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Colorectal cancer (CRC) is one of themost common gastrointestinalmalignancies in

the world. With the rapid pace of life and changes in diet structure, the incidence and

mortality of CRC increase year by year posing a serious threat to human health. As

the most complex and largest microecosystem in the human body, intestinal

microecology is closely related to CRC. It is an important factor that affects and

participates in the occurrence and development of CRC. Advances in next-

generation sequencing technology and metagenomics have provided new insights

into the ecology of gut microbes. It also helps to link intestinal flora with CRC, and

the relationship between intestinal flora and CRC can be continuously understood

from different levels. This paper summarizes the relationship between intestinal flora

and CRC and its potential role in the diagnosis of CRC providing evidence for early

screening and treatment of CRC.
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1 Introduction

Colorectal cancer (CRC), which includes cancer of the colon and rectum, has a high

incidence and mortality rate, which seriously affects people’s physical health. According to

the latest epidemiological data in 2020, the number of new cases of CRC in the world is

approximately 1.9 million, and 935,000 deaths, ranking as the third and second among all

malignant tumors (1). Both the incidence and mortality of CRC are still increasing year by

year. It is estimated that by 2030, the global burden of CRC is expected to increase by 60%,

with more than 2.2 million new cases and 1.1 million cancer deaths (2).

The incidence of CRC is on the rise in developing countries, while it has stabilized or

declined in developed countries where the incidence remains high (2, 3). This is due to the

early implementation of population-specific CRC early screening and lifestyle management

in developed countries. As we all know, the occurrence and development of CRC mostly

follow the “adenoma–cancer” sequence, and the whole development process generally lasts
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5–10 years (4). Timely detection of precancerous lesions and

intervention treatment can effectively prevent the occurrence of

CRC and improve the prognosis (4).

The increasing number of CRC cases over the past decade

indicates that in addition to genetic factors, unhealthy dietary

habits, such as high intake of red meat, processed meats, refined

grains, sugary beverages, desserts and potatoes (5); lack of fiber

intake; and a high-fat diet, are also important factors in the

development of CRC (6). In addition, intestinal flora is also a

specific environmental risk factor for CRC (7). Relevant clinical

studies have found that the intestinal flora colonized in the

colorectal directly or indirectly participate in the body’s digestion

and absorption, substance metabolism, immune regulation, and

other physiological processes (8). Moreover, it can maintain the

stability of intestinal microecosystem (8). The status of intestinal

flora is closely related to the occurrence and development of CRC. A

large number of animal models and clinical studies have proven that

changes in the composition and quantity of intestinal flora promote

the occurrence and development of CRC (9).

In recent years, the research on intestinal microecology has

gradually increased, and more and more researchers have paid

attention to this field. Studies on the relationship between intestinal

flora and CRC are also increasing. This paper reviewed the

correlation between intestinal flora and CRC, as well as the

application of intestinal microecology in CRC screening and

diagnosis to provide evidence for early screening and treatment

of CRC.
2 Overview of intestinal flora

The gut microbiome refers to the microbes that live in a

person’s gastrointestinal tract. There are approximately 100

trillion symbiotic bacteria in the normal human gut (10). This

large and abundant microflora interacts with the human body to

form the intestinal microecology. The number of microbes in the

gut is approximately three times the total number of human cells

(11). The human intestinal flora first appears in the fetus during the

second trimester (12, 13), the abundance and diversity increased in

the neonatal period (14, 15), and the a and b diversity of the flora

forms and stabilizes in early childhood (16, 17). Although the core

groups of human intestinal microbes are very similar, there are

great differences in the relative content and strain types among

different individuals.

Advances in research on the composition and metabolism of the

human microbiome suggest that the gut microbiome has a

significant impact on human health. Under normal physiological

conditions, the intestinal flora coexists with the host in a stable state.

The metabolism and transformation of substances in human body

cannot be separated from the biological action of intestinal flora.

Intestinal flora is involved in maintaining intestinal homeostasis,

and plays an important role in digestion and absorption, substance

metabolism, inhibition of pathogen invasion and colonization,

regulation of immune response, and guarantee of intestinal

mucosal barrier integrity (18–21), with high diversity, stability,

resistance and adaptability (22).
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Studies have shown that the composition of human gut

microbiota is affected by many factors, mainly environmental

factors. In healthy people, the intestinal microenvironment is in a

stable state due to the mutual restriction of various microflora.

