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Hepatocellular Carcinoma (HCC), the most common primary liver cancer, is a

significant contributor to worldwide cancer-related deaths. Various medical

imaging techniques, including computed tomography, magnetic resonance

imaging, and ultrasound, play a crucial role in accurately evaluating HCC and

formulating effective treatment plans. Artificial Intelligence (AI) technologies have

demonstrated potential in supporting physicians by providing more accurate and

consistent medical diagnoses. Recent advancements have led to the

development of AI-based multi-modal prediction systems. These systems

integrate medical imaging with other modalities, such as electronic health

record reports and clinical parameters, to enhance the accuracy of predicting

biological characteristics and prognosis, including those associated with HCC.

These multi-modal prediction systems pave the way for predicting the response

to transarterial chemoembolization and microvascular invasion treatments and

can assist clinicians in identifying the optimal patients with HCC who could

benefit from interventional therapy. This paper provides an overview of the latest

AI-basedmedical imagingmodels developed for diagnosing and predicting HCC.

It also explores the challenges and potential future directions related to the

clinical application of AI techniques.
KEYWORDS
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1 Introduction

Hepatocellular Carcinoma (HCC), the most common primary liver malignancy, is

linked to high mortality rates and stands as a leading cause of cancer-related deaths

worldwide (1). Accurate diagnosis and staging of HCC are crucial for improving patient

survival rates and treatment outcomes. However, early diagnosis of HCC presents a

significant challenge, especially for individuals with chronic liver disease. A notable

characteristic of liver cancer is its strong association with liver fibrosis, with over 80% of

hepatocellular carcinomas (HCCs) developing in fibrotic or cirrhotic livers (2). This

indicates that liver fibrosis plays a vital role in the liver’s premalignant environment.
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Medical imaging techniques, including Computed Tomography

(CT), Magnetic Resonance Imaging (MRI), and Ultrasound (US),

play an essential role in the diagnosis and staging of HCC,

supplementing clinical findings, biological markers, and blood

tests. CT scans provide detailed cross-sectional images of the

liver, aiding in the identification and characterization of tumors

(3). MRI offers superior soft tissue contrast, making it invaluable for

assessing the extent of liver cancer (4). US, a non-invasive and cost-

effective imaging modality, can detect liver tumors by generating

liver images using sound waves (5). However, each of these imaging

methods has its limitations. For instance, CT scans expose patients

to ionizing radiation, potentially heightening the risk of radiation-

induced cancer. Moreover, CT scans can be expensive and less

accessible in certain healthcare settings. While MRI can produce

high-quality images, it can be time-consuming and may not be

suitable for patients with claustrophobia or those with metal

implants. US has limitations in image quality, particularly in

patients with obesity or excessive intestinal gas. Recently,

advanced MRI techniques, such as MR Elastography (MRE) and

gadoxetic acid-enhanced MRI, have been introduced for liver

imaging. These techniques provide high-resolution images

without the harmful effects of radiation (6). MRE measures the

stiffness of liver tissue, which can assist in differentiating between

benign and malignant liver tumors. Gadoxetic acid-enhanced MRI

offers dynamic imaging of the liver and can enhance the detection

and characterization of HCC.

Diagnosing HCC poses significant challenges. These challenges

arise from the prevalence of typical radiological features that are

common to other liver tumors or benign conditions. Such

similarities in imaging characteristics can lead to misdiagnosis or

delayed diagnosis. As a result, patients with liver lesions exhibiting

these typical features may require histological confirmation or

rigorous monitoring to ensure accurate diagnosis and

appropriate treatment.

In recent years, the potential of Artificial Intelligence (AI)

techniques in diagnosing HCC has been the subject of extensive

research. These techniques have been explored for various purposes

such as detecting and evaluating HCC, facilitating treatment, and

predicting treatment response (7–13). Numerous studies have

investigated the use of AI models in conjunction with different

modalities, including electronic health record (EHR) reports,

clinical parameters, biological markers, and blood test results, for

diagnosing liver cancer (14, 15). AI techniques have emerged as

powerful tools capable of extracting valuable insights from

voluminous EHRs and developing multimodal AI methods. These

methods provide a more comprehensive and accurate depiction of

the liver’s internal structure and function.

While many researchers have shown interest in exploring the

potential of AI techniques in liver cancer research, there remains a

gap in comprehensively evaluating the implementation of single-

modal and multi-modal AI techniques for diagnosing HCC. This

study aims to bridge this gap by providing a comprehensive review

of the most recently developed AI-based techniques that utilize both

single and multi-modal data for diagnosing HCC. AI-based

techniques hold the potential to enhance early diagnosis, improve

diagnostic accuracy, and improve treatment outcomes for patients
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with HCC. This pivotal area of research could lead to significant

advancements in liver cancer diagnosis and prediction.
2 Methodology and materials

This research explores the application of AI methodologies in

diagnosing and prognosticating primary liver cancer, specifically

HCC. The objective is to encapsulate the latest and most relevant

discoveries in this rapidly evolving field.

A thorough literature review was conducted using databases such

as PubMed, Scopus, Semantic Scholar, IEEEXplore, and Web of

Science, up until March 31, 2024. During this process, several key

terms such as “artificial intelligence”, “deep learning”, “machine

learning”, “liver cancer”, “hepatocellular carcinoma”, “multi-

modal”, “medical imaging”, “US”, “CT”, and “MRI” were searched

in the title and/or abstract or all field. References from relevant

articles were examined to identify additional qualifying publications.

An expert review of the eligible literature was carried out, and

the most informative and pertinent citations were chosen for

inclusion. The studies selected were those that integrated AI

techniques with medical imaging datasets, including US, CT, and

MRI, in conjunction with Electronic Health Records (EHR) and

clinical parameters. Studies that did not utilize medical imaging

techniques or AI models specifically targeting primary liver cancer

were excluded.

The search was confined to peer-reviewed articles, conference

proceedings, dissertations, and book chapters published in English

from January 2010 to March 2024. These publications were

retrieved, screened, and reviewed by the authors. One researcher

then undertook the data extraction, focusing on the methods and

results of each study.

As depicted in Figure 1, our study selection process began with

1334 records. After removing 885 duplicates, we screened 450

records. The title and abstract screening led to the exclusion of

240 studies, leaving 210 for full-text review. Following a

comprehensive evaluation, 177 articles (7, 16–186) were deemed

suitable for this study. We categorized the modalities into four

groups: US (n = 34), CT (n = 95), MRI (n = 34), and multi-modal

(n=19). The characteristics of the included studies are detailed in

Tables 1–10.
3 Artificial intelligence techniques

AI techniques, including Machine Learning (ML) and Deep

Learning (DL), have been extensively investigated in application

and interest within the field of liver cancer research (187–190). ML

utilizes data to develop algorithms that can identify specific

behavioral patterns and build predictive models. The objective of

ML is to create a model that leverages statistical dependencies and

correlations within a dataset, eliminating the need for explicit

programming. This process is divided into two stages: training

and validation. During the training stage, the model is exposed to a

portion of the available data (training dataset). In the validation

stage, the model’s performance is evaluated on a separate subset of
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FIGURE 1

Flowchart of study selection.
TABLE 1 AI-based US approaches for HCC diagnosis.

Ref Year
AI

Model
US

Method
Task

Dataset AUC Accuracy Sensitivity Specificity

(17) 2010 FSVM B-mode US Classify benign and
malignant
liver lesions

200 images 0.984 0.97 1 0.955

(17) 2010 FSVM B-mode US Classify benign and
malignant
liver lesions

450 images 0.971 0.951 0.92 0.955

(18) 2011 Two-step
neural
network

B-mode US Classify FLLs 111 images
(88 patients)

~ 0.864 ~ ~

(18) 2011 Two-step
neural
network

B-mode US Detect FLLs 111 images
(88 patients)

~ 0.903 ~ ~

(7) 2014 NNE B-mode US Diagnosis of FLLs 108 patients ~ 0.95 ~ ~

(19) 2015 ANN B-mode US Diagnosis of FLLs 115 patients ~ >0.96 ~ ~

(20) 2017 ANN B-mode US Diagnosis of FLLs 110 images ~ 0.972 0.98 0.957

(21) 2018 SVM B-mode US Classify benign and
malignant
liver lesions

189 images
(94 patients)

~ 0.966 0.969 0.998

(22) 2019 Supervised
DL

B-mode US Detection and
characterization
of FLLs as benign
and malignant

Training set:
367 images

(367 patients),
Test set:

177 patients

Training: mean
ACU:0.935 for
detection,
mean ACU: 0.916
for
characterization,
Test: mean ACU:
0.891 for detection

~ ~ ~

(Continued)
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TABLE 1 Continued

Ref Year
AI

Model
US

Method
Task

Dataset AUC Accuracy Sensitivity Specificity

(23) 2020 CNN B-mode US Characterization of
FLLSs as benign or

malignant

Training:
16500 images

(1446
Patients),
Internal

validation:
4125 images
(369 patients),

External
validation:
3718 images

(328
patients)

Training: mean
ACU: 0.765~0.925
Internal validation:

mean ACU:
0.859~0.966

External validation:
mean

ACU: 0.750~0.924

~ ~ ~

(24) 2020 CNN B-mode US Differentiate HCC
and PAR

GE9 dataset 0.91 0.8484 0.8679 0.8295

(24) 2020 CNN B-mode US Differentiate HCC
and PAR

GE7 dataset 0.95 0.91 0.9437 0.8838

(25) 2021 LR,
k-NN,
MLP,

RF, SVM

B-mode US Characterization of
FLLSs as benign or

malignant

114 patients
Training: 91,

Test:23

Mean
AUC: 0.737~0.816

Mean
accuracy:

0.729~0.843

~ ~

(26) 2021 DL B-mode US Diagnosis of FLLs 4309 images
(3873 patients)

0.947 0.822 0.867 0.987

(27) 2021 CNN B-mode US Diagnosis of FLLs 40397 images
(3847 patients)

~ 0.949 0.736 0.978

(28) 2021 CNN B-mode US Classify benign and
malignant
liver lesions

911 images
(596 patients)

0.860 0.84 0.87 0.78

(29) 2021 CNN Endoscopic
US

Classify benign and
malignant
liver lesions

210685 images
(256 patients)

0.861 (image),
0.904 (video)

~ 0.9(image),
1 (video)

0.71(image),
0.80(video)

(30) 2021 SVM B-mode US Differentiate HCC
and ICC

226 patients,
Training: 149

Test: 38
External

validation: 39

Training:
0.840~0.975,

Test: 0.711~0.936,
External
validation:
0.730~0.874

Training:
0.7047~0.8926,

Test::
0.7105~0.8684,

External
validation:
0.6923
~0.8718

Training:
0.7742~0.9677,
Test: 0.7~0.9,
External
validation:
0.6667~0.8887

Training: 0.6864
~0.8729,

Test: 0.7143
~0.8571,
External
validation:

0.6667~0.8667

(31) 2021 SVM B-mode US Prediction of
pathological grading

of HCC

193 patients
Training: 128

Test: 32
External

validation: 33

Training:
0.788~0.977,

Test: 0.72~0.874,
External
validation:
0.77~0.849

Training:
0.7422~0.9219,

Test::
0.6875~0.8438,

External
validation:
0.6667
~0.8182

Training:
0.6471~0.902,

Test:
0.5714~0.8571,

External
validation: 0.75

Training: 0.8052
~0.9351,
Test: 0.72
~0.84,
External
validation:

0.619~0.8571

(32) 2022 CNN B-mode US Diagnosis of FLLs 70950 images ~ 0.934 0.675 0.96

(33) 2022 DL B-mode US Diagnosis of HCC 407 patients 0.936 0.864 0.96 0.769

(34) 2022 ResNet18 B-mode US Differentiate and
predict HCC

513 patients 0.855(training),
0.709 (validation)

~ ~ ~

(35) 2023 CNN Quantitative
US

Diagnosis of
hepatic steatosis

173 patients 0.97 ~ 0.90 0.91

(36) 2012 ANN CEUS Diagnosis of FLLs 112 patients ~ 0.9442 0.932 0.897

(37) 2014 DL CEUS Diagnosis of FLLs 22 patients ~ 0.8636 0.8333 0.8750

(Continued)
F
rontiers
 in Onco
logy
 04
 frontiersin.org

https://doi.org/10.3389/fonc.2024.1415859
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang et al. 10.3389/fonc.2024.1415859
the dataset (test dataset) to assess its ability to generalize its training

performance to unseen data. Well-known ML algorithms, such as

Support Vector Machines (SVM) and Artificial Neural Networks

(ANNs), have been applied in HCC management (191, 192).

DL technology, a subset of ML, has shown remarkable efficacy

in the analysis of liver images. This is largely due to its ability to

process large volumes of data through multiple layers of artificial

neurons. These neurons are engineered to emulate the intricate

structure of the human brain and its biological neural networks. A

unique characteristic of DL algorithms is that these layers of features
Frontiers in Oncology 05
are not manually constructed with human expertise. Rather, they

are autonomously learned from data using a general-purpose

learning procedure. This facilitates an end-to-end mapping from

the input to the output, essentially converting the image into

classification methods. In ML methods, success is contingent

upon accurate segmentation and the selection of expert-designed

features. DL approaches can surmount these limitations as they can

identify the regions of the image most associated with the outcome

through self-training. Moreover, they can discern the features of the

region that informed the decision through multiple layers.
TABLE 1 Continued

Ref Year
AI

Model
US

Method
Task

Dataset AUC Accuracy Sensitivity Specificity

(38) 2015 SVM CEUS Diagnosis of FLLs 52
video

sequences

~ 0.903 0.931 0.869

(39) 2017 SVM CEUS Classify benign and
malignant
liver lesions

98 patients 0.918 0.94 87.1

(40) 2018 DCCA
-MKL

CEUS Classify benign and
malignant
liver lesions

93 patients 0.953 0.9041 0.9356 0.8689

(41) 2018 ANN CEUS Differentiating
benign from
malignant
liver lesions

106 lesions 0.829~0.883 0.80~0.811

(42) 2019 3D CNN CEUS Classify aHCC
and FNH

4420 images ~ 0.931 0.945 0.936

(43) 2020 SVM CEUS Differentiation
between aHCC

and FNH

257 images 0.944 ~ 0.9476 0.9362

(44) 2021 DL CEUS Classify five types
of FLLs

273 video files
(91 patients)

~ 0.88 ~ ~

(45) 2021 CNN CEUS Classify benign and
malignant
liver lesions

363 patients 0.934 0.91 0.927 0.851

(46) 2021 SVM CEUS Preoperative
histological grading

235 HCC
lesions:

65 high grade
and 170 low

grade
lesions

0.665~0.785 ~ ~ ~

(47) 2022 ML CEUS Classify benign and
malignant
liver lesions

87 images
(72 patients)

0.840 0.84 0.76 0.92

(48) 2024 CNN-
LSTM

CEUS Classify benign and
malignant
liver lesions

440 patients 0.91 ~ 0.95 0.7

(48) 2024 3D-CNN CEUS Classify benign and
malignant
liver lesions

440 patients 0.88 ~ 0.96 0.55

(48) 2024 ML-TIC CEUS Classify benign and
malignant
liver lesions

440 patients 0.78 ~ 0.96 0.21
aHCC, a typical HCC; AUC, area under the curve; CNN, convolutional neural network; DCCA –MKL, deep canonical correlation analysis and multiple kernel learning; DL, deep learning; FNH,
focal nodular hyperplasia; HCC, hepatocellular carcinoma; iANN, improved artificial neural network; ML- TIC, machine learning based time-intensity curve; NNE, neural network ensemble;
PAR, cirrhotic parenchyma; SVM, support vector machine; US, ultrasound.
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TABLE 2 AI-driven CT models for segmentation of liver and liver tumors.

