weighted class activation mapping) was applied to visualize the decision-making process of the model. (D) Three radiologists with
different years of experience provided a comprehensive diagnosis of MPTs and BPTs, with or without the aid of the model. Radiologist C represents
resident radiologists. Radiologist B represents attending radiologists. Radiologist A represents senior radiologists.
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TABLE 1 Baseline clinical-radiological characteristics of these data sets.

p-value

External test set 2
(n = 48)

p-value
s
20)

BPTs
(n = 33)

MPTs
(n = 15)

± 10.55 0.491 54.97 ± 12.18 61.80 ± 13.70 0.097

± 7.59 0.164 29.70 ± 11.92 34.47 ± 12.88 0.216

0.0178 0.932

0.00) 9 (27.27) 5 (33.33)

.00) 24 (72.73) 10 (66.67)

0.224 0.720

5.00) 21 (63.64) 8 (53.33)

.00) 12 (36.36) 7 (46.67)

< 0.001 0.002

.00) 24 (72.73) 3 (20.00)

5.00) 9 (27.27) 12 (80.00)

0.525 0.292

00.00) 28 (84.85) 10 (66.67)

5 (15.15) 5 (33.33)

< 0.001 0.0480

.00) 28 (84.85) 8 (53.33)

5.00) 5 (15.15) 7 (46.67)

0.986 0.857

0.00) 24 (72.73) 12 (80.00)

.00) 9 (27.27) 3 (20.00)

1.000 0.224

0.00) 12 (36.36) 9 (60.00)

0.00) 21 (63.64) 6 (40.00)

0.675 0.632
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Training set (n = 325)

p-value

Internal validation set
(n = 81)

p-value

External test set 1
(n = 128)

BPTs
(n = 230)

MPTs
(n= 95)

BPTs
(n = 57)

MPTs
(n = 24)

BPTs (n
= 108)

MP
(n =

Age 49.47 ± 15.49 52.78 ± 15.75 0.105 52.79 ± 15.56 61.46±14.50 0.0216 53.48 ± 13.56 56.55

Size 25.69 ± 10.23 26.64 ± 10.65 0.413 27.77 ± 8.85 27.54±12.47 0.541 27.85 ± 11.57 23.02

Gender 0.933 0.538

0 107 (46.52) 43 (45.26) 18 (31.58) 10(41.67) 32 (29.63) 12 (6

1 123 (53.48) 52 (54.74) 39 (68.42) 14(58.33) 76 (70.37) 8 (40

Side 0.363 0.617

0 174 (75.65) 77 (81.05) 45 (78.95) 17(70.83) 51 (47.22) 13 (6

1 56 (24.35) 18 (18.95) 12 (21.05) 7(29.17) 57 (52.78) 7 (35

Shape < 0.001 <0.001

0 143 (62.17) 24 (25.26) 40 (70.18) 3(12.50) 85 (78.70) 7 (35

1 87 (37.83) 71 (74.74) 17 (29.82) 21(87.50) 23 (21.30) 13 (6

Number 0.651 0.590

0 213 (92.61) 90 (94.74) 48 (84.21) 22(91.67) 101 (93.52) 20 (1

1 17 (7.39) 5 (5.26) 9 (15.79) 2(8.33) 7 (6.48) null

Margin < 0.001 < 0.001

0 192 (83.48) 33 (34.74) 52 (91.23) 6(25.00) 98 (90.74) 9 (45

1 38 (16.52) 62 (65.26) 5 (8.77) 18(75.00) 10 (9.26) 11 (5

PEF 0.186 0.229

0 153 (66.52) 71 (74.74) 33 (57.89) 18(75.00) 83 (76.85) 16 (8

1 77 (33.48) 24 (25.26) 24 (42.11) 6(25.00) 25 (23.15) 4 (20

Echogenicity < 0.001 0.004

0 168 (73.04) 39 (41.05) 36 (63.16) 6(25.00) 54 (50.00) 10 (5

1 62 (26.96) 56 (58.95) 21 (36.84) 18(75.00) 54 (50.00) 10 (5

CNA 0.266 1.000
T
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Training set (n = 325)

p-value

Internal valida
(n = 81)

BPTs
(n = 230)

MPTs
(n= 95)

BPTs
(n = 57)