However, when the intestinal microecosystem is affected by many

factors, including diet, environment and host genes, its number,

location, and proportion will change, which will cause the

imbalance of intestinal microflora. It is mainly manifested in the

changes of microecosystem composition, bacterial bioactivity, and

location in different parts of the human body (23). The imbalance of

intestinal flora will cause an increase in the number of pathogenic

bacteria such as enterotoxigenic Bacteroides fragilis (ETBF),

Escherichia coli (E. coli), and Clostridium difficile (24). At the

same time, probiotics (such as Bifidobacterium, Lactobacillus, and

Bacteroides) will decrease (24), which will lead to the occurrence of

diseases. Studies have found that cardiovascular disease (25),

diabetes (26), Alzheimer’s disease (27, 28), CRC (20), obesity (29,

30) and many other diseases are closely related to the imbalance of

human intestinal flora. The overall classification of intestinal flora is

as follows (Table 1):
3 Correlation between intestinal flora
and CRC

The intestinal microecosystem is mainly composed of intestinal

bacteria, viruses, and their metabolites, which interact with the host

organism. Under normal physiological conditions, the intestinal

microecosystem is in dynamic balance. When various factors disrupt

the balance, the intestinal flora will change significantly. The main

manifestation is that the number of pathogenic bacteria increases, and

the beneficial bacteria decreases. This can lead to pathological changes

in the host intestine and even cancerous changes (10). The intestinal

tract plays an increasingly significant role in CRC, so intestinal flora has

become the focus of many CRC-related studies (10).

Recent studies have shown that intestinal flora is involved in the

occurrence and development of CRC (33, 34) and even in individual

response to anti-cancer drugs (9). There is evidence in early animal

studies to support the role of gut flora in the development of CRC.

In 1967, the first study of gut microbiota mediating the carcinogenic

effect of cysteine in germ-free mice was published (35), and it was

found that gut microbiota played a crucial role in regulating the

carcinogenic effect of cysteine on conventional rats, while cysteine

failed to cause cancer in germ-free rats. In addition, a study

published in 2017 showed that transferring stool from CRC

patients to mice promoted intestinal cell proliferation in germ-

free mice and promoted tumor formation in conventional mice

given azomethane-induced colon cancer (36).

In human studies, metagenomics has been used to study the role

of intestinal flora in CRC. Studies have found that intestinal flora

imbalance exists in patients with rectal cancer (20, 37, 38), the

reduction of symbiotic bacterial species, and the increase in harmful

bacterial population (39). The intestinal flora associated with CRC

patients was different from that of the healthy control group (33,

40–43), which was mainly reflected in the difference in bacterial

composition and diversity.
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There are significant changes in specific bacterial populations

between the right colon (ascending, proximal, transverse colon) and

the left colon (descending, sigmoid, distal colon) in patients with

CRC, and this may affect the mucosal immune response (44). Chen

et al. (42) found that compared with healthy subjects, the

composition of mucosa-associated bacteria in CRC patients was

significantly different. Fusobacterium , Porphyromonas ,

Peptostreptococcus, Gemella, Mogibacterium and Klebsiella have

been found in CRC. It was enriched in patients, but decreased in

non-bacter ia Feacal ibacter ium , Blautia , Lachnospira ,

Bifidobacterium, and Anaerostipes (42). Changes in the

composition of the microbiota in the mucosa of patients with

CRC are not limited to cancer tissue (45). There are also

differences between distal and proximal cancers (45). Bacterial

diversity was reduced in stool samples from CRC patients

compared to healthy individuals and was dominant in samples of

intestinal mucosa.

In addition, it was found that the microbiota of cancer tissues

showed lower diversity compared to non-cancer normal tissues

(42). Similarly, a meta-analysis that included eight population-

controlled studies from Europe, the United States, and East Asia
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found that 29 bacterial species had increased abundance in the fecal

flora of patients with CRC (24), such as Fusobacterium,

Porphyromonas, Parvimonas, Peptostreptococcus, Gemella,

Prevotella, and Solobacterium, and eight other species with no

genome reference sequence, among others (24). Bacterial species

commonly associated with CRC development include

Fusobacterium nucleatum (Fn), E.coli, Bacteroides fragile,

Streptococcus bovis/Streptococcus acidophilus, Clostridium septicus,

Enterococcus faecalis, and anaerobic Peptostreptococcus. A recent

study found that there is heterogeneity in the flora of colorectal

tumors or precancerous adenomas (46). The composition and

abundance of some CRC-associated pathogens (including

Clostridium, Bacteroides, Parvoomonas, and Prevotella) are

different in different parts of the same tumor (46). This

heterogeneity was significantly associated with CRC-related

genetic changes (KRAS mutations and microsatellite instability)

in the adenomato-cancer sequence (46).

Intestinal fungal flora is also a major component of human

intestinal flora. Some studies have revealed the characteristics of

intestinal fungal flora and pathogenic fungi in the stage of CRC

development (47, 48). In addition, it has been proven that the
TABLE 1 Classification of gut microbiota.

Classification
basis

Microflora type Example Effect on host Reference

The number and
function of the flora

Predominant microflora
Bacillus, Eubacterium, Bifidobacterium,
Ruminococcus, Clostridium, etc.