Ref Year AI Model Imaging
method

Task Dataset Results

(49) 2015 Model based Shape Constraints and
Deformable Graph Cut

CT Liver segmentation 3DIRCADb VOE=9.15

(49) 2015 Model based Shape Constraints and
Deformable Graph Cut

CT Liver segmentation Sliver07 VOE=62.4

(53) 2017 CNN + MRFs CT Liver segmentation Hospital dataset Dice= 0.83

(54) 2017 U-Net CT Liver segmentation 3DIRCADb Dice=0.923,
VOE=14.21

(55) 2018 Faster R-CNN CT Liver segmentation SLIVER07 VOE = 5.06,VD = 0.09

(55) 2018 Faster R-CNN CT Liver segmentation 3DIRCADb VOE = 0.0867, VD = 0.57

(56) 2018 V-net CT Liver segmentation 3DIRCADb Dice=0.874, VOE=21.85

(56) 2018 V-net CT Liver segmentation SLIVER07 Dice=0.872, VOE=21.15

(57) 2018 H Dense UNet CT Liver segmentation 3DIRCADb Dice=0.930, VOE=12.87

(57) 2018 H Dense UNet CT Liver segmentation SLIVER07 Dice=0.927, VOE=13.29

(58) 2018 U-net+ GAN CT Liver segmentation 3DIRCADb Dice= 0.94

(59) 2019 Channel-UNet CT Liver segmentation 3DIRCADb Dice= 0.984

(60) 2020 BS U-Net CT Liver segmentation LiTS Dice= 0.961

(61) 2020 RA U-Net CT Liver segmentation 3DIRCADb Dice= 0.830,
VOE = 4.5

(61) 2020 RA U-Net CT Liver segmentation LiTS Dice= 0.961,
VOE = 7.4

(62) 2020 Multi-Layer U-Net CT Liver segmentation 3DIRCADb Dice = 0.9645

(62) 2020 Multi-Layer U-Net CT Liver segmentation LiTS Dice = 0.9638

(63) 2020 3DResUNet CT Liver segmentation 3DIRCADb Dice = 0.958

(64) 2020 CNN CT Liver segmentation Hospital dataset Dice = 0.949

(65) 2020 BATA-Unet CT Liver segmentation MICCAI Dice=0.9788,
VOE=4.5,

RVD=0.04%,
ASD=0.05mm,
MSD=0.08mm

(65) 2020 BATA-Unet CT Liver segmentation 3DIRCAD Dice=0.9671, VOE=0.115,
RVD=0.08%,

ASD=0.14mm, MSD=0.16mm

(66) 2021 Multi Res U-Net CT Liver segmentation 3DIRCADb Dice= 0.88

(67) 2021 DenseXNet CT Liver segmentation 3DIRCADb Dice= 0.968

(67) 2021 DenseXNet CT Liver segmentation LiTS Dice= 0.9668

(68) 2021 T3scGAN CT Liver segmentation LiTS Dice= 0.961

(69) 2021 2.5D light-weight nnU-Net CT Liver segmentation LiTS Dice= 0.962

(70) 2021 2.5D U-Net CT Liver segmentation LiTS Dice= 0.928

(71) 2021 2.5D P U-Net CT Liver segmentation LiTS Dice= 0.962

(72) 2021 DFS U-Net CT Liver segmentation LiTS Dice= 0.949

(73) 2021 MSN-Net CT Liver segmentation LiTS Dice= 0.942

(74) 2021 U-Net CT Liver segmentation LiTS Dice=0.9693 for training,
Dice=0.9077 for validation,
Dice=0.9084 for testing

(75) 2022 Casecade DL CT Liver segmentation LiTS Dice= 0.9564, VOE=0.0828

(Continued)
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TABLE 2 Continued

Ref Year AI Model Imaging
method

Task Dataset Results

(76) 2022 PADLLS CT Liver segmentation SLIVER07 Dice= 0.957, VOE=0.0814

(76) 2022 PADLLS CT Liver segmentation 3DIRCADb Dice= 0.965,
VOE=0.0666

(77) 2022 DALU-Net CT Liver segmentation Custom Dice=0.899

(78) 2022 nnU-Net CT Liver segmentation LiTS-IRCAD global Dice=0.974,

(79) 2023 SLIC-DGN CT Liver segmentation LiTS17 Acc=0.991, Dice=0.911,
Mean IoU=0.908,

Sen= 0.994, Recall=0.994,
Prec=0.912

(80) 2023 DD-UDA multi-phase CT Liver segmentation LiTS & MPCT-FLLs IoU=0.823 (PV),
IoU=0.811 (ART),
IoU=0.800 (NC)

(81) 2023 RMAU-Net CT Liver segmentation LiTS Dice=0.9552

(81) 2023 RMAU-Net CT Liver segmentation 3D-IRCABb Dice=0.9697

(82) 2023 AIM-Unet CT Liver segmentation CHAOS Dice=0.9786, Jac=0.9610

(82) 2023 AIM-Unet PET/CT Liver segmentation Clinical data Dice=0.9738, Jac=0.9495

(83) 2023 MAD-UNet CT Liver segmentation LiTS17 Dice=0.9727

(83) 2023 MAD-UNet CT Liver segmentation Sliver07 Dice=0.9752

(83) 2023 MAD-UNet CT Liver segmentation 3DIRCADb Dice=0.9691

(84) 2023 Eres-UNet++ CT Liver segmentation LiTS Acc=0.958, IoU=0.921,
F1-Score=0.959, Recall=0.96

(85) 2023 Dual-path Network with Swin
Transformer Encoding

CT Liver segmentation LiTS Dice=0.962

(86) 2024 Spider-UNet CT Liver segmentation LiTS17&
2018 MICCAI

Dice= 0.459

(86) 2024 3D UNet CT Liver segmentation LiTS17&
2018 MICCAI

Dice= 0.54

(86) 2024 V-Net CT Liver segmentation LiTS17&
2018 MICCAI

Dice= 0.57

(86) 2024 FCN-RNN CT Liver segmentation LiTS17&
2018 MICCAI

Dice= 0.58

(86) 2024 LSTM-Unet CT Liver segmentation LiTS17&
2018 MICCAI

Dice=0.59

(86) 2024 3DRes-Unet CT Liver segmentation LiTS17&
2018 MICCAI

Dice= 0.62

(86) 2024 MP-UNet CT Liver segmentation LiTS17&
2018 MICCAI

Dice= 0.625

(86) 2024 3D VGN CT Liver segmentation LiTS17&
2018 MICCAI

Dice= 0.649

(86) 2024 UMCT CT Liver segmentation LiTS17&
2018 MICCAI

Dice= 0.65

(86) 2024 nnU-Net CT Liver segmentation LiTS17&
2018 MICCAI

Dice= 0.675

(86) 2024 3D-GCCN CT Liver segmentation LiTS17&
2018 MICCAI

Dice= 0.70

(86) 2024 Improved V-Net CT Liver segmentation LiTS17&
2018 MICCAI

Dice= 0.7253

(87) 2024 SADSNet CT Liver segmentation LITS Dice= 0.9703

(Continued)
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TABLE 2 Continued

Ref Year AI Model Imaging
method

Task Dataset Results

(87) 2024 SADSNet CT Liver segmentation 3DIRCADb Dice= 0.9611

(87) 2024 SADSNet CT Liver segmentation SLIVER Dice= 0.9740

(88) 2024 SD-Net CT Liver segmentation LiTS Dice>0.94

(89) 2024 LRENet CT Liver segmentation LiTS, 3Dircadb01 &
Clinical data

Acc=0.9769,
IoU=0.8608,
Dice=0.9252

(49) 2015 CNN phase
enhanced CT

Liver tumor segmentation 26 images Prec=0.867

(90) 2016 End-to-end 3D FCN with CRF CT Liver tumor segmentation SLIVER07 VOE =5.42, VD =1.75

(51) 2017 FCN CT Liver tumor segmentation 2 databases
Training: 3809 images

VOE =15.6~38.2, 8.1~19.1
for each dataset

(50) 2017 CNN CT Liver tumor detection
and segmentation

246 tumors
(97 new tumors)

True positive rate =0.72~0.86
for detection

(57) 2018 H Dense UNet CT Liver tumor segmentation 3DIRCADb & LiTS Dice =0.824

(91) 2018 FCN CT Liver tumor segmentation Clinical data True positive rate=0.964

(92) 2018 ResNet based SSD CT Liver tumor segmentation Clinical data Prec =0.533

(93) 2019 Nested U-Net CT Liver tumor segmentation LiTS Pixel accuracy =0.9997,
IoU =0.7917,

Rand Index=0.9106

(59) 2019 Channel-UNet CT Liver tumor segmentation 3DIRCADb Dice =0.940

(94) 2019 3D Residual U-Net CT Liver tumor segmentation 109 volumes Dice =0.69,
Sen= 0.682

(60) 2020 BS U-Net CT Liver tumor segmentation LiTS Dice =0.569

(61) 2020 RA U-Net CT Liver tumor segmentation 3DIRCADb Dice =0.977,
VOE =25.5

(61) 2020 RA U-Net CT Liver tumor segmentation LiTS Dice =0.595, VOE =38.9

(62) 2020 Multi-Layer U-Net CT Liver tumor segmentation 3DIRCADb Dice =0.7334

(62) 2020 Multi-Layer U-Net CT Liver tumor segmentation LiTS Dice =0.7369

(95) 2020 SegNet CT Liver tumor segmentation 3DIRCADb Dice =0.9522

(96) 2020 Modified SegNet CT Liver tumor segmentation 3DIRCADb True positive rate= 0.988

(67) 2021 DenseXNet CT Liver tumor segmentation 3DIRCADb Dice =0.764

(67) 2021 DenseXNet CT Liver tumor segmentation LiTS Dice =0.6911

(70) 2021 2.5D U-Net CT Liver tumor segmentation LiTS Dice =0.672

(71) 2021 2.5D P U-Net CT Liver tumor segmentation LiTS Dice =0.735

(68) 2021 CGBS-Net CT Liver tumor segmentation Hospital dataset Dice =0.9641

(45) 2022 TransNUNet CT Liver tumor segmentation LiTS Dice =0.9793 (training),
Dice=0.9196 (testing)

(45) 2022 TransUNet CT Liver tumor segmentation LiTS Dice=0.9456 (training),
Dice=0.8713 (testing)

(45) 2022 UNet CT Liver tumor segmentation LiTS Dice=0.8619 (training),
Dice=0.7185 (testing)

(45) 2022 UNet3+ CT Liver tumor segmentation LiTS Dice=0.9531 (training),
Dice=0.8261 (testing)

(97) 2023 MANet CT Liver tumor segmentation 3DIRCADb Dice=0.64, IoU =0.5227,
Acc =0.9947, Sen =0.624,
Spec =0.999,VOE =0.4773
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TABLE 2 Continued

Ref Year AI Model Imaging
method

Task Dataset Results

(97) 2023 MANet CT Liver tumor segmentation LiTS Dice=0.8145, IoU =0.7084,
Acc =0.9947, Sen =0.8723,
Spec =0.997, VOE =29.15

(79) 2023 SLIC-DGN CT Liver tumor segmentation LiTS17 Dice=0.9, IoU =0.892,
Acc =0.987, Sen =0.979,

Spec =0.887

(98) 2023 Three-path structure with MSFF, MFF,
EI, and EG

CT Liver tumor segmentation LiTS17 Dice=0.8555, IoU =0.9045,
Acc =0.9979, Sen =0.8682,

Spec =0.9993

(99) 2023 En–DeNet CT Liver tumor segmentation 3DIRCADb Dice=0.8481, Acc =0.8808,
Prec =0.8613

(99) 2023 En–DeNet CT Liver tumor segmentation LiTS Dice=0.8594, Acc =0.9217,
Prec =0.894

(84) 2023 Eres-UNet++ CT Liver tumor segmentation LiTS IoU =0.84, Acc =0.893,
F1 score =0.913

(85) 2023 Dual-path Network with Swin
Transformer Encoding

CT Liver tumor segmentation LiTS Dice=0.681

(100) 2023 Enhanced M-RCNN CT Liver tumor segmentation LiTS17 Dice=0.957, VOE =9.5

(100) 2023 Enhanced M-RCNN CT Liver tumor segmentation Sliver07 Dice=0.9731, VOE =5.37

(82) 2023 AIM-Unet CT Liver tumor segmentation LiTS Dice=0.756

(82) 2023 AIM-Unet CT Liver tumor segmentation 3DIRCADb Dice=0.655

(81) 2023 RMAU-Net CT Liver tumor segmentation LiTS Dice=0.7616

(81) 2023 RMAU-Net CT Liver tumor segmentation 3DIRCADb Dice=0.8307

(87) 2024 SADSNet CT Liver tumor segmentation LiTS Dice=0.8781

(87) 2024 SADSNet CT Liver tumor segmentation 3DIRCADb Dice=0.8750

(101) 2024 SEU2-Net CT Liver tumor segmentation PUFH Dice=0.9504, IoU =0.9055,
Acc =0.997

(101) 2024 SEU2-Net CT Liver tumor segmentation LiTS Dice=0.9093, IoU =0.8337,
Acc =0.9986

(89) 2024 LRENet CT Liver tumor segmentation LiTS, 3Dircadb01,
Clinical data

Dice=0.7312, IoU =0.5763,
Acc =0.7548

(102) 2024 DS-HPSNet CT Liver tumor segmentation 3Dircadb1 Dice=0.815, Sen =0.807,
Prec =0.83

(102) 2024 DS-HPSNet CT Liver tumor segmentation MSD Dice=0.749, Sen =0.726,
Prec =0.762

(64) 2020 CNN CECT Liver segmentation Clinical data Dice= 0.961

(103) 2022 CNN CECT Liver tumor segmentation 58 patients Dice=0.987,
Prec =0.967

(104) 2023 3D UNet CECT Liver segmentation 170 patients Best Dice=0.95

(105) 2023 U-net CECT Liver segmentation 259 patients Dice=0.96

(105) 2023 U-net CECT Liver tumor segmentation 259 patients Dice=0.86
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3DIRCADb, 3D Image Reconstruction for Comparison of Algorithm Database; 3DIRCADb01, 3D Image Rebuilding for Comparison of Algorithms Database; Acc, accuracy; AUC, area under
the curve; CECT, Contrast-enhanced CT; DD-UDA, dual discriminator-based unsupervised domain adaptation; DS-HPSNet: Dual-stream Hepatic Portal Vein segmentation Network; EG, edge-
guiding; EI, edge-inspiring; En–DeNet, Encoder–Decoder Network; FCN, fully convolutional network; CNN, convolutional neural networks; HFSNet, hierarchical fusion strategy of deep
learning networks; IoU, intersection over union; LiTS, liver tumor segmentation; LiTS17, liver tumor segmentation 2017; LRENet, location-related enhancement network; MAD-UNet, multi-
scale attention and deep supervision-based 3D UNet; MCC, Matthews’s correlation coefficient; MFF, multi-channel feature fusion; MRFs, Markov random fields; MSD, medical segmentation
decathlon hepatic vessel segmentation dataset; MSFF, multi-scale selective feature fusion; PADLLS, pipeline for automated deep learning liver segmentation; Prec, precision; RD DLIR-H, high-
strength deep learning image reconstruction; RD DLIR-M, medium-strength deep learning image reconstruction; RMAU-Net, residual multi-scale attention U-Net; VOE, Volume overlap error;
SD-Net, semi-supervised double-cooperative network; Sen, sensitivity; SLIC-DGN, SLIC-based deep graph network; Spec, specificity; VOE, volume overlap error.
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TABLE 3 AI-based CT models for diagnosing HCC.