M
(

0 195 (84.78) 75 (78.95) 44 (77.19) 1

1 35 (15.22) 20 (21.05) 13 (22.81) 5

Cal < 0.001

0 219 (95.22) 72 (75.79) 53 (92.98) 1

1 11 (4.78) 23 (24.21) 4 (7.02) 9

Alder 0.547

0 83 (36.09) 33 (34.74) 26 (45.61) 8

I 96 (41.74) 34 (35.79) 13 (22.81) 6

II 30 (13.04) 16 (16.84) 6 (10.53) 7

III 21 (9.13) 12 (12.63) 12 (21.05) 3

LM < 0.001

0 230 (100.00) 74 (77.89) 57 (100.00) 1

1 null 21 (22.11) null 7

BPTs, benign parotid gland tumors; MPTs, malignant parotid gland tumor. Gender: 0, female; 1, male. Side: 0, le
change; 1, posterior echogenicity enhancement. Echogenicity: 0, uniform; 1, uneven. Cal (calcification): 0, absen
metastasis): 0, absence; 1, presence.
f
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XGBoost model was chosen as the benchmark for clinical

characteristics in subsequent comparisons (Table 2, Figure 3).
ROI segmentation evaluation

The performance of models was compared with various

evaluation indicators (Table 3). Deeplabv3 consistently exhibited

excellent performance and outperformed UNet++ and UNet

models in terms of multiple indicators, including Dice coefficient,

mIOU, FPR, Precision, and Recall (Supplementary S8).
Visual evaluation results

Based on the quantization results, the optimal segmentation

model (DeeplabV3) was selected. The outputs of the three models

were visualized asmodels on the dataset to visually analyze differences

in segmentation results of our proposed automatic segmentation

model and the other 2 models. Table 4 depicts the results of the

qualitative comparison. As observed, the segmentation results of the

proposed Deeplabv3+ model were superior to those of U-Net and U-

Net++, which had some subtle visible errors, The Deeplabv3+ model

exhibited higher reproducibility than the other 2 models. To further

increase the reliability of clinical trials, the Deeplabv3+ prediction

results were presented to three experienced experts who were invited

to evaluate our segmentation results through majority voting.

Approximately 96% of the predicted segmentation results were

endorsed by the experts, highlighting the effectiveness of our

approach in a real-world clinical setting (Figure 4).

The above quantification and visual evaluation results illustrated

that the Deeplabv3 model had the best segmentation performance,

thus laying the foundation for subsequent model construction.
Frontiers in Oncology 08
DL signature

The results of the DL models (Table 4) demonstrated that the

ResNet18 model outperformed other models in terms of classification

performance. ResNet18 exhibited a minimal loss value during

training (22), indicating fewer errors, and achieved a higher

convergence rate compared to other CNNs (Supplementary

Figure 1). In the internal validation set, ResNet18 achieved an AUC

of 0.808 (95%CI: 0.694−0.923), an accuracy of 0.765, a sensitivity of

0.750, and a specificity of 0.772. Additionally, in external test sets 1

and 2, ResNet18 maintained favorable classification performance with

AUCs of 0.809 (95%CI: 0.712−0.906) and 0.812 (95%CI: 0.680-0.944),

accuracies of 0.711 and 0.667, sensitivities of 0.600 and 0.733, and

specificities of 0.731 and 0.636, respectively. Although the ResNet18

model did not surpass the clinical model in overall performance, it

showed comparable AUCs in all test sets. Specifically, the AUCs of

ResNet18 and the clinical models were 0.808 and 0.876 (p = 0.264) in

the internal validation set, 0.809 and 0.824 (p = 0.814) in external test

set 1, and 0.809 and 0.824 (p = 0.809) in external test set 2 (Figure 5).

In terms of model interpretability, ResNet18 exhibited clearer

regions of interest (ROIs), focusing on the margin and internal

regions of the tumor, while not activating regions adjacent to

normal parotid tissues (Figure 6).
Diagnostic performance of the radiologist
and DL model–assisted diagnosis

The diagnostic performance of radiologists in distinguishing

BPTs from MPTs under the aid of ResNet18 is summarized in

Table 5. The overall performance of radiologists, including those

with different levels of experience, was significantly enhanced with

the assistance of the ResNet18 model. For radiologist A, the AUC
TABLE 2 Comparison of clinical models constructed using machine learning based on features screened by univariate and multivariate analyses of
clinical-radiological characteristics.