Determine the physiological and
pathological significance of
bacterial communities to the host

(19)

Subdominant microflora
E. coli, Streptococcus, etc. High mobility,

potentially pathogenic

Relationship between
intestinal flora

and host

Beneficial bacteria
Bifidobacterium, Lactobacillus, etc. Maintenance of host health (such

as immunity, metabolism
and nutrition)

(24, 31)

Subdominant microflora
Staphylococcus, Proteus, etc. Destruction of intestinal epithelial

cells leading to a variety of
diseases such as CRC

Intermediate bacteria
E. coli, etc. Leads to the increase of spoilage

substances, carcinogens, and
toxins, and promotes host aging

Molecular evolution of
flora (The major
bacterial phyla)

Firmicutes
More than 200 genera, most of which are
Gram-positive bacteria

Lactic acid bacteria in the
bacterium door for colon has a
protective effect

(18, 19, 32)

Bacteroidetes
Consists of four classes (Bacteroidetes,
Flavobacteria, Sphingobacteria,
and Fibrophagia)

The dominant flora of intestinal
flora. Ferment carbohydrates that
the human body cannot digest

Actinobacteria
Gram-positive bacteria
(Bifidobacterium, micrococcus, etc.)

The abundance of Bifidobacteria in
this phylum is associated with an
increased risk of colonic polyps

Proteobacteria

The largest group of bacteria, which are
Gram-negative (Escherichia, Salmonella,
Klebsiella, Shigella,
Yersinia coli, Pseudomonas, Vibrio, etc.)

Includes most intestinal pathogens

Fusobacteria
A small group of Gram-negative bacteria
(Fusobacterium, etc.)

Patients with CRC have a low
relative abundance
of Fusobacterium
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interference of fungal flora can also promote the occurrence of CRC.

Adult intestinal fungi are mainly composed of 10 genera from the

phyla comycetes (70%) and basidiomycetes (30%). Intestinal fungi

affect the host immune system by recognizing Toll-like receptors,

C-type lectin receptors, galactolectin 3, NOD-like receptors, and

NKp30, and have direct or indirect effects on CRC (49). Caspase

recruitment domain containing protein 9 (CARD9) is the adapter

protein of CARD expression in myeloid cells, which can activate the

nuclear factor kB pathway through fungal surface receptors, and

plays an important role in antifungal immunity (50). Wang et al.

(50) found that in the mouse model of azomethane oxide and

sodium glucan sulfate, mice with the deletion of the adapter protein

CARD9 were more likely to suffer from colitis-related colon cancer.

Fungal dysregulation can induce the accumulation of myeloid-

derived inhibitory cells and promote the occurrence of colon

cancer. The ability of macrophages lacking CARD9 to kill fungi

was impaired resulting in an increase in intestinal fungi and a

change in the composition of the fungal community. The

enrichment of Candida tropicalis can induce mouse bone marrow

cells to be myeloid-derived suppressor cells, which has a strong

inhibitory effect on CD8+ and CD4+ T cells, thus promoting colon

cancer. Antifungal treatment with fluconazole can reduce the

accumulation of myeloid-derived inhibitory cells and inhibit

colon cancer in CARD9-deficient mice. An increase in intestinal

fungi, particularly Candida tropicalis, in colon cancer patients was

found to be positively correlated with levels of myeloid-derived

suppressor cells within the tumor (50). This reveals the important

role of fungal dysregulation in the pathogenesis of colon cancer and

its mechanism. Coker et al. (7) identified the characteristics of CRC-

related intestinal fungi in the further study of CRC intestinal flora.

CRC intestinal fungi was imbalanced, Basidiomycetes/Ascomycetes

ratio increased, Malassezobacteria increased, and Yeast and

Pneumosporobacteria decreased. The composition of fungi varies

specifically in CRC, which is reflected in the enrichment of six

genera. Among them, Rhododendron and Malassezia of

Basidiomycetes and Acremonium of Ascomycetes are considered as

opportunistic pathogens or potential carcinogens. In CRC, both the

co-occurrence of intestinal fungi and the mutual repulsion of

bacteria–fungi were increased, and the positive interaction

between Proteobacteria and Ascomycetes became mutually

exclusive in CRC suggesting that intestinal fungal disorders may

be involved in the occurrence of CRC.