Ref Year AI Model Tasks Imaging
method

Dataset Results

(110) 2018 CNN Characterization of liver lesions:
classification in five categories, and

malignant (HCC and non-HCC liver cancers)
vs indeterminate and benign

lesions (hemangiomas and cysts)

Three-
phase CT

Training: 460
patients

Testing: 100
patients

Acc =0.84, AUC =0.92
Classification:

Training: Median Acc=0.95~0.97,
Testing: Median Acc=0.48−0.84,

Sen=0.11~1,
Malignant vs the rest:

Testing: Median AUC=0.61~0.92

(111) 2018 Mics-CNN Detect FLLs Multi-
phase CT

89 patients F1 score =0.82

(91) 2018 FCN Detect liver metastases CT 20 patients Acc =0.946

(106) 2019 ML Distinguish HCC from non-HCC lesions in
cirrhotic patients

CT 13920 images
(178 patients)

AUC =0.81 for training set,
AUC=0.66 for external

validation set

(107) 2019 SVM,
k-NN,

Ensemble classifier

Characterization of FLLs as malignant or
benign

CT 179 patients:
98 benign and 81
malignant lesions

Acc=0.966~0.983,
Spec=0.9423~0.9703 for HCC

(111) 2019 CNN Characterization of FLLs (five
categories)

CT 89 patients Sen=0.79~1

(52) 2019 DNN Classify HEM, HCC and MET CT 225 images Acc =0.9939, Sen=1, Spec=0.9909

(108) 2020 ANN,
SVM,
CNN

Classification of nodular, diffuse and
massive HCC

CT 165 images: 46
diffuse tumors, 43
nodular tumors
And 76 massive

tumors

Average AUC=0.957~0.990,
Average Acc=0.926~0.984

(average values for
all three models)

(109) 2020 MP-CDN
(3 models)

Detect HCC from other FLLs Multi-
phase CT

342 patients with
449 lesions (194

HCC),
Training set: 359

lesions
Test set:
90 lesions

Acc=0.811~0.856,
AUC=0.862~0.925,
Sen=0.744~0.923,
Spec=0.725~0.941

(113) 2020 CNN,
SVM

Differentiation between HCC and ICC Multi-
phase CT

187 HCC and 70
ICC lesions

Acc =0.88, TPR=0.9518 for HCC,
TPR=0.6944 for ICC

(25) 2020 Radiomics
eXtreme Gradient

Boosting

Grading of HCC CT Training: 237
Patients,
Testing:

60 patients

Training:
AUC=0.6915~0.9964,Acc=0.

6118~0.9705,
Sen=0.6067~0.9551,
Spec=0.5135~0.8041,

Testing:
AUC=0.6128~0.8014,

Acc=0.483~0.7,
Sen=0.4348~0.6522,
Spec=0.3784~0.8108

(116) 2020 CNN Detect liver cancer in hepatitis patients CT NHIRD Acc =0.98, Sen =0.783, Spec
=0.990,

Prec =0.793, F1 score =0.788,
MCC =0.777, AUC =0.886

(116) 2020 SVM Detect liver cancer in hepatitis patients CT NHIRD Acc =0.961,Sen =0.343,Spec
=0.987,

Prec =0.533, F1 score =0.417,
MCC =0.409, AUC =0.665
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TABLE 3 Continued

Ref Year AI Model Tasks Imaging
method

Dataset Results

(116) 2020 RNN Detect liver cancer in hepatitis patients CT NHIRD Acc =0.945,Sen =0.357,Spec
=0.969,

Prec =0.329, F1 score =0.342,
MCC =0.314, AUC =0.945

(116) 2020 LSTM Detect liver cancer in hepatitis patients CT NHIRD Acc =0.936, Sen =0.349,
Spec =0.967, Prec =0.353,

F1 score =0.351, MCC =0.317,
AUC =0.936

(116) 2020 GRU Detect liver cancer in hepatitis patients CT NHIRD Acc =0.960, Sen =0.529,
Spec =0.978, Prec =0.500,

F1 score =0.514, MCC =0.493,
AUC =0.960

(112) 2021 multi-modality and
multi-scale CNN

Characterization of FLLs: malignant (HCC,
ICC and metastasis) versus

benign lesions (cyst, hemangioma, and FNH),
classification of FLLs (Six-class)

CT 616 FLLs Detection: Average Prec=0.828,
Classification:

Binary classification:
Acc=0.825, AUC=0.921,

Sen =0.766~0.884,
Spec=0.766~0.884,

Six-class classification:
Acc=0.734, AUC=0.766~0.983,

Sen
=0.466~0.931, Spec=0.919~0.986

(117) 2021 HCCNet Detect HCC CT 7512 patients,
Internal test: 385,
External test: 556

Internal testing:
Acc =0.81,
Sen =0.784,
Spec =0.844,

F1 score =0.824,
External testing:
Acc =0.813,
Sen =0.894,
Spec =0.74,

F1 score =0.819

(118) 2021 STIC Classify HCC and ICC CT 723 patients Acc =0.862, AUC =0.893

(118) 2021 STIC Detect malignant hepatic tumors CT 723 patients Acc =0.726

(119) 2021 MDL-CNN Detect HCC, hepatic cysts, MET, HEM CT 4212 images Dice =0.957

(119) 2021 MDL-CNN Classify HCC, hepatic cysts, MET, HEM CT 4212 images Dice =0.9878

(120) 2021 multi-scale CNN Detect hepatic cysts,
HEM, MET

CT 1290 images Acc =0.873

(112) 2021 multi-modality and
multi-scale CNN

Detect FLLs, including HCC, ICC, MET,
hepatic cysts, HEM, FNH

CT 616 images Prec =0.828,
F1 score =0.878

(112) 2021 multi-modality and
multi-scale CNN

Classify FLLs
(Binary)

CT 616 images Acc =0.825

(112) 2021 multi-modality and
multi-scale CNN

Classify FLLs
(Six-class)

CT 616 images Acc =0.734

(114) 2021 ML-EM Detection and
classification of malignant

liver lesions (HCC and secondary liver lesions)

CT 1638 images Detection:
Acc =0.9839~1, AUC=0.99−1.00

Classification:
Acc

=0.7638~0.8701, AUC=0.77~0.99

(121) 2021 Mask R-CNN Detect primary hepatic malignancies in
HCC patients

CT 1350 images
(1320 patients)

Sen =0.848

(122) 2021 CNN Diferentiating ICC from HCC Three-
phase CT

617 patients Acc =0.61, Sen =0.75,
Spec =0.88, AUC =0.87
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TABLE 3 Continued

Ref Year AI Model Tasks Imaging
method

Dataset Results

(122) 2021 CNN Diferentiating pHCC
from mHCC

Three-
phase CT

617 patients Acc =0.61, Sen =0.62,
Spec =0.68, AUC =0.68

(123) 2022 SVM Classify HCC, MET, HHs CT 452 patients Acc =0.88

(124) 2022 Googlenet Detect and classify FLLs CT 3D-IRCADb01 Acc =0.93,
F1 score =0.9255, Dice =0.64

(124) 2022 Unet Detect and classify FLLs CT 3D-IRCADb01 Acc =0.9865,
F1 score =0.9875, Dice =0.83

(124) 2022 Dense 3D Detect and classify FLLs CT 3D-IRCADb01 Acc =0.89, Dice =0.94

(124) 2022 Dense-Net Detect and classify FLLs CT 3D-IRCADb01 Acc =0.92, F1 score =0.93

(124) 2022 SegNet VGG-16 Detect and classify FLLs CT 3D-IRCADb01 Acc =0.86

(124) 2022 GMM Detect and classify FLLs CT 3D-IRCADb01 Acc =0.9538

(124) 2022 SVM +RF Detect and classify FLLs CT 3D-IRCADb01 Acc =0.91

(125) 2023 RD DLIR-M Detect FLLs CT 296 patients Acc =0.8741, Sen =0.749,
Spec =0.579

(125) 2023 RD DLIR-H Detect FLLs CT 296 patients Acc =0.7926, Sen =0.625,
Spec =0.417

(126) 2023 ML Detect hepatic CT LI-RADS2018 Acc =0.701, Sen =0.67,Spec =0.91

(127) 2023 DL-CB Detect FLLs CT 68 patients Acc =0.733

(127) 2023 DL-CB Detect HCC CT 68 patients Acc =0.704

(115) 2023 Modified Unet-60 Detect and classify FLLs CT 3Dircadb Acc =0.9861, Sen =0.9722, Spec =1,
Dice =0.9859

(115) 2023 AdaBoost M1 Detect and classify FLLs CT 3Dircadb Acc =0.9072, Sen =0.9247,
Spec =0.8797

(115) 2023 SVM Detect and classify FLLs CT 3Dircadb Acc =0.9517, Sen =0.9576,
Spec =0.9422

(115) 2023 KNN Detect and classify FLLs CT 3Dircadb Acc =0.9387, Sen =0.9531,
Spec =0.9256

(115) 2023 Naïve Bayes Detect and classify FLLs CT 3Dircadb Acc =0.9194, Sen =0.9365,
Spec =0.8991

(115) 2023 Random forest Detect and classify FLLs CT 3Dircadb Acc =0.9486, Sen =0.9538,
Spec =0.9388

(115) 2023 DNN Detect and classify FLLs CT 3Dircadb Acc =0.9838, Sen =0.9909, Spec =1

(115) 2023 ANN Detect and classify FLLs CT 3Dircadb Acc =0.8889, Sen =0.8288,
Spec =0.9523

(115) 2023 MLP Detect and classify FLLs CT 3Dircadb Acc =0.8915, Sen =0.8801,Spec
=0.9038,

Dice =0.8905

(115) 2023 CNN Detect and classify FLLs CT 3Dircadb Acc =0.88

(115) 2023 CNN Detect and classify FLLs CT 3Dircadb Acc =0.96

(115) 2023 CNN Detect and classify FLLs CT 3Dircadb Acc =0.8958

(115) 2023 CNN Detect and classify FLLs CT 3Dircadb Acc =0.869

(115) 2023 KNN, SVM, RF Detect and classify FLLs CT 3Dircadb Acc =0.966

(128) 2024 HFS-Net Detect HCC CT 595 patients Sen =0.843, Prec =0.755,
F1 score =0.796, Dice =0.828
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Convolutional Neural Networks (CNNs) are presently the most

prevalent DL algorithms employed for the diagnosis and

management of HCC (193–195). The uniqueness of CNNs

compared to Fully Connected Networks lies in their ability to

capture spatial hierarchies through convolutional and pooling

layers, their parameter efficiency due to shared weights, and their

effectiveness in processing structured data like images and videos.

The fundamental principles of CNNs include local connections,

shared weights, pooling, and the use of numerous layers. These

components collectively enhance the accuracy and efficiency of the

entire system. A standard CNN model is composed of an input

layer, an output layer, and several hidden layers. These hidden

layers encompass convolutional layers, pooling layers, and fully-

connected layers. By repeatedly applying convolution and pooling,

fully-connected layers are subsequently utilized for classification or

predictions. There exists a variety of layer combinations, and

numerous Deep Neural Network (DNN) architectures have been

successfully implemented for HCC diagnosis and prediction. These

include Fully Convolutional Networks (FCNs) (196), 3D U-Net

(197), Recurrent Neural Networks (RNNs) (198), Graph

Convolutional Networks (GCNs) (199, 200), Generative

Adversarial Networks (GANs) (16, 201), AlexNet (202), and

VGGNet-19 (203). These models are specifically engineered to

eliminate fully connected layers and restore spatial dimensions,

thereby augmenting DL capabilities even when there is a scarcity of

labeled data. However, it is imperative to address domain

adaptation and dataset bias to ensure the success of transfer

learning (TL). This is because these factors can significantly

influence the performance and generalizability of the models.

In contrast to CNNs, Fully Convolutional Networks (FCNs) are

engineered to preserve spatial information, thereby enhancing their

effectiveness for pixel-level predictions. This attribute renders FCNs

particularly apt for liver tumor segmentation, as they employ

convolutional layers in lieu of fully connected ones (196).

U-Net, conversely, utilizes an encoder-decoder model equipped

with skip connections. This architecture enables it to amalgamate

local and global context information, thereby augmenting object
Frontiers in Oncology 13
localization precision. Despite the limitations posed by scarce

training data, 3D U-Net has exhibited remarkable results in the

classification of liver lesions (197).

RNNs, encompassing Long Short-Term Memory (LSTM) and

Gated Recurrence Unit (GRU), are specifically tailored to scrutinize

sequential data by capturing temporal dependencies. These models

have been successfully deployed for predicting HCC recurrence post

liver transplantation (198). By addressing the vanishing gradients

issue and capitalizing on temporal dependencies, they have

substantially enhanced prediction accuracy.

Graph Convolutional Networks (GCNs) offer a variety of

techniques for graph convolution, which are instrumental in

clinically predicting Microvascular Invasion (MVI) in

Hepatocellular Carcinoma (HCC) (199). These techniques include

spectral-based and spatial-based GCN approaches, each carrying

unique computational implications. DenseGCN, a contemporary

architecture, has been introduced for the identification of liver

cancer. It integrates advanced techniques such as similarity

network fusion and denoising autoencoders, significantly boosting

detection accuracy (200).

Generative Adversarial Networks (GANs) have demonstrated

their value in generating synthetic images and augmenting data

across a range of medical applications. In the realm of liver tumor

detection, Tripartite GAN offers a cost-effective and non-invasive

alternative by generating contrast-enhanced MRI images,

eliminating the need for contrast agent injection (201). Another

promising application is the Mask-Attention GAN, which generates

realistic tumor images in CT scans for training and evaluation

purposes (16).

