
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Robson Q. Monteiro,
Federal University of Rio de Janeiro, Brazil

REVIEWED BY

Eswari Dodagatta-Marri,
University of California, San Francisco,
United States

*CORRESPONDENCE

Domenico Ribatti

domenico.ribatti@uniba.it

RECEIVED 22 April 2024

ACCEPTED 21 June 2024
PUBLISHED 05 July 2024

CITATION

Ribatti D (2024) The role of endothelial
junctions in the regulation of the
extravasation of tumor cells.
A historical reappraisal.
Front. Oncol. 14:1415601.
doi: 10.3389/fonc.2024.1415601

COPYRIGHT

© 2024 Ribatti. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Mini Review

PUBLISHED 05 July 2024

DOI 10.3389/fonc.2024.1415601
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Bari, Italy
Endothelial cells lining the vessel wall are connected by adherent, tight and gap

junctions. Adherent junctions are common to all endothelial cells, whereas tight

and gap junctions graduate within different vascular segments. Endothelial cell-

cell junctions sustain vascular homeostasis and to control the transendothelial

migration of inflammatory cells. Tumor cells need to weaken endothelial cell-cell

junctions to penetrate the endothelial barrier and transendothelial migration and

metastasis of tumor cells are tightly controlled by endothelial cell-cell junctions.
KEYWORDS

endothelial junctions, exosomes, extravasation, metastasis, tumor growth
Interendothelial junctions

Endothelial cells lining the vessel wall are connected by adherent, tight and gap

junctions (1). Adherent junctions are common to all endothelial cells, whereas tight and

gap junctions graduate within different vascular segments (Figure 1) (2).

Tight junctions (also termed zona occludens) are highly impermeable junctions in the

apical side of interendothelial membrane, consisting of claudins, occludin, junctional

adhesion molecules (JAMs), endothelial cell-selective adhesion molecules (ESAMs), and

other adhesion molecules (3). Occludin establishes a barrier function through a

relationship with zona occludens 1 (ZO-1), which in turn interacts with a-catenin and

actin in the cytoskeleton. JAM-A, JAM-B, and JAM-C are components of the

immunoglobulin superfamily. JAM-A and JAM-C are also expressed in the epithelia and

the leukocytes, whereas JAM-B is present also in Sertoli cells. Tight junctions intervene also

in the regulation of cellular permeability and the transduction of cellular signaling.

Adherent junctions (also termed zona adherens) provide the structural base for

interendothelial mechanical stability and maintenance. Vascular endothelial (VE)-

cadherin is present in adherent junctions and is essential for the maintenance of

endothelial barrier integrity; in fact, VE-cadherin blocking antibody is responsible for an

increase in vascular permeability (1). VE-cadherin interacts with cytosolic molecules a
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catenin, b catenin, plakoglobin (or g catenin), and p120, and

stabilizes tight junctions promoting claudin-5 expression (4).

Vascular endothelial growth factor (VEGF) and transforming

growth factor beta 1 (TGFb1) secreted by tumor cells induce the

endothelial cell junction opening of the endothelial cell junctions

interfering with the VE-cadherin and b catenin (5). Moreover,

tumor cells also secrete angiopoietin-like 4 (ANGPTL4) and C-C-

chemokine ligand 2 (CCL2), which antagonize endothelial cell tight

junctions, promoting tumor cells extravasation (6). Finally, C-X-C

chemokine ligand-4 secreted by endothelial cells promotes cancer

cells’ transendothelial migration through interaction with C-X-C

chemokine receptor type 4 and 7 (CXCR4 and CXCR7) expressed

by tumor cells (7).

Connexins 37, 40, and 43, in the form of hexamers, intervene in

the structure of endothelial gap junctions giving rise to

hemichannels joining their counterparts in adjacent cells and

controlling vascular permeability (8).
Leukocyte extravasation

Post-capillary venules are involved in the control of

extravasation of leukocytes during inflammatory processes.

Leukocytes attach, roll, adhere, and transmigrate through the

altered interendothelial junctions. Rolling is mediated by

interactions between platelet (P)- and endothelial (E)-selectins,

and leukocyte carbohydrate-based ligands, whereas in adhesion

are involved the interactions between leukocyte integrins and

endothelial intercellular adhesion molecule 1 (I-CAM-1) and

vascular cellular adhesion molecule-1 (V-CAM-1) (9). Leukocyte-

endothelial interactions may also occur in large veins, capillaries,

and arterioles. While leukocytes extravasate in the post-capillary
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venules of the skin, muscle, and mesentery, in other organs, such as

the lung and liver, leukocytes pass across the microvasculature.

High endothelial venules (HEVs), characterized by plumb or

cuboidal endothelial cells, are involved in the recirculation of

lymphocytes between blood and lymph nodes (10). In HEVs, the

process of transmigration of leukocytes involves the binding of

lymphocyte (L)-selectin to peripheral lymph node addressin

(PNAd) and mucosal addressin cell adhesion molecule 1

(MadCAM-1) expressed by endothelial cells, and the interaction

between leukocyte integrins and endothelial ICAM-1, ICAM-2, and

MadCAM-1 (11).