Although existing studies have found that the intestinal flora of

CRC patients is unbalanced compared with healthy people, even some

studies have confirmed that changes in intestinal flora can directly lead

to the occurrence of CRC. But the specific role of which flora in the

progression of CRC is still unclear. Further studies have proposed

various models, such as the “Alpha-bug” (51) model and the “Driver–

passenger” (52, 53) model, to illustrate the mechanisms by which gut

microbiota contributes to the development of CRC. Some specific

human intestinal symbiotic bacteria directly or indirectly affect

intestinal mucosal epithelial cells to cause genetic mutations, and

these intestinal bacteria are defined as “Alpha-bug.” The “Driver–

passenger” model suggests that intestinal flora-induced CRC was

related to changes in intestinal microenvironment. First, some

specific intestinal symbiotic bacteria drive DNA damage in epithelial
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cells, and these intestinal symbiotic bacteria are defined as “driver.”

Next, the intestinal microenvironment changes during the cancer

process, which facilitates the proliferation of other bacteria

(opportunistic pathogens or probiotics), which are defined as

“passengers,” such as Fn, Streptococcus bovis, and Roxella. The key

mechanisms of intestinal microbiota induction of CRC include

genotoxins and virulence factors, intestinal microbial metabolites,

inflammatory pathways, oxidative stress, and antioxidant defense

regulation (54).
4 Main pathogenic bacteria and
pathogenic mechanism affecting the
occurrence and development of CRC

Although the gut microbiota is different, there are several

individual bacteria associated with CRC. In recent years, the function

and molecular mechanism of several specific bacteria, such as ETBF,

Fn, Parvimonasmicros, and Prevotella, have been studied. Chicken

hemolytic streptococcus, E. coli, and Peptostreptococcus may also

stimulate CRC. Examples of pathogenic bacteria affecting the

occurrence and development of CRC and their relationship with

CRC are shown in Table 2 (55–67):
4.1 Fusobacterium nucleatum

Fn, belonging to Bacteroideaceae and Clostridium, is a Gram-

negative spore free anaerobic bacterium. It extensively colonizes the

symbiotic flora of human oral cavity and intestinal mucosa, and is a

bridge microorganism in digestive tract flora. Changes in its number

can cause microecological imbalance, which is closely related to the

microecological environment of intestinal flora. Fn can promote cell

proliferation, induce inflammatory response, inhibit host immune

function, and disturb intestinal microenvironment balance and other

mechanisms affecting the occurrence, development, and prognosis of

colorectal diseases. An in-depth understanding of the pathogenic

mechanism of Fn on CRC is helpful to provide a basis for clinical

prevention and treatment of CRC.

Through PCR and 16S rDNA sequence analysis, a number of

previous studies have found that Fn, as a pathogenic bacterium, is
TABLE 2 The main pathogenic bacteria affecting the occurrence and
development of CRC and their relationship with CRC.

Bacterial
name

Relationship with CRC

Fusobacterium
nucleatum (Fn)

Promotes CRC tumorigenesis and play a role in
CRC metastasis

Bacteroides
fragilis (BF)

A large number of intestinal flora exists in patients
with CRC.

Escherichia coli
(E. coli)

pks+ E. coli increase colonization of colon mucosa in
patients with CRC and increase the risk of CRC

Streptococcus
bovis

The infection of subspecies Streptococcus gallolyticus (SGG)
is most closely related to CRC and has a high incidence
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significantly enriched in feces and tissues of patients with CRC (68,

69). Yeoh et al. (70) analyzed 3,157 intestinal metagenomes from 16

populations around the world to study the distribution of

Clostridium and its potential CRC-related genomic characteristics

and found that the prevalence, relative abundance, and diversity of

multiple known and unknown Clostridium groups in southern

Chinese populations were higher than those in other regions,

regardless of whether they had CRC. Besides Fn, Fusobacterium

varium, and other Fusobacterium groups are also enriched in CRC.

Fn may affect multiple stages of CRC progression (71–73), such as

promoting proliferation and metabolism, remodeling the immune

microenvironment, promoting metastasis, and chemotherapy

resistance (74). Regarding the influence of Fn on the progression of

CRC, Rubinstein et al. (75) proposed a “two-hit” model for the

occurrence of CRC, with somatic mutations as the first “hit” and Fn

as the second “hit,” which aggravated the progression of cancer after

benign cells became cancerous. The model extends the “adenomato-

cancer”model and identifies microorganisms, such as Fn, as promoters

of cancer. Li et al. (76) found that Fn can promote the progression of

CRC through theWnt/b-Catenin signaling pathway activated by Cdk5.
In addition, Fn has been shown to be associated with CpG island

methylation phenotype (CIMP) and microsatellite instability (MSI) in

CRC (68, 77).

Xu et al. (58) showed that the abundance of Fn was higher in

feces and tumors of patients with metastatic CRC, and the

abundance of Fn increased in stage IV compared with that in

stage I. It was also proven that Fn could promote the metastasis of

CRC through the miR-1322/CCL20 axis and M2 polarization.

Recent studies have also supported the role of Fn in promoting

lymph node metastasis and lung metastasis in CRC (57).