Transfer Learning (TL) strategies have been employed in the

field of medical imaging to mitigate overfitting issues arising from

limited data. Within the TL framework, knowledge can be shared

and transferred between different tasks. The workflow comprises

two steps: pretraining on a large dataset and fine-tuning on the

target dataset. Essentially, by fine-tuning the DL architecture, the

knowledge gleaned from one dataset can be transferred to a dataset

procured from another center.
TABLE 3 Continued

Ref Year AI Model Tasks Imaging
method

Dataset Results

(129) 2004 SVM Detect hypodense hepatic lesions CECT 56 images
(51 patients)

Sen =0.90

(129) 2004 SVM Classify hypodense hepatic lesions CECT 56 images
(51 patients)

Sen =0.95

(130) 2019 CNN Classify FNH and HCA CECT 98 patients AUC =0.824
3DIRCADb, 3D image reconstruction for comparison of algorithm database; Acc, accuracy; ANN, artificial neural network; AUC,area under the curve; CNN, convolutional neural networks;
DCNN, deep convolutional neural networks; DL-CB, deep-learning-based contrast-boosting; DNN, deep neural network; FCN, fully convolutional network; FNH, focal nodular hyperplasia;
GRU, gated recurrent unit; HCA, hepatocellular adenoma; HCC, hepatocellular carcinoma; HEM, hemangioma; HFS-Net, hierarchical fusion strategy of deep learning networks; ICC,
intrahepatic cholangiocarcinoma; KNN, K-nearest neighbors KNN; LI-RADS2018, liver imaging reporting and data system version 2018; LSTM, long short-term memory; MCC, Matthews’s
correlation coefficient; MDL-CNN, multi-channel deep learning CNN; MET, metastatic carcinoma; ML, machine learning; ML-EM, multi-level ensemble model; NHIRD, national health
insurance research database; Prec,precision; RD DLIR-H, high-strength deep learning image reconstruction; RD DLIR-M, medium-strength deep learning image reconstruction; RNN, recurrent
neural network; Sen, sensitivity; Spec, specificity; SVM, support vector machine.
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TABLE 4 AI-based CT models for HCC prognostication.

Ref Year AI Model Tasks Imaging
modality

Dataset Internal valida-
tion Results

External val-
idation
Results

(133) 2021 Multi-task DL Predict future MVI in HCC CT 366 patients,
Training:281,
Testing: 85

AUC=0.836 ~

(134) 2021 TwinLiverNet Predict TACE in HCC patients CT 97 images
(92 patients)

Acc=0.825,
Sen=0.817,
Spec=0.833

~

(134) 2021 LiverNet Predict TACE in HCC patients CT 97 images
(92 patients)

Acc=0.741,
Sen=0.717,
Spec=0.767

~

(134) 2021 Baseline Net
(no augm)

Predict TACE in HCC patients CT 97 images
(92 patients)

Acc=0.433,
Sen=0.40,
Spec=0.467

~

(134) 2021 Baseline Net
(data augm)

Predict TACE in HCC patients CT 97 images
(92 patients)

Acc=0.567,
Sen=0.533,
Spec=0.60

~

(131) 2021 cML+DL Predict TACE in HCC patients CT 310 patients AUC=0.994 ~

(72) 2021 ResNet-18
(AP)

Predict MVI in HCC patients CT 309 patients,
Training:216,
Validation: 93,

External testing: 164

Acc=0.68,
Sen=0.96,
Spec=0.56,
AUC=0.82

Acc=0.66,
Sen=0.8,
Spec=0.62,
AUC=0.75

(72) 2021 ResNet-18
(AP +CF)

Predict MVI in HCC patients CT 309 patients,
Training:216,
Validation: 93,

External testing: 164

Acc=0.72,
Sen=0.96,
Spec=0.62,
AUC=0.85

Acc=0.71,
Sen=0.82,
Spec=0.67,
AUC=0.78

(72) 2021 SVM (CF) Predict MVI in HCC patients CT 309 patients,
Training:216,
Validation: 93,

External testing: 164

Acc=0.77,
Sen=0.71,
Spec=0.8,
AUC=0.78

Acc=0.7,
Sen=0.77,
Spec=0.67,
AUC=0.76

(72) 2021 SVM (AP + CF) Predict MVI in HCC patients CT 309 patients,
Training:216,
Validation: 93,

External testing: 164

Acc=0.6,
Sen=0.93,
Spec=0.46,
AUC=0.7

Acc=0.57,
Sen=0.9,
Spec=0.47,
AUC=0.68

(81) 2021 3D-CNN Predict MVI in HCC patients CT 405 patients,
Training:324,
Validation:81

Acc=0.852,
Sen=0.932,
Spec=0.757,
AUC=0.906,

F1 score=0.872

~

(135) 2019 ML Predict HCC
recurrence postresection

CECT 470 patients,
Training:210,

Internal testing: 107;
External testing: 153

Pre: AUC=0.84,
Post: AUC=0.859

Pre: AUC=0.803,
Post: AUC=0.813

(136) 2020 ML Predict pathological grade
of HCC

CECT 297 patients,
training:237,

test:60

Acc=0.5333, Sen=0.6522,
Spec=0.4595,
AUC=0.6698

~

(137) 2021 CDLM Predict MVI in HCC patients CECT 306
patients, validation:115

Acc=0.73,
Sen=0.574,
Spec=0.869,
AUC=0.736

~

(132) 2022 DL based clinical-
radiological model

Predict MVI in HCC patients CECT 283 patients,
Training:198,
Testing: 85

Acc=0.9647,
Sen=0.9091, Spec=0.9730,

Prec=0.894,
F1 score=0.870,
AUC=0.909

~
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TABLE 4 Continued

Ref Year AI Model Tasks Imaging
modality

Dataset Internal valida-
tion Results

External val-
idation
Results

(132) 2022 Xception Predict MVI in HCC patients CECT 283 patients,
Training:198,
Testing: 85

Acc=0.7059,
Sen=0.6364, Spec=0.7162,

Prec=0.432,
F1 score=0.359,
AUC=0.759

~

(132) 2022 VGG16 Predict MVI in HCC patients CECT 283 patients,
Training:198,
Testing: 85

Acc=0.7294,
Sen=0.5455, Spec=0.7568,

Prec=0.524,
F1

score=0.343, AUC=0.639

~

(132) 2022 VGG19 Predict MVI in HCC patients CECT 283 patients,
Training:198,
Testing: 85

Acc=0.6824,
Sen=0.5455, Spec=0.7027,

Prec=0.460,
F1

score=0.308, AUC=0.705

~

(132) 2022 ResNet50 Predict MVI in HCC patients CECT 283 patients,
Training:198,
Testing: 85

Acc=0.8118,
Sen=0.7273, Spec=0.8243,

Prec=0.565,
F1 score=0.5, AUC=0.880

~

(132) 2022 InceptionV3 Predict MVI in HCC patients CECT 283 patients,
Training:198,
Testing: 85

Acc=0.7529,
Sen=0.8182, Spec=0.7432,

Prec=0.289,
F1

score=0.462, AUC=0.724

~

(132) 2022 InceptionResNetV2 Predict MVI in HCC patients CECT 283 patients,
Training:198,
Testing:85

Acc=0.7294,
Sen=0.5455, Spec=0.7568,

Prec=0.339,
F1

score=0.343, AUC=0.717

~

(138) 2023 DL-based multi-
input CNN

Predict recurrence risk for
recurrence-free survival in

HCC patients

Muti-
phase CT

218 patients,
Training:152, Internal

validation:66,
External validation:74

C-index=0.627 C-index=0.630
F
rontiers
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AP, arterial phase; CF, clinical factors; C-index, concordance index; cML, conventional machine learning; Multi-modal DNN, multi-modal deep neural network; MVI, microvascular invasion;
nnU-Net, 3D neural network; OS, overall survival; TACE, trans-arterial chemoembolization.
TABLE 5 AI-based MRI models for liver and liver tumors segmentation.

Ref Year AI Model Task Imaging method Dataset (train-
ing/test)

Results

(141) 2012 Iterative watershed
algorithm and ANN

Liver segmentation MRI 115 images Average Acc=0.94

(142) 2016 3D fast
marching algorithm and

neural network

Liver tumor segmentation T1-weighted MRI Medic Medical Center
(10 patients), TCIA

(6 patients)

mean volumetric
overlap error=0.2743,

mean percentage volume
error=0.1573,

Average surface distance (mm)
=0.58,

RMS surface distance (mm)
=1.20,

Maximal surface distance
(mm)=6.29

(143) 2018 FCNN Liver axial segmentation Late-Phase MRI Total: 90 patients,
Training: 57,
Validation: 5,
Testing: 20

Dice=0.946 ± 0.018,
RVE(%)=4.20 ± 3.34
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TABLE 5 Continued

Ref Year AI Model Task Imaging method Dataset (train-
ing/test)

Results

(143) 2018 FCNN Liver
OrthoMean segmentation

Late-Phase MRI Total: 90 patients,
Training: 57,
Validation:5,
Testing: 20

Dice= 0.951 ± 0.018,
RVE(%)=4.20 ± 3.65

(143) 2018 FCNN Tumor axial segmentation Late-Phase MRI Total: 90 patients,
Training set: 57,
Validation set: 5,

Testing: 20

Dice=0.627 ± 0.241,
RVE(%)=48.9 ± 53.3

(143) 2018 FCNN Tumor
OrthoMean segmentation

Late-Phase MRI Total: 90 patients,
Training: 57,
Validation: 5,
Testing: 20

Dice=0.647 ± 0.210,
RVE(%)=35.9 ± 28.2

(144) 2019 2D U-net CNN Liver segmentation T1-weighted MRI 498 patients Dice=0.95 ± 0.03

(144) 2019 2D U-net CNN Liver segmentation T2-weighted MRI 498 patients Dice=0.92 ± 0.05

(145) 2020 Radiomics-guided
DUN-GAN

Liver lesion segmentation multi-phase non-contrast MRI 250 patients Dice=0.9347

(146) 2020 4D
k-means

clustering estimation

Liver segmentation multi-phase MRI Total: 25 datasets,
Training: 10,
Validation:15

HH=1.76mm,
Dice=0.95,

Volume Error =3.18%

(147) 2020 Wide U-Net CNN Liver Segmentation T2-weighted MRI Total: 31 patients average Dice =0.86
(Liver Vasculature)

(140) 2021 EIS-Net Liver segmentation T1-weighted MRI 219 patients,
Training:127
Validation: 28
Testing: 44

for tumors <3cm
DSC: p = 0.090,
MHD: p = 0.385,
MAD: p = 0.142

(140) 2021 AS-Net Liver segmentation T1-weighted MRI 219 patients,
Training:127
Validation: 28
Testing: 44

for tumors >3cm
DSC: p = 0.002,
MHD: p = 0.003,
MAD: p = 0.018

(148) 2021 DCNN+TR+RF Liver segmentation T1-weighted MRI LI-RADS Validation:
Dice=0.91, VOE=17,

RVD=-0.04, ASSD (mm)=2.47,
MSSD (mm)=25.91,
External validation:

Dice=0.91, VOE=16, RVD=-
0.01, ASSD (mm)=2.67, MSSD

(mm)=26.96

(149) 2021 U-net Segmentation T2-weighted MRI Total: 713 patients,
Training: 505,
Validation:104,
Testing:104

Validation:
Dice=0.984,

Test:
Dice=0.983

(150) 2021 United
adversarial learning

Liver tumor segmentation
and

detection

multi-modality NCMRI (T1FS
pre-contrast MRI, T2FS MRI,

and DWI)

255 subjects Dice=0.8363, p-Acc=0.9775,
IoU=0.813, TPR=0.9213,
TNR=0.9375, Acc=0.9294

(150) 2021 Mask R-CNN Liver tumor segmentation
and

detection

multi-modality NCMRI (T1FS
pre-contrast MRI, T2FS MRI,

and DWI)

255 subjects Dice=0.7517, p-Acc=0.9621,
IoU=0.6830, TPR=0.80,
TNR=0.832, Acc=0.8157

(150) 2021 FT-MTL-Net Liver tumor segmentation
and

detection

multi-modality NCMRI (T1FS
pre-contrast MRI, T2FS MRI,

and DWI)

255 subjects Dice=0.7758, p-Acc=0.9648,
IoU=0.7064, TPR=0.814,
TNR=0.8413, Acc=0.8275

(150) 2021 Tripartite-GAN Liver tumor segmentation
and

detection

multi-modality NCMRI (T1FS
pre-contrast MRI, T2FS MRI,

and DWI)

255 subjects IoU=0.7342, TPR=0.8682,
TNR=0.8968, Acc=0.8824
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TABLE 5 Continued

Ref Year AI Model Task Imaging method Dataset (train-
ing/test)

Results

(150) 2021 Faster R-CNN Liver tumor segmentation
and

detection

multi-modality NCMRI (T1FS
pre-contrast MRI, T2FS MRI,

and DWI)

255 subjects IoU=0.6643, TPR=0.7863,
TNR=0.8226, Acc=0.8039

(150) 2021 U-net Liver tumor segmentation
and

detection

multi-modality NCMRI (T1FS
pre-contrast MRI, T2FS MRI,

and DWI)

255 subjects Dice=0.7888, p-Acc=0.9657,
IoU=0.5833

(150) 2021 Rg-GAN Liver tumor segmentation
and

detection

multi-modality NCMRI (T1FS
pre-contrast MRI, T2FS MRI,

and DWI)

255 subjects Dice=0.8065, p-Acc=0.9672,
IoU=0.6017

(151) 2022 4D DL based on 3D
CNN and LSTM

HCC lesion segmentation T1-weighted MRI Total: 190 patients,
Training: 110,
Validation: 40,

Internal testing:40

Internal test:
Dice=0.825, HD=12.84,

VS=0.891,
External test:
Dice=0.786,

HD=21.14, VS=0.89

(151) 2022 3D U-net HCC lesion segmentation T1-weighted MRI Total: 190 patients,
Training: 110,
Validation: 40,

Internal testing:40

Internal test: Dice=0.669,
HD=22.39, VS=0.751,

External test: Dice=0.604,
HD=44.47, VS=0.786

(151) 2022 nnU-net HCC lesion segmentation T1-weighted MRI Total: 190 patients,
Training: 110,
Validation: 40,

Internal testing:40

Internal test: Dice=0.833,
HD=10.75, VS=0.88,

External test: Dice=0.783,
HD=38.61, VS=0.854

(151) 2022 RA-Unet HCC lesion segmentation T1-weighted MRI Total: 190 patients,
Training: 110,
Validation: 40,

Internal testing:40

Internal test: Dice=0.797,
HD=23.88, VS=0.87,

External test: Dice=0.749,
HD=55.60, VS=0.854

(152) 2022 3D CNN Liver
segment segmentation

MRI Total: 782 patients,
Training:367,
Validation:157,
Testing: 158,

Clinical evaluation
set: 100

Average Dice=0.902,
Average MSD (mm)=3.34,
Average HD (mm) =3.61,

Average RV= 1.01

(153) 2022 nnU-Net Lliver parenchyma, portal
veins, and hepatic
veins segmentation

T1-weighted MRI 30 patients liver parenchyma: Mean
Dice=0.936,

portal veins: Median
Dice=0.659,
hepatic veins:

Median Dice=0.548

(139) 2023 Cascaded Network Liver segmentation T1-Weighted MRI CHAOS Dice=0.9515,
IoU=0.921,
Acc=0.997

(139) 2023 Deep action learning
with 3D UNet

Liver segmentation T1-Weighted MRI CHAOS Dice=0.806

(139) 2023 Contrastive Semi
Supervised Learning
Approach with UNet

Liver segmentation T1-Weighted MRI CHAOS Dice=0.859

(139) 2023 W-Net with
attention gates

Liver segmentation T1-Weighted MRI CHAOS Dice=0.8812

(139) 2023 Source Free
Unsupervised UNet

Liver segmentation T1-Weighted MRI CHAOS Dice=0.8840

(139) 2023 Bidirectional Searching
Neural Net

Liver segmentation T1-Weighted MRI CHAOS Dice=0.898

(139) 2023 Mask R-CNN Liver segmentation T1-Weighted MRI CHAOS Dice=0.8

(Continued)
F
rontiers
 in Onco
logy
 17
 frontiersin.org

https://doi.org/10.3389/fonc.2024.1415859
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang et al. 10.3389/fonc.2024.1415859
4 AI-based US techniques

US is recommended in clinical guidelines for the detection of

HCC in patients with cirrhosis. However, its efficacy can be

influenced by several factors, including operator experience,

equipment quality, and patient morphology. Previous studies

have indicated that the sensitivity of HCC detection using

conventional US ranges from 59% to 78% (204). To enhance

sensitivity and specificity, various US modalities have been

explored. For instance, Contrast-Enhanced Ultrasound (CEUS)

has been demonstrated to improve the sensitivity of HCC

detection. These models serve as invaluable tools for predicting

HCC recurrence, guiding treatment decisions, and improving

patient outcomes. This study investigates the most recently

developed AI-based approaches for evaluating detection,
Frontiers in Oncology 18
prognostication, treatment response, and survival in HCC.