Model name Accuracy AUC 95% CI Sensitivity Specificity PPV NPV Cohort

LR 0.831 0.806 0.746 - 0.867 0.926 0.600 0.849 0.770 train

LR 0.877 0.865 0.768 - 0.962 0.947 0.708 0.885 0.850 val

LR 0.859 0.744 0.594 - 0.894 0.935 0.450 0.902 0.562 test1

LR 0.771 0.751 0.584 - 0.917 0.939 0.400 0.775 0.750 test2

Random Forest 0.862 0.918 0.886 - 0.951 0.957 0.632 0.863 0.857 train

Random Forest 0.877 0.914 0.834 - 0.995 0.947 0.708 0.885 0.850 val

Random Forest 0.906 0.889 0.799 - 0.979 0.972 0.550 0.921 0.786 test1

Random Forest 0.667 0.755 0.604 - 0.905 0.788 0.400 0.743 0.462 test2

XGBoost 0.868 0.929 0.900 - 0.958 0.948 0.674 0.876 0.842 train

XGBoost 0.877 0.876 0.774 - 0.978 0.930 0.750 0.898 0.818 val

XGBoost 0.867 0.824 0.723 - 0.924 0.954 0.400 0.896 0.615 test1

XGBoost 0.792 0.790 0.638 - 0.942 0.939 0.467 0.795 0.778 test2
A clinical model was constructed with machine learning based on the selected features. LR, Logistic Regression.
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increased by 0.082 (p = 0.012) in the internal validation set, 0.084

(p = 0.042) in external test set 1, and 0.064 (p = 0.107) in external

test set 2. For radiologist B, the AUC improvement was 0.129

(p = 0.001) in the internal validation set, 0.092 (p = 0.016) in

external test set 1, and 0.149 (p = 0.022) in external test set 2.

Radiologist C saw AUC enhancements of 0.106 (p = 0.014), 0.080

(p = 0.007), and 0.149 (p = 0.030) in the internal validation set,

external test set 1, and external test set 2, respectively.

The diagnostic performance of the ResNet18 model was

comparable to that of senior radiologist A, and significantly better

than radiologists B and C (Figure 7). The kappa values for

radiologists B and C improved from 0.615 to 0.808 in the internal

validation set, from 0.814 to 0.870 in external test set 1, and from

0.698 to 0.727 in external test set 2 with the assistance of ResNet18.

The clinical diagnostic benefit of radiologists aided by the ResNet18

DL model was superior to that of independent visual assessments by

radiologists. In the internal validation set, the NRI values for
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radiologists A, B, and C were 0.164 (p = 0.015), 0.259 (p = 0.002),

and 0.213 (p = 0.017), respectively, with corresponding IDI values of

0.235 (p = 0.016), 0.284 (p = 0.005), and 0.201 (p = 0.043). In

external test set 1, the NRI values for radiologists A, B, and C were

0.169 (p = 0.054), 0.183 (p = 0.019), and 0.161 (p = 0.008),

respectively, with IDI values of 0.204 (p = 0.068), 0.205 (p =

0.031), and 0.184 (p = 0.045). In external test set 2, the NRI

values for radiologists A, B, and C were 0.127 (p = 0.109), 0.297

(p = 0.038), and 0.297 (p = 0.047), with IDI values of 0.194 (p =

0.132), 0.332 (p = 0.031), and 0.294 (p = 0.046), respectively.
Discussion

Although the preferred treatment for PGTs is surgery, various

histological types of PGTs lead to obvious differences in treatment

decisions and prognosis (23). Therefore, accurate differentiation of
A B C

FIGURE 3

ROC results of clinical features of three different machine learning models (LR, Random Forest, and XGBoost). (A) ROC curve of logistic regression
(LR); (B) ROC curve of Random Forest; (C) ROC curve of XGBoost.
TABLE 3 Comparison of the performance of the three automatic segmentation models, Deeplabv3, UNet++, and UNet, in terms of various
evaluation indicators.