Chemotherapy failure is the main reason for recurrence and

poor prognosis of patients with CRC. Intestinal microflora plays a

role in chemotherapy resistance of patients with CRC. Recent

studies have also demonstrated that Fn is associated with

chemotherapy resistance in CRC patients (78, 79). Due to several

unique aspects of Fn on CRC, it can be used as a potential

biomarker for the early detection of CRC (80, 81).

Fn forms intestinal flora together with other microflora of

viruses, bacteria, fungi and other microorganisms in intestinal

microenvironment. All microorganisms are combined in a certain

proportion, which both restrict and depend on each other, and

jointly maintain the stability of human microecosystem. The

enrichment of Fn in CRC patients also reflects that the

microecological balance of intestinal microflora in patients is

broken. As a member of the intestinal microflora, Fn can affect

the intestinal microecological environment. The enriched Fn in the

intestinal tract plays multiple roles in the occurrence and

development of CRC, which makes it expected to become a

therapeutic target of the disease and provide a new strategy for

CRC prevention and treatment.
4.2 Bacteroides fragilis

Bacteroides fragilis (BF) is a common Gram-negative obligate

anaerobic bacterium in the human gut. Some BF can secrete a toxin
Frontiers in Oncology 05
called BF toxin (BFT). According to the synthesis and secretion of

BF enterotoxin, it can be divided into ETBF and non-

enterotoxigenic BF (NTBF). BFT is the only recognized virulence

factor of ETBF, and early studies have found that BFT can cause

inflammatory diarrhea in children and adults (82).

However, in recent years, there has been increasing evidence that

BFT is associated with the development of CRC (60), and studies have

demonstrated increased ETBF colonization in CRC patients (61, 62).

Colonization of ETBF in colitis-induced CRC mouse models

increased the number of tumors (83), while in Apc Min/+ CRC

mouse models, it promoted the development of colorectal

adenomas (84) further confirming its carcinogenic potential.

Recently, Liu et al. (85) found that ETBF increased the dryness of

CRC by upregulating the expression of Nanog and Sox2, and found

that ETBF significantly increased JMJD2B by activating the TLR4

pathway. Gao et al. (86) found that ETBF promoted intestinal

inflammation and malignancies by inhibiting exosomal miRNA. In

the colitis CRC model, WT-ETBF promoted polyp formation in the

AOM/DSS mouse model and increased the incidence of colitis in

BALB/c mice (83).
4.3 Escherichia coli

E. coli is a very common but small number of Gram-negative

facultative anaerobes in the distal gastrointestinal tract. In

addition to being an important member of the normal gut

microbial community in humans and other mammals, E. coli

also contains many pathogenic forms that can cause a wide range

of diseases. At least six different pathogens cause intestinal

disorders, such as diarrhea or dysentery, while others cause

parenteral infections, including urinary tract infections and

meningitis (87). The prevalence of pks+ E. coli was higher in

CRC patients (14.7%) than in healthy people (4.3%) (88).

Increased colonization of the colon mucosa by pks+ E. coli in

CRC patients (89, 90) suggests its role in CRC. Various previous

studies have also confirmed the link between E. coli and CRC (88,

91–93). In E. coli, the B2 strain has a certain “genotoxicity,” which

carries a conserved pathogenic gene “polyketide synthase (pks)”

island, which can produce a small molecular toxic substance

colibactin. It leads to eukaryotic DNA damage, cell cycle arrest,

mutation, and chromosome instability (94). In a recent study,

Pleguezuelos-Manzano et al. (91) used human intestinal

organoids to demonstrate that pks+ E. coli induces a CRC-

associated mutational signature caused by exposure to CoPEC

rich in human CRC tumors and metastases. Salesse et al. (95)

found that colicin-producing E. coli (CoPEC) induced CRC in a

mouse model of CRC lacking genetic susceptibility. Studies have

also shown that in both humans and mice, CoPEC infection is

associated with a reduction in tumor-infiltrating T lymphocytes

leading to tumor resistance to immunotherapy (96). In addition, a

new study is the first to link a Western-style diet to a specific cause

of cancer (63). Analysis of two prospective cohort studies in the

United States has shown that a Western-style diet increases CRC

risk through carcinogenic pks+ E. coli (63).
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4.4 Streptococcus bovis

Streptococcus bovis is a Gram-positive bacterium associated

with endocarditis (97). Streptococcus bovis, also known as the

Bovis/equine Streptococcus complex (SBSEC), includes many

closely related subspecies, such as SGG, Streptococcus

macedonicus, Streptococcus infantilus, and others (98).