Table 1 provides a summary of the results from studies evaluating

AI-based US approaches for HCC diagnosis.
4.1 Diagnosis of focal liver lesions

This section outlines the recently developed AI-based US

models for diagnosing HCC. These applications encompass

diagnosing focal liver lesions (FLLs), distinguishing between

benign and malignant liver lesions, differentiating HCC from

focal nodular hyperplasia (FNH), cirrhotic parenchyma (PAR),

and intrahepatic cholangiocarcinoma (ICC) (see Table 1). Among

these studies, Bharti et al. (21) proposed a Support Vector Machine

(SVM) model that integrates three classifiers using B-mode US data
TABLE 5 Continued

Ref Year AI Model Task Imaging method Dataset (train-
ing/test)

Results

(139) 2023 Geomatric Edge
Enhancement based

Mask R-CNN

Liver segmentation T1-Weighted MRI CHAOS Dice=0.91

(154) 2023 UNet + + Liver segmentation MRI Total: 105 patients
Training set: 83,
Validation set: 11,
Internal testing:11

Validation: average Dice=0.91,
Internal testing:
average Dice=0.92

(154) 2023 UNet + + Liver tumor segmentation MRI Total: 105 patients
Training: 83,
Validation: 11,

Internal testing:11

Validation: average
Dice=0.612,

Internal testing:
average Dice=0.687

(155) 2023 nnU-Net Liver and liver
vessles segmentation

T1-weighted MRI Total: 170 patients
Training set: 136,
Validation set:34

Dice=0.77,
ASSD=3.235,
HD95 = 11.276

(156) 2024 3D residual U-Net Liver segmentation MRCP 250 (225/25) Dice=0.8

(140) 2024 DCNN Liver segmentation T1-weighted MRI 470 patients,
Training set: 329,
Validation set: 70,
Internal testing: 71

External validation set:
LiverHccSeg dataset

Training: mean Dice=0.968,
mean MHD=1.876,
mean MAD=0.538

Validation: mean Dice=0.966,
mean MHD=1.949,
mean MAD=0.541

Internal testing: mean
Dice=0.967,

mean MHD=1.852,
mean MAD=0.545

External testing: mean
Dice=0.962,

mean MHD=2.711,
mean MAD=0.705
Public testing: mean

Dice=0.928,
mean MHD=6.893,
mean MAD=1.625

(157) 2024 Isensee 2017 network Liver segmentation T1-weighted MRI, T2-
weighted MRI

128 patients average Dice =0.88

(157) 2024 Isensee 2017 network Liver tumor segmentation T1-weighted MRI, T2-
weighted MRI

128 patients average Dice =0.53
ANN, artificial neural network; AS-Net, all-stage-net; ASSD, average symmetric surface distance; CHAOS, combined healthy abdominal organ segmentation grant challenge; EIS-Net, early-
intermediate-stage-net; HD95, Hausdorff Distance 95; MBH T2WI, conventional multi-breath-hold (MBH) T2WI; MICCAI, medical image computing and computer assisted intervention;
NCMRI, multi-modality non-contrast magnetic resonance imaging; Radiomics-guided DUN-GAN, radiomics-guided densely-UNet-nested generative adversarial networks; SBH-T2WI, single-
breath-hold T2-weighted MRI; TCIA, the cancer imaging archive.
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TABLE 6 AI-based MRI models for diagnosing HCC.

Ref Year
AI
Model

Tasks
Imaging
method

Dataset
Internal
Testing
Results

External
Testing
Results

(160) 2019 3D CNN
Discriminating primary and metastatic
liver tumors

diffusion
weighted MRI
(DW-MRI)

Training: 74,
Validation: 33,
Testing: 23

Acc=0.83,
Average
Prec=0.75,
AUC=0.80,
Spec=0.67,
Sen=0.93,
Prec=0.83,
Fe-score=0.83

~

(159) 2019 CNN Classify liver lesions (six types)
multi-
phasic MRI

Training:434,
Testing:60

Acc=0.897,
Prec=0.722,
Recall=0.826

~

(158) 2019
CNN-
based DLS

Classify FLLs include HCC
multi-
phasic MRI

Training:434,
Testing:60

Overall Acc=0.90,
Overall Sen=0.94,
Overall Spec=0.97

~

(158) 2019
CNN-
based DLS

Classify common hepatic lesions
T1-
weighted MRI

Training:434,
Testing:60

Acc=0.943
Acc=0.92,
Sen=0.92,
Spec=0.98

(165) 2019

Extremely
randomized
trees
classifier

Classify FLLs (five types)
T2-
weighted MRI

95 patients Overall Acc=0.77 ~

(16) 2020
AlexNet+
transfer
learning

distinguish LI-RADS grade 3 liver tumors
from combined higher-grades 4 and 5 tumors
for HCC diagnosis

multiphase
MRI

LI-RADS dataset, Training
(60%), Validation (20%),
Testing (20%)

Acc=0.90,
Sen=1.0,
Prec=0.835,
AUC=0.95

~

(161) 2020 CNN Classify HCC MRI

Total: 1210 patients
(31608 images),
External validation:
201 patients (6816 images)

AUC=0.951,
Sen=0.919,
Spec=0.941

~

(161) 2020
CNN+
clinical data

Classify HCC MRI

Total: 1210 patients
(31608 images),
External validation: 201
patients
(6816 images)

AUC=0.951,
Sen=0.957,
Spec=0.904

~

(161) 2020
CNN+
clinical data

Classify metastatic malignancy MRI

Total: 1210 patients
(31608 images),
External validation: 201
patients
(6816 images)

AUC=0.985,
Sen=0.946,
Spec=1

~

(161) 2020
CNN+
clinical data

Classify primary malignancy except HCC MRI

Total: 1210 patients
(31608 images),
External validation: 201
patients
(6816 images)

AUC=0.905,
Sen=0.733,
Spec=0.964

~

(148) 2021 DCNN Detect HCC
T1-
weighted MRI

LI-RADS

Sen_20 = 0.73,
Sen_50 = 0.55,
AFPR=2.81,
Dice=0.4

~

(148) 2021 DCNN+TR Detect HCC
T1-
weighted MRI

LI-RADS

Sen_20 = 0.73,
Sen_50 = 0.55,
AFPR=0.77,
Dice=0.49

~

(148) 2021 DCNN+RF Detect HCC
T1-
weighted MRI

LI-RADS

Sen_20 = 0.73,
Sen_50 = 0.55,
AFPR=0.85,
Dice=0.47

~
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to assess and differentiate various stages of liver disease, achieving a

classification accuracy of 96.6%.

In 2020, Brehar et al. (24) demonstrated that a CNN model,

trained on two distinct US machine datasets (GE9 and GE7),

surpassed conventional ML models (SVM, Random Forest (RF),

Multi-Layer Perceptron, and AdaBoost) in differentiating between

HCC and PAR. The proposed model achieved Area Under the

Curve (AUC) values of 0.91 and 0.95 and accuracies of 84.84% and

91% in the GE9 and GE7 datasets, respectively. In 2023, Jeon et al.

(35) proposed a CNN model using quantitative US data from 173

patients for diagnosing hepatic steatosis, achieving an AUC of 0.97,

a sensitivity of 90%, and a specificity of 91%.

CEUS generally outperforms B-mode US in diagnosing FLLs

and HCC, and AI has augmented its capabilities in identifying
Frontiers in Oncology 20
potential malignancies. Several research groups have studied the

differentiation of benign and malignant FLLs (refer to Table 1). In

2020, Huang et al. (43) investigated the use of an SVM model for

evaluating diagnostic accuracy when differentiating between

atypical HCCs (aHCC) and FNH using CEUS data. The proposed

SVM model achieved an AUC of 0.944, a sensitivity of 94.76%, and

a specificity of 93.62%.

In 2021, Căleanu et al. (44) proposed a DL model to classify five

types of FLLs using CEUS data, obtaining a general accuracy of

88%. Hu et al. (45) investigated a CNNmodel trained on four-phase

CEUS video data from 363 patients. The proposed CNN model

achieved an accuracy of 91% and an AUC of 0.934 on the testing

dataset, slightly outperforming resident radiologists and

matching experts.
TABLE 6 Continued

Ref Year
AI
Model

Tasks
Imaging
method

Dataset
Internal
Testing
Results

External
Testing
Results

(148) 2021
DCNN
+TR+RF

Detect HCC
T1-
weighted MRI

LI-RADS

Sen_20 = 0.73,
Sen_50 = 0.55,
AFPR=0.62,
Dice=0.49

Sen_20 = 0.75,
Sen_50 = 0.66,
AFPR=0.75,
Dice=0.48

(149) 2021 ResNet50 Liver cirrhosis identification
T2-
weighted MRI

Total: 713 patients,
Training: 505,
Validation:104,
Testing:104

Acc=0.99,
Sen=0.98,
Spec=0.96

Acc=0.96,
Sen=0.98,
Spec=0.79

(149) 2021 DTL Liver cirrhosis classification
T2-
weighted MRI

Total: 713 patients,
Training: 505,
Validation:104,
Test:104

Acc=0.88 Acc=0.91

(166) 2020 CNN Detect HCC MRI
Training:455 patients,
Testing:45 patients

Sen=0.87,
Spec=0.93,
AUC=0.90

~

(166) 2020 CNN Classify FLLs MRI
Training:1210 patients,
Testing:201 patients

Sen=0.405~1,
Spec=0.673~1,
AUC=0.841
−0.989

~

(166) 2020 CNN
Distinction LI-RADS 3 & LI-RADS 4/
5 tumors

MRI 89 images from 59 patients
Acc=0.767~0.9,
Sen=0.756~0.889

~

(166) 2020 CNN Classify HCC & non-HCC lesions MRI
Training:140 patients,
Testing:10 patients

Acc=0.873,
Sen=0.82,
Spec=0.927

~

(166) 2020 CNN RF HCC detection MRI 171 patients
Dice=0.48,
Sen=0.66~0.75

~

(167) 2021
GoogLeNet
(Inception-
V1)

Classify HCC & normal
histopathology images

MRI 29 patients
Acc=0.9137,
Sen=0.9216,
Spec=0.9057

~

(164) 2021 CNN Classify HCC MRI 118 patients
Overall
Acc=0.873

~

(164) 2021 CNN Classify non-HCC MRI 118 patients
Acc=0.941,
Sen=0.82,
Spec=0.927

~

AFP, a-fetoprotein; AFPR, the average false positive rate; CDLM, combined deep learning model; cMRI, conventional magnetic resonance imaging (including T2 + DWI + DCE); DCE, dynamic
contrast enhanced; DLCR, deep learning combined radiomics; DLF, deep learning features; DTL, deep transfer learning; DW-MRI, diffusion weighted MRI; EOB-MRI, gadoxetic acid-enhanced
magnetic resonance imaging; i-RAPIT, intelligent-augmented model for risk assessment of post liver transplantation; LASSO, the least absolute shrinkage and selection operator; LI-RADS, liver
imaging reporting and data system; MCAT, multimodality-contribution-aware TripNet; MRE, magnetic resonance elastography; PD-L1, programmed death-ligand 1.
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TABLE 7 AI-based MRI models for HCC prognostication.

Ref Year AI Model Tasks
Imaging
modality

Dataset
Internal
Testing
Results

External
Testing
Results

(170) 2021
First
CapsNet
Network

Predict survival outcomes on liver
transplantation patients with HCC

MRI
Training:87 patients,
Testing:22 patients

Acc=0.64,
F1 score=0.61

~

(168) 2021 H-DARnet Predict MVI in HCC patients
T2-
weighted MRI

Training:168 patients,
Testing:57 patients

Acc=0.826,
Sen=0.795,
Spec=0.738,
AUC=0.775

~

(168) 2021 Vgg19 Predict MVI in HCC patients
T2-
weighted MRI

Training:168 patients,
Testing:57 patients

Acc=0.505,
Sen=0.446,
Spec=0.629,
AUC=0.537

~

(168) 2021 AlexNet Predict MVI in HCC patients
T2-
weighted MRI

Training:168 patients,
Testing:57 patients

Acc=0.515,
Sen=0.446,
Spec=0.662,
AUC=0.573

~

(168) 2021 SqueezeNet Predict MVI in HCC patients
T2-
weighted MRI

Training:168 patients,
Testing:57 patients

Acc=0.54,
Sen=0.461,
Spec=0.708,
AUC=0.625

~

(168) 2021 ResNet50 Predict MVI in HCC patients
T2-
weighted MRI

Training:168 patients,
Testing:57 patients

Acc=0.545,
Sen=0.453,
Spec=0.746,
AUC=0.626

~

(168) 2021 GoogleNet Predict MVI in HCC patients
T2-
weighted MRI

Training:168 patients,
Testing:57 patients

Acc=0.605,
Sen=0.553,
Spec=0.713,
AUC=0.649

~

(168) 2021 DenseNet121 Predict MVI in HCC patients
T2-
weighted MRI

Training:168 patients,
Testing:57 patients

Acc=0.625,
Sen=0.586,
Spec=0.711,
AUC=0.678

~

(168) 2021
SE-
DenseNet121

Predict MVI in HCC patients
T2-
weighted MRI

Training:168 patients,
Testing:57 patients

Acc=0.705,
Sen=0.753,
Spec=0.60,
AUC=0.738

~

(168) 2021
Simple-
SE-DenseNet

Predict MVI in HCC patients
T2-
weighted MRI

Training:168 patients,
Testing:57 patients

Acc=0.735,
Sen=0.754,
Spec=0.696,
AUC=0.769

~

(187) 2021
Fusion
DL model

Predict MVI in HCC patients EOB-MRI
Training:329 patients;
external test: 115 patients

~

Acc=0.757,
Sen=0.704,
Spec=0.803,
AUC=0.802

(187) 2021 CDLM Predict MVI in HCC patients EOB-MRI
Training:329 patients;
external test: 115 patients

~

Acc=0.757,
Sen=0.704,
Spec=0.803,
AUC=0.812

(171) 2021 DLF
Predict
PD-L1 expression level in
HCC patients

T2-
weighted MRI

103 patients

5-Fold cross
validation:
Acc=0.854,
F1-score=0.703,
Spec=0.947,
Prec=0.892,
Recall=0.633,
AUC=0.852

~
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4.2 Characterization of focal liver lesions

In a study conducted by Virmani et al. (7), a Neural Network

Ensemble (NNE) model was proposed to distinguish a normal liver

from four distinct liver lesions, achieving an impressive accuracy of

95%. The diagnoses for the included liver lesions were confirmed

through experienced radiologists, clinical follow-ups, and other

associated findings.