Model name Dice mIOU FPR Precision Recall Cohort

Deeplabv3 0.971 0.946 0.033 0.969 0.975 train

UNet++ 0.954 0.919 0.045 0.958 0.954 train

UNet 0.953 0.918 0.054 0.953 0.957 train

Deeplabv3 0.975 0.952 0.030 0.971 0.979 val

UNet++ 0.955 0.921 0.059 0.955 0.961 val

UNet 0.953 0.919 0.075 0.951 0.963 val

Deeplabv3 0.958 0.926 0.056 0.953 0.970 test1

UNet++ 0.934 0.889 0.138 0.928 0.954 test1

UNet 0.939 0.896 0.139 0.928 0.963 test1

Deeplabv3 0.960 0.927 0.047 0.955 0.967 test2

UNet++ 0.930 0.883 0.073 0.937 0.939 test2

UNet 0.937 0.890 0.073 0.938 0.946 test2
DICE, dice similarity coefficient; IoU, Intersection over Union; FPR, False Positive Rate.
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BPTs from MPTs is the key to clinical treatment decisions and

prognosis of patients. Identification and segmentation of tumor

regions are a prerequisite for tumor evaluation, which also

simplifies subsequent clinical evaluation. In clinical practice, PTG

segmentation is, however, usually performed by clinicians manually

with semi-automatic methods and is followed by pixel layering,

which is time-consuming and laborious. As medical image data

grow dramatically, there is an increasingly urgent clinic for

automatic segmentation methods of medical images.

In recent years, artificial intelligence (AI) has been extensively

applied to medical image segmentation. Nevertheless, no research

pertaining to PGT segmentation has been published. As such, our

study evaluated the feasibility of DL for PGT segmentation.

Ultrasound images of 582 patients with PGTs from four hospitals

were included in the present study. Five evaluation indicators were

utilized to analyze the segmentation performance of different

models. The Deeplabv3+ model yielded the optimal segmentation

results in both internal and external test sets, with a Dice similarity

coefficient of 0.975, 0.958, and 0.960 in the internal validation set
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and external test sets 1 and 2, respectively, implicating higher

accuracy and generalization of the Deeplabv3 + model. This study

majorly aimed to construct a model for PGT segmentation based on

ultrasound images and further develop a model incorporating the

optimal automatic segmentation model and DL methods, thus

increasing workflow efficiency and assisting radiologists in

diagnosis. Our results elucidated that despite the presence of

several subtle visible errors in the segmentation results of all U-

Net, Deeplabv3+, and U-Net++, the segmentation results of the

Deeplabv3+ model were more factual in terms of both contour and

detail. In addition, the repeatability of the Deeplabv3+ model was

higher than that of the other two models, as qualitatively

demonstrated by the quantitative values of Dice, mIOU, FPR, and

Precision in the internal validation set and external test sets 1 and 2.

At present, surgery is the predominant treatment strategy for

PGTs, and the preoperative differential diagnosis of BPTs and

MPTs is essential for surgical planning (9). As reported, BGTs

can be treated with local excision or lateral parotidectomy. While

the treatment of MPTs generally involves radical parotidectomy,
TABLE 4 Comparison of performance of six different DL models.