Using mice genetically predisposed to CRC, Aymeric et al. (99)

found that SGG colonization was 1,000 times higher in tumor-

bearing mice than in normal mice. After tracking and detecting NF-

kB and interleukin-8 (IL-8), Abdulamir et al. (62) found that SGG

may promote the synthesis of cyclooxygenase-2 (COX-2) through

these two factors. It can induce inflammation, resist apoptosis, and

induce cancer through angiogenesis, thus proving that SGG has a

certain correlation with CRC. Due to their powerful mutability,

these molecules can participate in tumor formation by modifying

cellular DNA. SGG infection promotes the deterioration of the

colon epithelium, while the physiological status of the colon is also

changed, including reduced intestinal mucus and increased

permeability of the epithelial cells. These physiological changes

can break the balance of intestinal microecology and make the host

vulnerable to infection by pathogenic bacteria. A recent study found

that SGG-expressed type VII secretion system (T7SS) can promote

the adhesion of SGG to colon cells and enhance the intestinal

colonization of SGG, thus mediating the promotion of SGG to

colon tumors (100).

Although previous studies have confirmed that Streptococcus

bovis is associated with CRC, the mechanism of its involvement in

the occurrence of CRC has not been fully clarified. Studies have

shown that Streptococcus bovis may induce inhibitory immunity by

recruitment of tumor-infiltrating CD11b + TLR-4 + cells, thereby

contributing to the development of CRC (101).

5 Application of intestinal flora in the
diagnosis of CRC

The 5-year survival rate for early-stage CRC can reach 90%, but the

5-year survival rate for metastatic disease rapidly drops below 15%

(102). Effective screening for precancerous lesions or biomarkers of

cancer can significantly reduce CRC-related mortality (103). At

present, colonoscopy is the most effective means of diagnosis, but

because the biggest problem of colonoscopy is invasive examination,

and requires tedious intestinal preparation, in addition to the risk of

perforation, it is not suitable for early screening of large samples of

people (104). The immunofecal occult blood test (FIT) is a non-

invasive, simple, and cost-effective method for CRC screening, but it

often produces false-positive results and is less sensitive to advanced

adenomas (105, 106). Multi-target fecal DNA testing is also very

effective for CRC detection (sensitivity 92.3%), but the false-positive

rate is higher than that of FIT (107), and the test is expensive.

Therefore, it is necessary to develop a new non-invasive, simple, and

effective method for CRC screening. Studies have reported associations

between bacterial markers and clinical outcomes increasing the

possibility of using these microbial markers for treatment and

prognosis (19). Relevant studies have demonstrated the association
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between certain specific bacteria in intestinal flora and the diagnosis of

CRC (19). Multiple studies have found that people with CRC have

significantly different types and numbers of gut microbiota than

healthy people (10). Exploring the intestinal microecosystem

composition of CRC patients can provide a new means of screening

for CRC. Currently, the difference in intestinal flora between CRC

patients and healthy people has been used as one of the screening

methods for CRC (19). The use of intestinal flora as a diagnostic and

prognostic indicator for CRC needs further exploration to provide new

ideas for the diagnosis and treatment of CRC by intestinal biota in

the future.
5.1 Microbiome studies on the relationship
between intestinal flora and CRC

There are differences in the abundance of gut microbiota among

CRC patients, adenoma patients, and healthy people (108).

Microbial markers can be used for microbial diagnosis of CRC. In

recent years, large-scale studies of fecal metagenomes have

identified microbial signatures that can predict CRC in different

populations. Metagenome-based studies on the relationship

between intestinal flora and CRC are shown in Table 3.

Recent studies have also found that CRC patients have the same

strain of Fn in their CRC and mouth (120). Oral microbiota may also

be used as a biomarker to screen for CRC and polyps (120–122).

In addition to bacteria, the imbalance of fungal flora in the gut is

also closely related to CRC. Fungal flora can also be used for early

diagnosis of CRC patients (47, 106). Its use in combination with

bacterial biomarkers can be more accurate in clinical diagnosis of

CRC. Recently, several studies have used machine learning-based

meta-sequencing analyses of gut bacterial DNA to detect differences

in gut microbiota between healthy individuals and CRC patients

and have used this information for the development of CRC

diagnostic models (123–125).
5.2 Markers of intestinal
microbial metabolites

Gut microbial metabolites are important factors that link gut

microbiota to CRC (126, 127). The relationship between intestinal

flora and its metabolites and the occurrence and development of CRC

is shown in Figure 1: How the species of bacteria and their metabolites

affect the progression of CRC has been of great concern.

Acetaldehyde-producing bacteria, sulfate-reducing bacteria, and 7a-
dehydroxylating bacteria are thought to be one of the likely major

contributors to CRC risk because their metabolites have colonic and

tumor-inducing toxicity, including acetaldehyde, hydrogen sulfide,

and secondary bile acids and so on (128). On the other hand, bacterial

metabolites that may reduce the risk of CRC include butyrate and

other short-chain fatty acids, as well as conjugated linoleic acid (128).