In 2017, Hassan et al. (20) introduced an ANN model that

achieved a classification accuracy of 97.2% for benign and

malignant FLLs. In 2019, Schmauch et al. (22) developed a

supervised DL model, specifically a CNN, utilizing a French

radiology public challenge dataset for diagnosing FLLs. The

model was capable of detecting FLLs and categorizing them as

benign (such as cyst, FNH, and angioma) or malignant (like HCC,

metastasis), achieving a mean AUC of 0.935 and 0.916 in the

training dataset. Despite promising results, further validation is

required due to the limited number of images used for training.

In 2020, Yang et al. (23) conducted a multicenter study to

develop a Deep Convolutional Neural Network (DCNN) using an

US database, along with background and clinical parameters (such
Frontiers in Oncology 22
as HBV, HCV, lesion margin, morphology) for characterizing FLLs.

The model achieved an AUC of 0.924 for distinguishing benign

from malignant lesions in the external validation dataset. The

model demonstrated superior accuracy compared to clinical

radiologists and CECT, albeit slightly lower than Contrast-

Enhanced Magnetic Resonance Imaging (CE-MRI) (87.9%). This

approach could potentially enhance radiologists’ performance and

reduce the reliance on CECT/CEMR and biopsy.

In 2021, Mao et al. (25) developed various ML-based models for

distinguishing primary liver cancer and secondary liver cancer by

extracting radiomic features from US images. The Logistic

Regression (LR) model outperformed other ML models in this

study. Ren et al. (30) applied a Support Vector Machine (SVM)

model in B-mode US for predicting the pathological grading of

HCC, achieving an AUC of 0.874 in the test set. The same research

group also developed another SVM model for differentiating HCC

from Intrahepatic Cholangiocarcinoma (ICC), yielding good

performances (31). In these studies, liver lesions were

pathologically confirmed and used as the standard reference.

In 2017, Guo et al. (40) demonstrated that a multiple-kernel

learning-based model could enhance the sensitivity, specificity, and
TABLE 7 Continued

Ref Year AI Model Tasks
Imaging
modality

Dataset
Internal
Testing
Results

External
Testing
Results

(171) 2021
radiomics-based
model+DLF

Predict
PD-L1 expression level in
HCC patients

T2-
weighted MRI

103 patients

5-Fold cross
validation:
Acc=0.887,
F1-score=0.764,
Spec=0.981,
Prec=0.948,
Recall=0.660,
AUC=0.897

~

(172) 2023 SVM Predict MVI in HCC patients
multi-
parameter
MRI

Training:297 patients,
Testing: 100 patients

Acc=0.64,
Sen=0.8065,
Spec=0.5652,
AUC=0.766

~

(172) 2023 ResNet18 Predict MVI in HCC patients
multi-
parameter
MRI

Training:297 patients,
Testing: 100 patients

Acc=0.73,
Sen=0.7097,
Spec=0.7391,
AUC=0.7938

~

(169) 2023 KNN
Predict TACE outcomes for
HCC patients

T2-
weighted MRI

Training: 115 patients,
Testing; 29 patients

Acc=0.655,
Sen=0.538,
Spec=0.75,
AUC=0.669

Acc=0.536,
Sen=0.857,
Spec=0.357,
AUC=0.615

(169) 2023 SVM
Predict TACE outcomes for
HCC patients

T2-
weighted MRI

Training: 115 patients,
Testing; 29 patients

Acc=0.621,
Sen=0.769,
Spec=0.563,
AUC=0.688

Acc=0.679,
Sen=0.786,
Spec=0.714,
AUC=0.712

(169) 2023 Lasso
Predict TACE outcomes for
HCC patients

T2-
weighted MRI

Training: 115 patients,
Testing; 29 patients

Acc=0.655,
Sen=0.769,
Spec=0.813,
AUC=0.745

Acc=0.679,
Sen=0.929,
Spec=0.5,
AUC=0.663

(169) 2023 DNN
Predict TACE outcomes for
HCC patients

T2-
weighted MRI

Training: 115 patients,
Testing; 29 patients

Acc=0.759,
Sen=0.923,
Spec=0.688,
AUC=0.837

Acc=0.714,
Sen=0.714,
Spec=0.857,
AUC=0.796
CDLM, contrast-dependent learning model; EOB-MRI, gadoxetic acid-enhanced MRI; MVI, Microvascular Invasion; TACE, transarterial chemoembolization.
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overall accuracy of CEUS for detecting HCC. Later, Ta et al. (41)

proposed an ANN model using CEUS data for differentiating

benign liver lesions from malignant ones. The model showed

promising results, classifying liver lesions as benign or malignant

with accuracy comparable to expert radiologists and superior to

physicians. Huang et al. (43) constructed an SVM model for

differentiating atypical HCC (aHCC) and FNH using CEUS data,

achieving an average accuracy of 94.4% compared to pathology

reports and clinical follow-up.

In 2021, Wang et al. (46) proposed an SVM model using CEUS

data, which could discriminate HCC pathological grading with an

AUC of 0.72. More recently, Zhou et al. (48) investigated CNN-

Long Short-Term Memory (LSTM), 3D CNN, and ML-TIC models

for classifying benign and malignant liver lesions using CEUS data

from 440 patients, achieving AUC values of 0.91, 0.88, and

0.78, respectively.
4.3 Evaluation prognostication, treatment
response and survival in HCC

Surgery, Transcatheter Arterial Chemoembolization (TACE),

and Microwave Ablation are widely recognized as treatment

methods for liver cancer. Each method requires meticulous

candidate evaluation to ensure optimal therapeutic effectiveness

(38–40). Wu et al. (203) employed ResNet18 in B-mode US to

predict HCC recurrence after Microwave Ablation. The model

achieved C-index values of 0.695, 0.715, 0.721, and 0.721 for early

relapse, late relapse, and relapse-free survival in HCC

patients, respectively.
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Liu et al. (42) developed two DL-based models using CEUS data

to predict the two-year progression-free survival of HCC patients

undergoing either RadiofrequencyAblation or Surgical Resection. The

models achievedC-index values of 0.726 and 0.741 forRadiofrequency

Ablation and Surgical Resection, respectively. When the Surgical

model was applied to predict outcomes for patients initially treated

with Ablation, it suggested that approximately 17.3% of Ablation

patients could potentially experience a longer two-year progression-

free survival if they underwent Surgery. Conversely, the Ablation

predictive model indicated that 27.3% of Surgical patients might

achieve a longer two-year progression-free survival if they had

received Ablation treatment. These CEUS-based models provide

accurate survival assessments for HCC patients and facilitate optimal

treatment selection. Furthermore, the same researchgroupemployed a

DLmodel to quantitatively analyze CEUS videos (43). They developed

three models to predict personalized responses of HCC patients after

their first TACE session. The CEUS-based model outperformed the

other two ML models, achieving a higher AUC value (0.93 vs 0.80

vs 0.81).

In another study, Ma et al. (44) applied a Radiomics model in

dynamic CEUS to predict early and late recurrence in patients with an

HCC lesion less than 5cm in diameter after Thermal Ablation. The

predictionmodel yielded anAUCof 0.84 for early recurrence and aC-

indexof 0.77 for late recurrence in the test group.The proposedmodel,

which combines CEUS, US Radiomics, and clinical factors, performed

well in predicting early HCC recurrence after Ablation and could

stratify the high risk of late recurrence.

Lastly, Liu et al. (16) introduced DL models in CEUS to predict

the two-year progression-free survival rate of HCC patients,

demonstrating exceptional accuracy in guiding treatment decisions.
TABLE 8 Summary of studies evaluating AI-based multi-modal models for liver and liver tumors segmentation.

Ref Year AI Model Task Imaging method Dataset Results

(144) 2019 2D U-Net Liver segmentation T1-weighted MRI+ T2-
weighted MRI+CT

Total: 498 subjects CT: Dice=0.94 ± 0.06,
T1-weighted MRI:
Dice=0.95 ± 0.03,
T2-weighted MRI:
Dice=0.92 ± 0.05

(174) 2019 CycleGAN-
DADR

Liver segmentation CT+MRI LiTS+multi-phasic MRI images of 20
patients with HCC

Dice=0.74

(112) 2021 APA2Seg-Net Liver segmentation CBCT+MRI LiTS CBCT:
Median Dice=0.903,
Mean Dice=0.893,
Median ASD=5.882,
Mean ASD=5.886,

MRI:
Median Dice=0.918,
Mean Dice=0.921,
Median ASD=1.491,
Mean ASD=1.860

(175) 2022 Unsupervised domain
adaptation framework

Liver segmentation MRI+CT LiTS+ CHAOS Dice= 0.912 ± 0.037

(173) 2023 SWTR-Unet Joint liver and
hepatic lesion
segmentation

MRI+CT 61440 MRI images + 189600
CT images

Diceliver=0.98 ± 0.02,
Dicelesion=0.81 ± 0.28,
HDliver=1.02 ± 0.18,
HDlesion=7.03 ± 17.37
CycleGAN- DADR, CycleGAN based domain adaptation via disentangled representations.
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Other researchers have incorporated additional pattern recognition

classifiers into DCNN algorithms using CEUS to improve the

diagnosis of FLLs. However, previous studies only involved small

sample sizes, thus standardized imagingdataor external validations are

required to validate the model’s generalizability across populations.
5 AI-based CT techniques

Numerous research groups have explored the application of AI

in liver cancer research, specifically leveraging CT scan technology.

This section delves into AI-based CT methodologies for diagnosing

and predicting HCC. Tables 2 and 3 encapsulate selected studies,

which can be categorized into three distinct groups: segmentation of

liver and liver tumors, characterization of FLLs, and evaluation of

prognostication, treatment response, and survival in HCC patients.
5.1 Segmentation of liver and liver tumors

The segmentation of liver and liver tumors plays a crucial role

in assessing tumor burden, detecting early recurrence, extracting
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image features, and formulating treatment plans. The manual

segmentation of liver and liver lesions is a significant challenge

and is time-consuming due to the extensive range of radiographic

features in HCC. AI-driven CT models have emerged as powerful

tools for the automatic segmentation of liver and liver tumors.

Table 2 provides a summary of recently developed AI-driven CT

models for segmentation of liver and liver tumors.

In 2015, Li et al. (49) introduced a DCNN for the segmentation

of liver tumors in CT scans, achieving a precision rate of 82.67%. In

2017, Vivanti et al. (50) examined a CNN-based segmentation

model for the automatic detection of recurrence during follow-up,

achieving a true positive rate of 86% for lesions larger than 5 mm

(28). Subsequently, Sun et al. (51) and Das et al. (52) conducted

comprehensive studies on the automatic segmentation of tumors in

the liver using CNN-based architectures such as Fully

Convolutional Networks (FCNs) and U-Net. In 2017, Sun et al.

(51) proposed an FCNs model for the segmentation of liver tumors,

achieving high accuracy.

Since 2017, the Liver Tumor Segmentation Challenge (LiTS)

has been encouraging researchers to create AI models for the

automatic segmentation of liver tumors. This challenge utilizes a

multinational dataset of CT images, known as LiTS17, which
TABLE 9 AI-based multi-modal models for diagnosing HCC.

Ref Year AI Model Task Imaging
modality

Dataset Results

(176) 2020 DCNN Diagnosis HCC CT + 20
biological
markers

Total: 766
Training:536

Validation: 153
Testing:77

(161) 2020 Google Inception-ResNet V2 CNN +
autoencoder neural network CNN

Diagnosis HCC MRI + 16
biological
markers

Total: 38424 images
Training:31608 images
from 1210 patients
Validation: 6816
images from
201 patients

AUC=0.946 for distinguishing
malignant from benign liver tumors,
AUC=0.985 for classifying HCC

AUC=0.998 for classifying
metastatic tumors,

AUC=0.963 for classifying other
primary malignancies

(177) 2021 Xception CNN Diagnosis HCC CT+ 20
clinical

parameters

Total: 37084
Training: 29104,
Validation: 3816,
Testing:4164

Acc = 0.869,
Prec =0.896,
Recall =0.869,
F1 score =0.867

(118) 2021 STIC Classify HCC and ICC Multi-phase
CECT

+clinical data

Total: 723 patients,
Training:499,
Testing:113,

External testing: 111

Acc=0.862,
AUC=0.893

(178) 2021 STIC Diferential diagnosis
of malignant
hepatic tumors

Multi-phase
CECT

+clinical data

Total: 723 patients,
Training:499,
Testing:113,

External testing: 111

Acc=0.726,

(179) 2021 SVM Classify aHCC
and FNH

CEUS
+ radiologist’s

266 patients AUC=0.93,
Sen=0.935,
Spec=0.849

(180) 2022 DL Classify benign and
malignant liver lesions

CEUS
+clinical factors

303 patients AUC=0.957,
Acc=0.94,
Sen=0.966,
Spec=0.905

(181) 2023 Multi-modal DNN + Transfer learning
& fine-tuned

Multi-class liver
cancer diagnosis

CT+
pathology data

Average Acc=0.9606,
AUC=0.832
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TABLE 10 AI-based multi-modal models for prognostication of HCC.

Ref Year AI Model Task Imaging method Dataset Results

(182) 2020 Cox-PH Predict MVI in HCC patients CT + 9 clinical
parameters

Total:145
Training set: 145

AUC=0.79

(183) 2021 GhostNet/CNN Predict TACE response for HCC therapy CT + clinical evaluation
(clinical

parameters and biological
markers)

Training:319
patients,

Validation:
80 patients

AUC=0.98,
Acc=0.98

(170) 2021 First CapsNet network +
Second CapsNet network

Predict survival outcomes on liver
transplantation patients with HCC

MRI + pathology Training:87
patients,
Testing:22
patients

Acc=0.68,
F1 score=0.65

(170) 2021 First CapsNet network +
RBF network

Predict survival outcomes on liver
transplantation patients with HCC

MRI + Clinical signatures Training:87
patients,
Testing:22
patients

Acc=0.78,
F1 score=0.75

(170) 2021 Second CapsNet network +
RBF network

Predict survival outcomes on liver
transplantation patients with HCC

Pathology + clinical Training:87
patients,
Testing:22
patients

Acc=0.77,
F1 score=0.73

(170) 2021 i-RAPIT Predict survival outcomes on liver
transplantation patients with HCC

Clinical+MRI
+pathology features

Training:87
patients,
Testing:22
patients

Acc=0.87,
F1 score=0.84,
Recall=0.80,
Prec=0.89

(184) 2021 Radiomics, CNN Predict MVI in HCC patients MRI + 22
clinical

parameters

Total: 601
Training set:461
Test set:140

AUC= 0.915,
Overall

Acc=0.793

(133) 2021 UNet, radiomics,
multi-task deep learning
neural network (MTNet)

Predict MVI in HCC patients CT+ 22
biological
markers

Total: 366
Training set:281
Validation set: 85

Training set:
AUC=0.877,
Validation

set: AUC=0.836

(185) 2022 Baseline+MCAT Histologic grading of HCC T2-weighted MRI + T1-
weighted MRI +DCE MRI

59 patients Acc=0.8344,
Sen=0.8725,
Prec=0.8942,

F1-score=0.8877

(185) 2022 Baseline+MAWM Histologic grading of HCC T2-weighted MRI + T1-
weighted MRI +DCE MRI

59 patients Acc=0.7922,
Sen=0.8291,
Prec=0.8197,

F1-score=0.8382

(185) 2022 Baseline+TripNet Histologic grading of HCC T2-weighted MRI + T1-
weighted MRI +DCE MRI

59 patients Acc=0.7854,
Sen=0.7944,
Prec=0.8235,

F1-score=0.7867

(186) 2022 DLCR Predict Ki-67 expression in HCC patients cMRI + AFP Total: 108
patients,

Training: 87
patients,
Internal

validation:21
patients

External Testing:
43 patients

Validation:
Acc=0.81,
Sen=0.80,
Spec=0.82,
PPV=0.78,
NPV=0.80,
AUC=0.84
External
Testing:
Acc=0.72,
Sen=0.72,
Spec=0.72,
PPV=0.68,
NPV=0.71,
AUC=0.74

(186) 2022 DLCR Predict Ki-67 expression in HCC patients cMRI + AFP
+ MRE

Total: 108
patients,

Validation:
Acc=0.87,

(Continued)
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includes 130 CT images for training and 70 CT images for testing.