Model name Acc AUC 95%CI Sensitivity Specificity PPV NPV Cohort

Densenet201 0.794 0.822 0.7718-0.8731 0.495 0.917 0.712 0.815 train

Densenet201 0.691 0.780 0.6735-0.8857 0.125 0.930 0.429 0.716 val

Densenet201 0.836 0.759 0.6466-0.8719 0.200 0.954 0.444 0.866 test1

Densenet201 0.625 0.733 0.5862-0.8804 0.067 0.879 0.200 0.674 test2

Inception_v3 0.732 0.703 0.6388-0.7671 0.316 0.904 0.577 0.762 train

Inception_v3 0.765 0.702 0.5626-0.8409 0.500 0.877 0.632 0.806 val

Inception_v3 0.648 0.670 0.5316-0.8092 0.600 0.657 0.245 0.899 test1

Inception_v3 0.688 0.754 0.5958-0.9113 0.733 0.667 0.500 0.846 test2

ResNet101 0.782 0.803 0.7505-0.8551 0.389 0.943 0.740 0.789 train

ResNet101 0.704 0.705 0.5728-0.8373 0.542 0.772 0.500 0.800 val

ResNet101 0.594 0.727 0.6144-0.8393 0.650 0.583 0.224 0.900 test1

ResNet101 0.771 0.824 0.7059-0.9426 0.867 0.727 0.591 0.923 test2

ResNet18 0.772 0.811 0.7613-0.8615 0.453 0.904 0.662 0.800 train

ResNet18 0.765 0.808 0.6942-0.9228 0.750 0.772 0.581 0.880 val

ResNet18 0.711 0.809 0.7119-0.9062 0.600 0.731 0.293 0.908 test1

ResNet18 0.667 0.812 0.6802-0.9441· 0.733 0.636 0.478 0.840 test2

ResNet50 0.812 0.852 0.8085-0.8959 0.537 0.926 0.750 0.829 train

ResNet50 0.704 0.788 0.6782-0.8986 0.542 0.772 0.500 0.800 val

ResNet50 0.711 0.683 0.5493-0.8173 0.550 0.741 0.282 0.899 test1

ResNet50 0.667 0.735 0.5951-0.8756 0.600 0.697 0.474 0.793 test2

VGG19 0.766 0.755 0.6963-0.8128 0.379 0.926 0.679 0.783 train

VGG19 0.778 0.763 0.6433-0.8830 0.333 0.965 0.800 0.775 val

VGG19 0.742 0.700 0.6013-0.7992 0.100 0.861 0.118 0.838 test1

VGG19 0.833 0.812 0.6812-0.9430 0.667 0.909 0.769 0.857 test2
AUC, area under the receiver-operating characteristic curve; PPV, positive predictive value; NPV, negative predictive value.
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such as extended resection combined with lymph node dissection,

or even facial nerve resection and postoperative radiotherapy,

which may evoke more complications and invasive injuries for

patients (12, 23). Although USCB and FNA can differentiate BPTs

from MPTs to some extent, both methods are accompanied by

serious complications since they are invasive. Due to the
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overlapping imaging features of different types of PGTs,

traditional visual assessment is commonly affected by

confounding factors. Of note, PGTs are usually located in the

superficial lobe and are readily imaged by routine ultrasound,

thus predisposing ultrasound to be an ideal examination method

for PGTs. Ultrasound is a broadly accepted technique for PGT
A

B

C

FIGURE 4

Example image of the best Deeplabv3 segmentation model for lesion delineation on ultrasound images. (A) all three physicians were satisfied with
the visual assessment, (B) one of the three physicians was dissatisfied with the segmentation, and (C) two or three of the three physicians were
dissatisfied with the segmentation.
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screening and is applied to diagnose most PGTs because it is

sensitive, non-invasive, quick, radiation-free, and inexpensive.

Nonetheless, the accurate diagnosis of PGTs by ultrasound is

largely determined by the professional experience and expertise of

radiologists. A former study reported that although the sensitivity

and specificity of B-mode ultrasound were 38.9% and 90.1% in

differentiating malignant and benign parotid nodules, respectively,

its accuracy in differentiating malignant masses was only 20% (13).
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Consequently, more reliable methods to distinguish PGTs are

required to be developed, thereby improving the differential

diagnosis of PGTs by ultrasound. In this context, this study

explored whether satisfactory results could be acquired by using

an automated segmentation model under the aid of the optimal DL

model, without the use of invasive methods. ML has been confirmed

to be more advantageous in classification tasks than visual

assessment by a radiologist since it can first learn features from
FIGURE 6

Grad-CAM visualization of 4 typical samples. The attention regions of diferent deep learning models in benign and malignant parotid tumors US
image analysis; BPT, benign parotid gland tumor; MPT, malignant parotid gland tumor.
A B

D E F

C

FIGURE 5

ROC curves of six deep learning models in internal training and validation sets and external test sets 1 and 2. (A) ROC curve of DenseNet201; (B)
ROC curve of Inception_v3; (C) ROC curve of ResNet101; (D) ROC curve of ResNet18; (E) ROC curve of ResNet50; (F) ROC curve of VGG19.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1417330
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wei et al. 10.3389/fonc.2024.1417330
medical images to maintain consistency and repeatability

in diagnosis.

The present study assessed the value of several DL systems with

different deep neural networks in the identification of PGTs. DL has

achieved end-to-end classification and prediction. Many published

articles have reported that DL can be used for the diagnosis and

management of various tumors. Additionally, there are also multiple

studies on the use of DL to characterize PGTs. For example, Wang

et al. (12) reported that four DL methods could distinguish BPTs and

MPTs based on ultrasound images with an AUC of 0.80−0.82. Xia

et al. (24) developed a DL algorithm with an accuracy of 82.18% (95%

CI = 0.77, 0.86) in the diagnosis and staging of parotid gland cancer

based on MRI images. Some studies (18, 25) constructed DL-assisted

diagnostic models based on CT images to improve the differential

diagnosis of BPTs andMPTs by radiologists. At present, DL based on

ultrasound images is yet not applied to the identification of the nature

of PGTs, particularly to automatic segmentation of images. The study
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incorporated a relatively large sample size and two independent