Moreover, many studies have reported varying levels of microbial

metabolites in stool samples from patients with CRC, including

unsaturated fatty acids, ursodeoxycholic acid, lower levels of butyric

acid, and higher levels of acetic acid (129). One study reported that in
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patients with precancerous polyps, the abundance of genes involved in

amino acid and sulfur metabolism increased, while the abundance of

genes involved in methane metabolism decreased relatively (43). By

integrating the results of serum metabolomics and fecal metagenomic

sequencing, Chen et al. (130) identified a group of serum metabolites

(GMSM) of CRC and adenoma patients closely related to the gut

microbiota, and established a GMSM-based model. The model was

more effective than the clinical marker carcinoembryonic antigen

(CEA) in differentiating CRC and adenoma patients from healthy
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individuals. Coker et al. (131) performed metabolomic and

metagenomic analyses of stool samples from 386 subjects and found

that metabolite markers (20 metabolites) could be used to diagnose

CRC (AUC = 0.80) and that combining intestinal bacteria with

metabolite markers improved their diagnostic ability (AUC = 0.94).

CRC biomarkers based on intestinal flora and its metabolites are a

promising method for CRC screening and diagnosis, which has the

advantages of being non-invasive, sensitive, specific, and inexpensive.

Compared with traditional CRC screening and diagnosis methods
TABLE 3 Studies of microbiomarkers on the relationship between intestinal flora and CRC.

Method Sample Purpose Conclusion References

Meta-analysis
(CRC
metagenomic dataset)

Total: 1,368
(Cohort I: 491 CRC, 494
tumor-free controls;
Cohort II: 193
CRC,190 controls)

Individual changes and
interactions of gut microbes
associated with CRC

The applicability of multi-domain and functional
markers (bacteria, fungi, etc.) as diagnostic tools for
CRC was demonstrated

(106)

Meta-analysis
(fecal metagenomes)

Total: 969
(413 CRC, 143
adenoma, 413 controls)

Predictive accuracy of the gut
microbiome for CRC detection

Reproducible microbiome biomarkers (Fn,
Solobacterium moorei, etc.) and accurate disease-
predictive models were identified

(109)

Meta-analysis Total: 509
(195 CRC, 79 adenoma,
235 controls)

A composite and generalizable
microbial marker for CRC

Microbial markers (Parvimonas micra, Streptococcus
anginosus, Proteobacteria, etc.) can be used for
microbial diagnosis of CRC

(110)

Research
[metagenomic analysis,
quantitative
PCR (qPCR)]

Total: 324
(Cohort I: 74 CRC, 54 controls
Cohort II: 16 CRC, 24 controls
Cohort III: 47 CRC,
109 controls)

The potential of fecal
metagenomics for
CRC diagnosis

From the stool samples of CRC non-invasive
biomarkers (Fn, Peptostreptococcus stomatis,
Parvimonas micra, Solobacterium moorei) for
early diagnosis

(111)

Research (16S rRNA
gene sequencing,
qPCR)

Total: 96
(Cohort I: 18 CRC, 18 controls
Cohort II: 40 CRC,
20 controls)

Microbial signatures that are
potentially specific for
Malaysian CRC patients

Parvimonas micra, Peptostreptococcus stomatis, Fn,
and Akkermansia muciniphila as a four-bacteria
biomarker panel of CRC

(112)

Research (qPCR) Total: 139
[60 CRC, 37 colorectal
adenomatous polyposis (CAP),
42 healthy controls (HCs)]

Analyze the diagnostic value of
single or combined biomarkers

Bacterial markers (Fn, pks+ E. coli, etc.) combined
with conventional tumor markers can improve the
non-invasive diagnostic efficiency of CRC

(113)

Nested case-control
study
research (qPCR)

Total: 240
(39 CRC, 135 cases of low‐ and
high‐grade dysplasia,
66 controls)

Microbial markers in CRC
test utility

Fecal microbial markers (clbA+ bacteria, Fn) may be
non-invasive diagnostic markers for CRC

(114)

Research
(probe-based
duplex qPCR)

Total: 439
(203 CRC, 236 HCs)

Application of fecal bacterial
markers in the diagnosis
of CRC

Fecal-based CRC-associated bacteria (Fn, etc.) can be
used as novel noninvasive diagnostic biomarkers
for CRC

(115)

Research
(qPCR)

Total: 490
(Cohort I: 104 CRC, 103
adenoma, 102 controls
Cohort II: 23 CRC, 62
adenoma, 96 controls)

Fecal microbe marker in
detecting CRC and clinical
application of
advanced adenomas

Fn can be used as a valuable marker to improve the
diagnostic performance of FIT

(116)

Research
(qPCR, 16S
rDNA sequencing)