Over the past few years, this challenge has seen participation from

more than 280 research teams worldwide, with models based on

Fully Convolutional Networks (FCN) or U-Net achieving top scores

for the segmentation of liver and liver tumors.

At present, the highest-scoring model, MAD-UNet (83), has

achieved Dice score of 0.9727 for the segmentation of liver using the

LiTS17 dataset. While these results are promising, there is a notable

variability in both the imaging characteristics of liver tumors and

their delineation. This highlights the need for universal and

standardized methods for liver tumor segmentation.
5.2 Characterization of focal liver lesions

Table 3 summarizes the results of studies that have evaluated

AI-based CT models for diagnosing HCC. Mokrane et al. (106)

developed a ML model using 13,920 CT images from 189 patients.

This model was able to distinguish HCC from non-HCC lesions in

cirrhotic patients, achieving AUC values of 0.81 and 0.66 in the

training and external validation datasets, respectively.
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In 2019, Khan et al. (107) developed a SVM model that

classified FLLs as benign or malignant, achieving an accuracy of

98.3%. Das et al. (52) proposed a CAD system based on a watershed

transform and Gaussian Mixture Model (GMM) for accurate and

automated liver lesion detection using CT scan data. The liver was

first separated using the watershed transform method, and the liver

lesion was segmented using the GMM algorithm. Texture features

were extracted and fed into a DNN model to automatically classify

three types of liver tumors, including hemangioma, HCC, and

metastatic carcinoma. The proposed model achieved a

classification accuracy of 99.38% and a Jaccard index of 98.18%.

In 2020, Li et al. (108) developed a CAD system using ANN,

SVM, and CNN models for diagnosing three types of HCC lesions,

including nodular, diffuse, and massive. The experimental results

demonstrated that the CNN model outperformed both the ANN

and SVMmodels in classifying nodular and massive lesions, but not

diffuse lesions.

In 2021, Mao et al. (25) developed a gradient boosting-based

model using clinical parameters and CECT data for pathological

grading of HCC. The combined model exhibited the best

performance with an AUC of 0.8014 in the test set. Shi et al.
TABLE 10 Continued

Ref Year AI Model Task Imaging method Dataset Results

Training: 87
patients,
Internal

validation:21
patients

external Testing:
43 patients

Sen=0.86,
Spec=0.93,
PPV=0.84,
NPV=0.87,
AUC=0.90
External
Testing:
Acc=0.83,
Sen=0.80,
Spec=0.86,
PPV=0.78,
NPV=0.80,
AUC=0.83

(138) 2023 ResNet18 Predict MVI in HCC patients CT+multi-parameter MRI Training:297
patients,
Testing:
100 patients

Traing:
Acc=0.8923,
Sen=0.8908,
Spec=0.8933,
AUC=0.9558,
Testing:
Acc=0.8,
Sen=0.7742,
Spec=0.8116,
AUC=0.8191

(138) 2023 ResNet18 +SVM Predict MVI in HCC patients CT+multi-parameter MRI Training:297
patients,
Testing:
100 patients

Traing:
Acc=0.9293,
Sen=0.9160,
Spec=0.9382,
AUC=0.9804
Testing:
Acc=0.82,
Sen=0.7742,
Spec=0.8406,
AUC=0.8415
APA2Seg-Net, anatomy-preserving domain adaptation to segmentation network; Cox-PH, Cox-proportional hazard; STIC, spatial extractor-temporal encoder-integration-classifier; SWTR-
Unet, SWIN-transformer-Unet.
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(109) compared the performance of a DL-based three-phase CECT

model with a four-phase CT protocol for distinguishing HCC from

other FLLs. The DL-based three-phase CECT protocol without pre-

contrast achieved a similar diagnostic accuracy (85.6%) to the four-

phase CT protocol (83.3%). These findings suggest that omitting the

pre-contrast phase might not compromise accuracy while reducing

a patient’s radiation dose.

Several CNN-based models have been developed using CT data

for diagnosing HCC. In 2018, Yasaka et al. (110) proposed a CNN

model using three-phase CT for distinguishing malignant liver

lesions from indeterminate and benign liver lesions. The

proposed model achieved a median AUC of 0.92 in the test set.

In 2019, Todoroki et al. (111) developed a CNN-based model using

multiphasic CT images for detecting and classifying five types of

FLLs. Ben-Cohen et al. (91) introduced a FCN architecture with

sparsity-based false positive reduction for liver tumor detection,

outperforming traditional models. By employing the FCN-4s model

and sparsity-based fine-tuning, they successfully detected 94.7% of

small lesions, surpassing the performance of the U-Net model.

In 2021, Zhou et al. (112) proposed a multi-modality and multi-

scale CNN model for automatically detecting and classifying FLLs

in multi-phasic CT. The model obtained an average test precision of

82.8%, recall of 93.4%, and F1-score of 87.8%. The model achieved

average accuracies of 82.5% and 73.4% for the binary and six-class

classification, respectively. In this study, the classification

performance of the model was placed between a junior and senior

physician’s evaluation. This preliminary study showed that this

CNN-based model can accurately locate and classify FLLs, and

could assist inexperienced physicians in reaching a diagnosis in

clinical practice. Similarly, Ponnoprat et al. (113) constructed a two-

step model based on CNN and SVM for distinguishing HCC and

intrahepatic cholangiocarcinoma (ICC), and the model achieved a

classification accuracy of 88%.

In 2021, Krishnan et al. (114) introduced a novel multi-level

ensemble architecture for detecting and classifying HCC from other

FLLs. This innovative approach highlights the potential of ensemble

techniques in improving the specificity and sensitivity of liver

cancer diagnosis using CT imaging.

In 2023, Manjunath et al. (115) developed a novel DL model

using CT data to detect and classify liver tumors. The experimental

results demonstrated that the proposed model improved accuracy,

Dice similarity coefficient, and specificity compared to existing

algorithms, emphasizing the continuous evolution of DL models

for precise liver cancer diagnosis.
5.3 Prognostication of HCC

Numerous research groups have focused their efforts on the

applications of AI models using CT and CECT images for the

prognostication of HCC. Table 4 provides a summary of the results

from studies that evaluated AI-based CT models for HCC

prognostication. Among these studies, Peng et al. (131) proposed

a novel AI model based on conventional Machine Learning (cML)

and DL methods. This model utilized CT data from 310 patients to
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predict TACE in patients with HCC. The experimental results

demonstrated that the proposed model achieved AUC values of

0.995 and 0.994 in the training and testing datasets, respectively.

In 2021, Jiang et al. (81) developed a 3D CNN using CT data

from 405 patients. This model was designed to predict

Microvascular Invasion (MVI) in patients with HCC and

obtained commendable AUC values of 0.98 and 0.906 in the

training and testing datasets, respectively.

In 2022, Yang et al. (132) conducted an investigation of various

AI models using CECT data from 283 patients. The aim was to

predict MVI in patients with HCC. The experimental results

revealed that the DL-based clinical-radiological model achieved

the best performance with an accuracy of 96.47%, a sensitivity of

90.91%, a specificity of 97.30%, a precision of 89.4%, an F1 score of

87%, and an AUC of 0.909.
6 AI-based MRI methods

To date, the application of AI models in MRI for diagnosing

HCC has not been extensively adopted. The development of MRI

features poses technical challenges and incurs substantial costs,

resulting in a scarcity of published studies with relatively small

sample sizes. This section explores the progression of AI-based MRI

models for the diagnosis of HCC.
6.1 Segmentation of liver and liver tumors

In recent years, a multitude of research groups have focused on

the applications of AI models utilizing MRI data for the automated

segmentation of the liver and liver tumors. Table 5 encapsulates the

AI-based MRI models recently developed for the segmentation of

liver and liver tumors. Among the various studies, the most

remarkable performance was delivered by Hossain et al. (139),

who pioneered a cascaded network to address anatomical

ambiguity. This model, which employs T1-weighted MRI data for

liver segmentation, exhibited an impressive performance with a

Dice coefficient of 0.9515, Intersection over Union (IoU) of 0.921,

and an accuracy of 99.7%.

More recently, Gross et al. (140) developed a DCNN model

using T1-weighted MRI data from 470 patients for liver

segmentation. The results suggested that the proposed DCNN

model achieved mean Dice values of 0.968, 0.966, and 0.928 in

the training, validation, and public testing datasets, respectively.
6.2 Characterization of focal liver lesions

Table 6 encapsulates the advancements in AI-based MRI models

for diagnosing HCC. These models have shown promise in

improving the detection and classification of FLLs, including HCC.

In 2019, Hamm et al. (158) proposed a CNN model capable of

classifying six types of FLLs, namely adenoma, cyst, Focal Nodular

Hyperplasia (FNH), HCC, Intrahepatic Cholangiocarcinoma (ICC),
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and metastases. The model demonstrated an impressive overall

accuracy of 92%, with sensitivity values spanning from 60% to 100%,

andspecificityvaluesbetween89%and99%.This studyhighlighted the

potential of DL in accurately identifying various types of FLLs.

Wang et al. (159) developed an interpretable DL model using

MRI images. The model achieved a positive predictive rate of 76.5%

and a sensitivity of 82.9% for classifying FLLs. The interpretability

of this model enhances its clinical utility by offering insights into the

decision-making process.

Trivizakis et al. (160) employed a 3D CNN model with

Diffusion-Weighted Magnetic Resonance (DW-MR) data to

classify primary and metastatic liver tumors. The model achieved

an accuracy of 83%, underscoring the potential of DL in enhancing

liver tumor recognition, particularly in datasets with limited size

and disease specificity.

In 2020, Zhen et al. (161) pioneered several CNN models,

including a distinctive model that utilizes unenhanced MR images

for liver tumor diagnosis, thereby eliminating the need for contrast

agent injection. This innovative approach demonstrated a

performance on par with experienced radiologists, suggesting a

potential reduction in patient discomfort and risks associated with

contrast agents.

Kim et al. (162) introduced a CNN model that achieved an

impressive AUC of 0.97, a sensitivity of 94%, and a specificity of

99% for HCC detection using a training dataset of 455 patients. In a

validation dataset of 45 patients, the model maintained an AUC of

0.90, sensitivity of 87%, and specificity of 93% for HCC detection.

This study underscored the capability of deep learning models in

accurately identifying HCC, a critical step in early diagnosis and

treatment planning.

Wu et al. (16) developed a DL model based on multiphase,

contrast-enhanced MRI to differentiate between different grades of

liver tumors for HCC diagnosis. The model utilized a CNN to

classify the Liver Imaging Reporting and Data System tumor grades

of liver lesions based on MRI data acquired at three-time points.

The DL CNN model achieved high accuracy, sensitivity, precision,

and AUC, providing valuable clinical guidance for differentiating

between intermediate LR-3 liver lesions and more likely malignant

LR-4/LR-5 lesions in HCC diagnosis.

In 2021, Wan et al. (163) proposed a CNN architecture based on

multi-scale and multi-level fusion (MMF-CNN) for detecting liver

lesions in MRI images. The model’s effectiveness was confirmed

through comparative analysis with other DL models, emphasizing

its potential to improve diagnostic accuracy and efficiency. The

proposed MMF-CNN architecture is a promising approach to

accurately and efficiently detect liver lesions in MRI images,

which can significantly improve patient outcomes.

Oestmann et al. (164) presented a CNN model that employs

multiphasic MR images to differentiate between HCC and non-

HCC lesions. The model demonstrated high sensitivities and

specificities for both lesion types, achieving 92.7% and 82.0%

sensitivities for HCC and non-HCC lesions, respectively, and

specificities of 82.0% for both HCC and non-HCC lesions. The

research underscored the importance of accurately distinguishing

between HCC and non-HCC lesions to guide appropriate treatment

strategies for liver cancer patients.
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Bousabarah et al. (148) proposed a CNN for detecting and

segmenting HCC using multiphase contrast-enhanced MRI data.

The model exhibited a promising performance with 73% and 75%

sensitivities for validation and testing datasets, respectively. The

performance evaluation compared the automatically detected

lesions with manual segmentation. The mean Dice score values

between the identified lesions using the CNN model and manual

segmentations were 0.64 and 0.68 for the validation and testing

datasets, respectively.

The advancements in CNN-based MRI models for diagnosing

HCC have significantly enhanced the accuracy, efficiency, and

precision of lesion classification and detection. From

distinguishing different types of FLLs to detecting targeted HCC,

these CNN-based models have showcased remarkable performance

metrics and potential clinical utility. Further research and validation

studies are essential to fully assess the capabilities of these models in

clinical settings, paving the way for personalized and effective

treatment strategies in liver cancer management.
6.3 Prognostication of HCC

A select number of research groups have ventured into the

application of AI models and MRI-based data for HCC

prognostication. Table 7 encapsulates a summary of studies

evaluating AI-based MRI models for this purpose.

In 2021, Gao et al. (168) scrutinized various AI models using

T2-weighted MRI data from 225 patients to predict Microvascular

Invasion (MVI) in patients with HCC. The H-DARnet model

outshone others, achieving an accuracy of 82.6%, a sensitivity of

79.5%, a specificity of 73.8%, and an AUC of 0.775.

Wei et al. (187) investigated the fusion DL model and the

Contrast-Dependent Learning Model (CDLM) using gadoxetic

acid-enhanced MRI (EOB-MRI) data from 225 patients for

predicting MVI in patients with HCC. Both models exhibited

robust performance, with the Fusion DL model achieving an

accuracy of 89.4%, a sensitivity of 78.1%, a specificity of 95.3%,

and an AUC of 0.93. The CDLM model achieved an accuracy of

92.4%, a sensitivity of 93.9%, a specificity of 91.6%, and an AUC of

0.962 in the training dataset.

In 2023, Chen et al. (169) explored four models (KNN, SVM,

Lasso, and DNN) using T2-weighted MRI data from 144 patients

for predicting Transarterial Chemoembolization (TACE) outcomes

in patients with HCC. Among these, the Lasso model achieved the

best performance.