external test sets. Ultrasound images were analyzed to train an

optimal segmentation model, which was subsequently used to

develop a deep learning (DL) model aimed at assisting radiologists

in diagnosis. Although the robust performance of these models may

be attributed to radiologists, aided by the DLmodels, having reviewed

the cases and gained certain insights for subsequent diagnoses, the

study design introduces uncertainty regarding whether the enhanced

accuracy of the radiologists was due to repeated case reviews or the

assistance of the DL model. This ambiguity constitutes a major

limitation of our study. Nonetheless, the study demonstrated a

positive impact, indicating that our findings possess significant

clinical value.

In this study, six DL models were utilized to distinguish BPTs

from MPTs. ResNet18 has more robust generalization and general

prediction capabilities when compared with other classical CNNs,

which may be associated with different performance of diverse
TABLE 5 Performance comparison between ResNet18 and radiologists of different seniorities and between radiologists with and without
model assistance.

Accuracy AUC 95%CI Sensitivity Specificity PPV NPV Cohort

Clinical 0.889 0.886 0.7842 - 0.9870 0.750 0.947 0.857 0.900 val

Deep Learning 0.765 0.808 0.6942 - 0.9228 0.750 0.772 0.581 0.880 val

Radiologist-A 0.778 0.770 0.6664 - 0.8731 0.750 0.789 0.600 0.882 val

Radiologist-B 0.704 0.705 0.5945 - 0.8156 0.708 0.702 0.500 0.851 val

Radiologist-C 0.716 0.702 0.5895 - 0.8140 0.667 0.737 0.516 0.840 val

DLR-assisted RA 0.877 0.852 0.7611 - 0.9429 0.792 0.912 0.792 0.912 val

DLR-assisted RB 0.852 0.834 0.7410 - 0.9279 0.792 0.877 0.731 0.909 val

DLR-assisted RC 0.815 0.808 0.7113 - 0.9049 0.792 0.825 0.655 0.904 val

Clinical 0.867 0.824 0.7231 - 0.9241 0.400 0.954 0.615 0.896 test1

Deep Learning 0.711 0.809 0.7119 - 0.9062 0.600 0.731 0.293 0.908 test1

Radiologist-A 0.891 0.793 0.6829 - 0.9023 0.650 0.935 0.650 0.935 test1

Radiologist-B 0.797 0.737 0.6239 - 0.8502 0.650 0.824 0.406 0.927 test1

Radiologist-C 0.773 0.703 0.5864 - 0.8191 0.600 0.806 0.364 0.916 test1

DLR-assisted RA 0.930 0.877 0.7847 - 0.9690 0.800 0.954 0.762 0.963 test1

DLR-assisted RB 0.883 0.829 0.7276 - 0.9299 0.750 0.907 0.600 0.951 test1

DLR-assisted RC 0.875 0.783 0.6729 - 0.8937 0.650 0.917 0.591 0.934 test1

Clinical 0.792 0.790 0.6382 - 0.9416 0.467 0.939 0.778 0.795 test2

Deep Learning 0.667 0.812 0.6802 - 0.9441 0.733 0.636 0.478 0.840 test2

Radiologist-A 0.833 0.806 0.6772 - 0.9349 0.733 0.879 0.733 0.879 test2

Radiologist-B 0.792 0.739 0.5992 - 0.8796 0.600 0.879 0.692 0.829 test2

Radiologist-C 0.750 0.709 0.5644 - 0.8538 0.600 0.818 0.600 0.818 test2

DLR-assisted RA 0.896 0.870 0.7571 - 0.9823 0.800 0.939 0.857 0.912 test2

DLR-assisted RB 0.896 0.888 0.7859 - 0.9899 0.867 0.909 0.812 0.937 test2

DLR-assisted RC 0.854 0.858 0.7490 - 0.9661 0.867 0.848 0.722 0.933 test2
AUC, area under the receiver-operating characteristic curve; PPV, positive predictive value; NPV, negative predictive value; Radiologist A represents senior physicians, radiologist B represents
attending physicians, and radiologist C represents resident physicians. DLR-assisted RA, deep learning radiomics-assisted radiologist A; DLR-assisted RB, deep learning radiomics-assisted
radiologist B; DLR-assisted RC, deep learning radiomics-assisted radiologist C.
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CNN models due to differences in the internal structure of the

network. ResNet can train very deep neural networks to prevent the

gradient disappearance problem and improve the expression ability

and performance of the model (26). The use of residual connections

can preserve the original features, which smoothes and stabilizes the

learning of the network and further elevates the accuracy and

generalization ability of the model. ResNet has the advantages of

detailed and accurate description and strong robustness and is more

suitable for training on small datasets. ResNet is a deep residual

network proposed by He et al (26). in 2016 to address the

degradation issue in deep neural networks, in which the network

structure is connected by introducing residuals (residual

connections) to overcome the problems of gradient disappearance

and explosion, which enables the training of deeper networks.