Total: 903
(Cohort I: 215 CRC, 100
nongastrointestinal cancer, 178
benign colon disease; 156 HCs;
Cohort II: 152 CRC, 102 HCs)

Utility of fecal bacterial
biomarker candidates in the
diagnosis of CRC

Fn/Bb and Fn/Fp were potential noninvasive screen
biomarkers for
early CRC

(117)

Research
(metagenomic
identification, targeted
quantitative PCR)

Total: 1,012
(274 CRC, 353 adenoma,
385 controls)

Identification of new fecal
bacterial markers for the
diagnosis of
colorectal adenomas

A new bacterial marker (m3) was identified for non-
invasive diagnosis of colorectal adenomas

(118)

Meta-analysis Total: 526
(255CRC, 271 controls)

To study the relationship
between intestinal microbiota
and CRC

Diagnostic bacterial markers (Bacteroides fragilis,
Fn.etc) were identified, indicating their use in non-
invasive CRC diagnosis

(119)
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(such as fecal occult blood test, colonoscopy, serological testing), it has

higher acceptability and accuracy.
6 The effect of poor diet on intestinal
flora and its role in the development
of CRC

According to epidemiological surveys, up to 80% of CRC

incidence in Western populations can be attributed to dietary

factors (128). People whose diets are high in animal fats, red and

processed meats, and low in unrefined grains, dietary fiber, and

vegetables have a higher chance of developing CRC (128). In recent

years, with the in-depth study of intestinal flora, diet can have a huge

impact on the structure and function of intestinal flora. These

microorganisms ferment dietary components in an anaerobic

manner that are not fully digested and absorbed by the upper

gastrointestinal tract. Metabolites and antigens produced by the gut

microbiota may play an important role in influencing CRC risk

through their interactions with host metabolism and immunity (128).

A large number of experimental data show that high-fat diet

(HFD) can significantly change the composition of intestinal flora

and participate in the occurrence and development of CRC. Most

studies have observed that high-fat diet has increased the

proportion of Firmicutes and Bacteroides, decreased the diversity

of intestinal flora, and increased the abundance of Desulfovibrio and

Ruminococcus (103). The abundance of Prevotellaceae was reduced

(132). A 10-day study (128) found that a short-term high-fat diet

altered the composition of human gut microbes. A 6-month trial in

a Chinese young population found (133) that compared with a low-

fat diet, a high-fat diet reduced the diversity of intestinal flora,
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reduced the abundance of Faecalibacterium, and increased the

abundance of Alistipes and Bacteroides.

High-fat diet cannot only cause structural changes in intestinal

flora but also have an important effect on intestinal flora

metabolism and produce a large number of secondary bile acids,

fatty acids, and sulfide derivatives. When dietary fat enters the

intestine, the liver and pancreas secrete large amounts of bile acids

and lipases, respectively, to help further digest dietary fat. The

primary bile acids secreted by the liver will be further ingested by

the intestinal flora to produce secondary bile acids. Excessive

secondary bile acids may promote the development of colorectal

tumors. Secondary bile acids can cause DNA damage of intestinal

epithelial cells, exacerbate inflammatory response, and promote the

proliferation of intestinal Lgr5 (+) intestinal stem cells, thus

promoting the occurrence and development of CRC (134). To

establish a healthy diet, to better maintain the structural balance

of intestinal flora, to a certain extent, help prevent or treat CRC.
7 Summary and prospect

CRC is one of the most common malignant tumors of the

digestive tract. As an important influencing factor of CRC, the

relationship between intestinal flora and CRC has been attracting

attention. This study systematically and comprehensively described

the different classification and corresponding physiological functions

of intestinal flora, the research progress of the correlation between

intestinal flora and CRC, the main pathogenic bacteria associated

with CRC and their pathogenic mechanisms, and the value of

intestinal flora in the diagnosis of CRC. At the same time, it

summarized the influence of bad lifestyle on intestinal flora and its
FIGURE 1

The gut microbiota and its metabolites influence the host’s immune system, metabolic pathways, epigenetics, and signaling pathways. Intestinal flora
can interact with CRC cells through their metabolites. Intestinal flora and its metabolites can be used as biomarkers of CRC for early screening,
diagnosis, staging, prognosis assessment, and treatment response monitoring.
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role in the occurrence and development of CRC. It lays a foundation

for how to better maintain the health of intestinal microecology and

apply intestinal microecology to the early prevention and screening of

CRC in the future. Although the relevant studies on intestinal flora

and CRC are gradually increasing, the clinical understanding of the

relationship between intestinal microecology and CRC is still limited.

Therefore, it is necessary to further study the correlation between

intestinal flora and CRC in the future, correctly understand the role of

intestinal flora, and deeply explore its mechanism of action on the

occurrence and development of CRC, and finally provide new ideas

and methods for the prevention, diagnosis, and treatment of CRC.
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