These studies underscore the potential of AI models in

conjunction with MRI data for predicting HCC, demonstrating

promising results in terms of accuracy, sensitivity, specificity, and

AUC. Further research in this area could catalyze significant

advancements in the early detection and treatment of HCC.
7 AI-based multi-modal techniques

AI-based multi-modal techniques are swiftly ascending to

prominence in the realm of medical imaging, attributed to its
frontiersin.org

https://doi.org/10.3389/fonc.2024.1415859
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang et al. 10.3389/fonc.2024.1415859
extraordinary ability to amplify diagnostic accuracy and forecast

outcomes. AI-based multi-modal model integrates multiple

modalities, such as medical imaging data, Electronic Health

Records (EHR) and clinical parameters, thereby substantially

enhancing the efficacy of AI algorithms. AI-based multi-modal

models have proven successful in predicting treatment responses,

evaluating survival rates, and staging a multitude of diseases. Such

techniques have been deployed in a plethora of studies pertaining to

liver imaging applications, yielding encouraging results. The

continued exploration and refinement of these techniques hold

great promise for the future of medical imaging and patient care.
7.1 Segmentation of liver and liver tumors

Table 8 encapsulates a summary of studies that evaluate AI-

based multi-modal models for the segmentation of liver and liver

tumors. Among the various studies, the most remarkable

performance was demonstrated by Hille et al. (173). They

explored the SWTR-Unet model using a combination of 61,440

MRI images and 189,600 CT images for the segmentation of both

the liver and hepatic lesions. The proposed multi-modal model

achieved Dice coefficients of 0.98 and 0.81 for the segmentation of

the liver and hepatic lesions, respectively.
7.2 Diagnosis of HCC

AI-based multi-modal models offer a comprehensive and robust

approach to HCC diagnosis, enabling disease prediction,

classification, treatment response prediction, survival rate

determination, and disease staging. The outcomes of studies

evaluating AI-based multi-modal models for HCC diagnosis are

summarized in Table 9.

In 2020, Menegotto et al. (176) utilized a DCNN for HCC

diagnosis, incorporating CT data and various EHR parameters.

These parameters encompassed demographic factors, clinical

history, laboratory test results, and other pertinent medical

information. The model achieved accurate HCC diagnosis by

considering 20 unique EHR parameters, highlighting the potential

of integrating diverse clinical data for enhanced disease

identification. Subsequently, they (177) developed an Xception

CNN model using CT data and EHR parameters for HCC

diagnosis. This method accurately detected HCC, demonstrating

the potential of combining various modalities for improved

HCC identification.

Zhen et al. (161) developed a multi-modal model that combines

Google’s Inception-ResNetV2 CNN with an autoencoder neural

network. This model was used to diagnose HCC using MRI data

and clinical parameters, including age, gender, tumor markers, liver

function, and other relevant factors. The study confirmed the

potential of combining medical imaging and clinical data to

improve HCC diagnosis, emphasizing the importance of such

techniques in enhancing healthcare outcomes.

In 2021, Gao et al. (118) employed a multi-modal model based

on the VGG16 architecture to detect HCC in CT images. The study
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aimed to determine the model’s accuracy in detecting HCC by

incorporating eight EHR parameters, including age, gender, platelet

count, bilirubin levels, tumor markers, and hepatitis B virus status.

The research findings demonstrated the capacity of multi-modal DL

to accurately identify HCC. This study underscores the potential of

ML algorithms in assisting the early detection and diagnosis of

HCC, which may lead to improved patient outcomes. Li et al. (179)

investigated a ML-based multi-modal model using three-phase

CEUS data from 266 patients and a radiologist’s score for

evaluating the diagnostic accuracy when differentiating between

atypical Hepatocellular Carcinoma (aHCC) and Focal Nodular

Hyperplasia (FNH). The proposed model achieved the highest

AUC of 0.93 in aHCC and FNH differentiation.

In 2022, Liu et al. (180) proposed a DL model to detect

malignancy by combining clinical parameters and CEUS data

from 303 patients. The model achieved the best performance with

AUC values of 0.969 and 0.957 and accuracies of 96% and 94% in

the IntraVenous (IV) and ExtraVenous (EV) groups, respectively.

Further research is necessary to identify the optimal combination of

modalities and variables for specific medical tasks. The

development of standardized protocols and datasets is critical to

facilitate the comparison and reproducibility of multi-modal AI

models in medical image analysis.
7.3 Prognostication of HCC

A multitude of studies have explored the use of AI-based multi-

modal models for prognostication of HCC. The insights from these

studies are compiled in Table 10. Among these, a significant

contribution was made by Sun et al. (183), who implemented a

hybrid model combining GhostNet and CNN models. This

integrated model leveraged CT data and clinical parameters to

predict the response of TACE treatment in HCC patients. The

proposed method exhibited remarkable performance, achieving an

accuracy of 98% and an AUC of 0.98. This model demonstrated its

potential in predicting TACE treatment responses, thereby assisting

healthcare providers in devising personalized treatment plans and

making informed decisions. This approach shows promise in

improving patient outcomes and raising the bar in clinical practice.
8 Challenges and future directions

In the past decade, AI models’ application in medical imaging

for HCC diagnosis and prediction has emerged as a significant

research area. While individual medical imaging methods such as

US, CT, and MRI have been explored (205–208), there is a lack of

comprehensive reviews focusing on AI-based models using both

single and multi-modal modalities. This study aims to fill that gap,

reviewing AI models developed for HCC diagnosis and prediction

using both single and multi-modal methods from January 2010 to

March 2024.

Despite AI-based diagnostic models not significantly improving

overall diagnostic accuracy for pathologists, they have shown

increased precision within specific subgroups. However, several
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challenges must be addressed before integrating these models into

clinical workflows. The efficacy of AI models depends on both the

models’ accuracy and the quality of the datasets used. Factors such

as biases, mislabeling, lack of standardization, and missing data can

undermine these datasets. Overfitting and spectrum biases are

prevalent issues in AI-based medical imaging models. Therefore,

the need for standardized methods for AI-based data analysis and

comprehensive strategies to tackle missing data is evident.

AI tools intended for medical applications could be categorized

as medical devices and must adhere to pertinent regulations. Both

the FDA and the European Commission have initiated plans to

tackle this issue. Intellectual property concerns, particularly those

associated with post-marketing modifications, could pose safety

risks. The performance of AI models is intimately linked to the

training dataset. The importance of large datasets is paramount, and

the promotion of data sharing is necessary, which brings forth

ethical and privacy considerations. The clinical performance of AI

and the requirement for post-approval validation are significant

issues. The development of explainable AI models is vital for

securing clinicians’ trust and reliance on AI-based CAD systems.

Customized prospective clinical trials are indispensable to fully

comprehend the role of AI in HCC management.

Looking ahead, the integration of AI in HCC management

presents an exciting frontier in medical science. As we continue to

refineAImodels and address the challenges, wemove closer to a future

whereAI plays a pivotal role inpersonalizedpatient care. The potential

ofAI to analyze vast amounts of data andmake precise predictions can

lead to earlydetection andmore effective treatment strategies forHCC.

This not only improves patient outcomes but also paves the way for a

new era in healthcare, where technology and human expertise work

hand in hand for the betterment of patient care.

Several strategies are essential for the futureofAI inHCCdiagnosis

andprediction. First, thedevelopmentof standardizedmethods forAI-

based data analysis and comprehensive strategies to handle missing

data are crucial. Second, universal approaches to handle missing data

and improve data quality are vital for enhancing the robustness and

reliability of DL-based diagnostic tools. Promoting data sharing

initiatives can facilitate the availability of large, diverse datasets

necessary for training and validating DL models.

In addition to the aforementioned strategies, the exploration of

advanced technologies such as transfer learning can further

enhance the role of AI in HCC diagnosis and prediction. This

technology can adapt pre-trained DL models to new tasks with

limited labeled data. This addresses the challenge of acquiring

extensive datasets in medical imaging, a common hurdle in the

healthcare sector. Federated Learning (FL) is emerging as a

transformative trend in healthcare. It enables a collaborative

approach to ML development across multiple institutions,

eliminating the need for direct data sharing. This innovative

method involves the exchange of model parameters only, thereby

ensuring the privacy of individual datasets. In the context of liver

cancer, where patient data is both sensitive and heavily regulated,

FL offers a unique advantage. It allows for the integration of

fragmented healthcare data sources while preserving privacy. This

enhances the scope and accuracy of ML models, making them more
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effective and reliable. As such, FL is poised to become an invaluable

tool for future research and clinical implementation in liver cancer

treatment. It offers the potential to significantly advance patient

care, marking a new era in the field of liver cancer treatment.

The development of explainable AI models is another critical

step towards earning the trust and reliance of clinicians on AI-based

CAD systems. The synergy of researchers, clinicians, and

policymakers is a cornerstone in propelling innovation and

setting the gold standard for the application of AI techniques in

liver cancer care. A comprehensive approach is required to augment

AI techniques for HCC diagnosis and management. This involves

addressing key aspects such as interpretability, accuracy, data

integration, ethical considerations, and validation processes. By

tackling these areas, we can tap into the full potential of AI

technology, leading to a revolution in HCC diagnosis and

prediction. Customized prospective clinical trials are paramount

to gain a complete understanding of the role of AI in HCC

management. Regulatory bodies like the FDA and the European

Commission have kick-started plans to address the regulatory

compliance of AI-based diagnostic tools. These plans demand

further development and implementation. The challenges and

future directions underscore the intricacy of incorporating AI in

HCC diagnosis and prediction. However, with persistent research

and development, AI holds the promise to bring about a paradigm

shift in this field.
9 Conclusions

This paper offers an exhaustive exploration of AI-driven models

for the diagnosis and prediction of HCC, leveraging both medical

imaging data and additional clinical information. The potential of

AI-based methodologies in diagnosing HCC is vast, yet several

hurdles need to be overcome before they can be seamlessly

incorporated into clinical workflows to enhance patient diagnosis

and treatment outcomes. Despite the presence of challenges such as

data quality, model overfitting, regulatory compliance, and the

necessity for explainable AI models, the potential advantages are

considerable. AI models have the capacity to augment precision

within specific patient subgroups. Furthermore, the development of

standardized methods for data analysis can significantly bolster the

robustness and reliability of these tools. Navigating these intricacies, it

becomes evident that a multi-pronged strategy is essential to fully

harness the transformative power of AI technology in revolutionizing

HCC diagnosis and treatment. With ongoing research and

development, AI stands poised to usher in a paradigm shift in the

field of HCC diagnosis and prediction, ultimately leading to enhanced

patient outcomes and heralding a new epoch in healthcare.
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deep learning convolutional neural networks for localization and classification of
common hepatic lesions. Pol J Radiol. (2021) 86:e440–8. doi: 10.5114/pjr.2021.108257

120. Lee H, Lee H, Hong H, Bae H, Lim JS, Kim J. Classification of focal liver lesions
in CT images using convolutional neural networks with lesion information augmented
patches and synthetic data augmentation. Med Phys. (2021) 48:5029–46. doi: 10.1002/
mp.15118

121. Kim DW, Lee G, Kim SY, Ahn G, Lee JG, Lee SS, et al. Deep learning-based
algorithm to detect primary hepatic Malignancy in multiphase CT of patients at high
risk for HCC. Eur Radiol. (2021) 31:7047–57. doi: 10.1007/s00330-021-07803-2

122. Nakai H, Fujimoto K, Yamashita R, Sato T, Someya Y, Taura K, et al.
Convolutional neural network for classifying primary liver cancer based on triple-
phase CT and tumor marker information: a pilot study. Jpn J Radiol. (2021) 39:690–
702. doi: 10.1007/s11604-021-01106-8

123. Zhao X, Liang P, Yong L, Jia Y, Gao J. Radiomics study for differentiating focal
hepatic lesions based on unenhanced CT images. Front Oncol. (2022) 12:650797.
doi: 10.3389/fonc.2022.650797

124. Naaqvi Z, Akbar S, Hassan SA, Ul Ain Q. (2022). Detection of Liver Cancer
through Computed Tomography Images using Deep Convolutional Neural Networks,
in: 2022 2nd International Conference on Digital Futures and Transformative
frontiersin.org

https://doi.org/10.3390/s23177561
https://doi.org/10.3390/bioengineering10080899
https://doi.org/10.3390/bioengineering10080899
https://doi.org/10.1016/j.compbiomed.2023.106838
https://doi.org/10.3390/bioengineering10020215
https://doi.org/10.3934/mbe.2023059
https://doi.org/10.1016/j.compbiomed.2022.106501
https://doi.org/10.2174/1573405619666221014114953
https://doi.org/10.1016/j.heliyon.2024.e28538
https://doi.org/10.1016/j.heliyon.2024.e28538
https://doi.org/10.3233/XST-230312
https://doi.org/10.1007/s00432-023-05564-7
https://doi.org/10.1088/1361-6560/ad1d6b
https://doi.org/10.1007/978-3-319-46723-8_18
https://doi.org/10.1016/j.neucom.2017.10.001
https://doi.org/10.1016/j.neucom.2017.10.001
https://doi.org/10.1007/978-3-030-00934-2_77
https://doi.org/10.1109/SampTA45681.2019.9030909
https://doi.org/10.1016/j.mehy.2019.109431
https://doi.org/10.3390/s20051516
https://doi.org/10.1038/s41598-023-46580-4
https://doi.org/10.1038/s41598-023-46580-4
https://doi.org/10.1016/j.compbiomed.2023.107841
https://doi.org/10.3390/biomedicines11051309
https://doi.org/10.3390/cancers15020330
https://doi.org/10.7717/peerj-cs.1751
https://doi.org/10.1002/mp.17090
https://doi.org/10.1155/2022/3045370
https://doi.org/10.1155/2022/3045370
https://doi.org/10.21037/qims-22-1008
https://doi.org/10.1186/s41747-023-00383-4
https://doi.org/10.1007/s00330-019-06347-w
https://doi.org/10.2174/1573405615666190716122040
https://doi.org/10.1016/j.bbe.2019.05.008
https://doi.org/10.1007/s00261-020-02485-8
https://doi.org/10.1148/radiol.2017170706
https://doi.org/10.1109/EMBC.2019.8857292
https://doi.org/10.1109/EMBC.2019.8857292
https://doi.org/10.3389/fonc.2020.581210
https://doi.org/10.1007/s11517-020-02229-2
https://doi.org/10.1177/0954411920971888
https://doi.org/10.1007/s11042-023-15627-z
https://doi.org/10.1002/ijc.33245
https://doi.org/10.1016/j.acra.2020.05.033
https://doi.org/10.1016/j.acra.2020.05.033
https://doi.org/10.1186/s13045-021-01167-2
https://doi.org/10.5114/pjr.2021.108257
https://doi.org/10.1002/mp.15118
https://doi.org/10.1002/mp.15118
https://doi.org/10.1007/s00330-021-07803-2
https://doi.org/10.1007/s11604-021-01106-8
https://doi.org/10.3389/fonc.2022.650797
https://doi.org/10.3389/fonc.2024.1415859
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang et al. 10.3389/fonc.2024.1415859
Technologies (ICoDT2) , Rawalpindi, Pakistan. pp. 1–6. doi: 10.1109/
ICoDT255437.2022.9787429

125. Li S, Yuan L, Lu T, Yang X, Ren W, Wang L, et al. Deep learning imaging
reconstruction of reduced-dose 40 keV virtual monoenergetic imaging for early
detection of colorectal cancer liver metastases. Eur J Radiol. (2023) 168:111128.
doi: 10.1016/j.ejrad.2023.111128
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