Several studies (27–29) have demonstrated that ResNet18 is well

implemented for image classification and has been applied to

medical image research. In our study, the Grad-CAM

visualization of ResNet18 exhibited two key regions of tumors

(margin and inner region), facilitating the distinguishment of

BPTs from MPTs. Compared with BPTs, MPTs have a more

irregular shape, more blurred margin, and more complex internal

tumor heterogeneity. Therefore, these two key regions correspond

to the areas on which radiologists focus, which supports the validity

of the model to a certain extent. In addition, with the aid of the

optimal model, the clinical benefit of radiologists with different

seniorities was improved to some extent. In the internal validation
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set, NRI values of radiologists B and C were 0.259 (p = 0.002) and

0.213 (p = 0.017), and their IDI values were 0.284 (p = 0.005) and

0.201 (p = 0.043), respectively. In external test set 1, NRI values of

radiologists B and C were 0.183 (p = 0.019) and 0.161 (p = 0.008),

with IDI values of 0.205 (p = 0.031) and 0.184 (p = 0.045),

respectively. In external test set 2, radiologists B and C showed

NRI values of 0.297 (p = 0.038) and 0.297 (p = 0.047) and IDI values

of 0.332 (p = 0.031) and 0.294 (p = 0.046), respectively. In addition,

the diagnostic performance of junior and attending radiologists was

also enhanced, indicating the developed DL model based on the

automatic segmentation model as a potential aid to quickly assist

radiologists in optimizing radiological interpretation and reducing

misdiagnosis due to inexperience.

This study has several limitations. First, this study is a

retrospective study, which calls for the validation of our results in

prospective clinical trials before the assistive system can be applied

in the clinic. Second, few pathological types of MPTs existed in

external test sets 1 and 2. Third, this study only focused on the

differential diagnosis of BPT and MPT without further investigating

pathological classification. Fourth, the developed optimal automatic

segmentation model may result in some result bias due to no

manual adjustment. Accordingly, further studies are warranted to

investigate whether the combination of automatic segmentation

model training with manual tuning can further improve the

performance of this model. Fifth, patients underwent ultrasound

on non-uniform instruments in different centers. Sixth, the main
A B

DC

FIGURE 7

Performance comparison between clinical model and deep learning model (ResNet18). (A-D) Communication between radiologists with and without
ResNet18 assistance to discriminate between BPTs and MPTs in the internal train set (A), the internal validation set (B), external test set 1 (C), and
external test set 2 (D). Radiologist A represents senior physicians, radiologist B represents attending physicians, and radiologist C represents resident
physicians. DLR-assisted RA, deep learning radiomics-assisted radiologist A; DLR-assisted RB, deep learning radiomics-assisted radiologist B; DLR-
assisted RC, deep learning radiomics-assisted radiologist C.
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limitation of the study is likely the bias due to the radiologists

having already viewed the cases when they were being assisted by

the deep learning model. The way the study is designed makes it

uncertain whether the increased accuracy of the radiologists is due

to the repeat reviewing of the cases or due to the assistance from the

model. Lastly, Developing ML models that incorporate a wider

range of radiological and multimodal images is the future of

medicine; however, due to the retrospective nature of our study, a

combined model based on Color Doppler Flow Imaging(CDFI),

elastography, and contrast-enhanced ultrasound images(CEUS) for

patients with PGT has not been established, making this an

important direction for our future research.
Conclusion

In this study, the automatic segmentation model can effectively

segment parotid lesions on ultrasound images to a certain extent.

On the basis of the segmentation model, we proposed a DL-aided

diagnostic model, which displayed excellent performance in

differentiating BPTs from MPTs and compensated the gap

between the experience levels of different radiologists to foster the

precise treatment of patients with PGTs.
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