Leukocytes may transmigrate between (the paracellular route)

or through (the transcellular route) endothelial cells. Paracellular

extravasation occurs through passage across intercellular gaps

between adjacent endothelial cells (12). Platelet/endothelial cell

adhesion molecule-1 (PECAM-1)/CD31, JAM-1, and CD99 are

involved in transendothelial cell migration (9). Blockade of

PECAM-1/CD31 inhibits the transmigration of neutrophils,

monocytes, and natural killer (NK cells). Otherwise, this receptor

is dispensable for the transmigration of lymphocytes (13). Activated

endothelial cells express chemokines responsible for integrin

activation on the leukocyte surface. The binding of the integrin

leukocyte function-associated antigen-1 (LFA-1) and very late

activated antigen-4 (VLA-4) to the respective ligands ICAM-1

and VCAM-1 on endothelial cells regulates leukocyte adhesion

and spreading (14). Tumor necrosis factor alpha (TNF-a) and

interleukin 1 beta (IL-1b) activate endothelial cells, inducing the

release of CCL2 and CCL7 that, in turn, recruit NK cells and induce

the expression of ICAM-1 and VCAM-1 (15).
Junctional complexes in tumor
endothelial cells

Tumor endothelial cells are characterized by altered

morphologic and genetic phenotype when compared to normal

endothelial cells. Tumor endothelial cells are primarily involved in

priming, activation, and down-regulation of effector immune cells,

and in this context, they directly impact on anti-cancer

immune responses.

VE-cadherin breakdown promotes hematogenic metastasis and

constitutes a potential therapeutic target (16). Neuronal cadherin

(N-cadherin) expressed by tumor and endothelial cells is

responsible for the attachment of cancer cells to the endothelium

(17). Knocking down of N-cadherin or anti-sense RNA-mediated

repression of N-cadherin reduces the interactions of melanoma cells

with the endothelium, and transendothelial migration (17, 18).

Down-regulation of tight junction is involved in uncontrolled

tumor cell growth, detachment, and invasion of cancer cells and

hence successful penetration of the endothelium by cancer cells.

The level of expression of ZO-1 was reduced or lost in 69% of breast

cancer as compared to normal tissue (19). In infiltrating ductal

carcinomas, a reduction in ZO-1 immunohistochemical expression

has been demonstrated in 93% of poorly differentiated tumors.

Moreover, the proteins S100A4 and S100A8/A9 overexpressed in
FIGURE 1

Different types of junctions present in the vascular endothelial cells.
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different types of cancer downregulate tight junction protein

occludin (20). Bladder cancer cells release angiomodulin, which

interacts with avb3 integrin, and favors the formation of actin stress

fibers leading to weakened intercellular connections mediated by

VE-cadherin (21). In glioma stem-like cells, semaphorin 3A binds

to Neuropilin 1-plexin A1 (NRP-1-plxA1) complex and activates

Src, facilitating the relocation of VE-cadherin (22).
Tumor endothelial cell permeability,
leukocyte trafficking, and
extracellular matrix

In tumor chronic inflammation, an increase in vascular

permeability can persist over time (Figure 2) (23). Neutrophils

interact with circulating tumor cells (24), and modify the behavior

of the tumor cells, conferring a more aggressive phenotype.

Lymphocyte function adhesion molecule-1 (LFA-1) is responsible

for the initial capture of neutrophils, whereas the interaction

between tumor ICAM-1 and neutrophil MAC-1 is involved in

maintaining clusters of neutrophils (25). Neutrophils produce

MAC-1 and LFA-1 during extravasation, which bind to ICAM-1

expressed on the endothelium (25). In melanoma, IL-8 produced by

cancer tumor cells attracts neutrophils, that promotes by induction

of MAC-1 and ICAM-1 the interaction between cancer tumor cells

and neutrophil clusters, and the endothelium (26). Tumor

endothelial cells altered glycosylation of ICAM-1, VCAM-1, and

PECAM, and lectins, promoting tumor progression and metastasis,

and modifying the adhesive properties of endothelial cells (27).
Frontiers in Oncology 03
Blocking the interactions between circulating tumor cells and

endothelium is a potential target to inhibit metastasis.

Tumor-associated macrophages (TAMs) modulate vascular

permeability through VEGF-promoted down-regulation of

endothelial ZO-1 and VE-cadherin, and VLA-4-mediated

disruption of endothelial VCAM-1 (28, 29).

Tumor endothelial cells increase the expression of the common

lymphatic endothelial and vascular endothelial receptor-1

(CLEVER-1), expressed on lymphatic endothelial cells, sinusoidal

endothelial cells in the liver and spleen, and HEVs. CLEVER-1

favors the selective transmigration of Tregs and type II

macrophages from the blood into the tumor (30).

Alpha 4 integrin is expressed in many different human tumors,

including melanoma and sarcoma. The a4b1 integrin expressed by

cancer cells may act as an alternative ligand for VCAM-1 to mediate

the adhesion of cancer cells to the endothelium (31). The

interaction between avb1 or avb3 integrins and neuronal cell

adhesion molecule is also involved in the interaction between

tumor and endothelial cells (32). Leukocytes expressing aLb2
integrins link tumor cells and endothelial cells expressing ICAM-

1 (33). Epithelial tumor cells synthesize ANGPTL4 and bind to

endothelial integrin a5b1, claudin-5, and VE-cadherin, weakening

the cellular junctions (34). ANGPTL4 induces retraction of

endothelial cells from one another, leaving gaps in the capillary

walls that facilitate extravasation as indicated by the dissolution of

the ZO-1 containing tight junctions between adjacent cells. STING

activation synergizes with VEGF receptor 2 (VEGFR-2) blockade,

leading to normalization of the tumor vasculature, upregulation of

VCAM-1 and ICAM-1, and regression of immunotherapy-resistant

tumors (35).

E-and P-selectins facilitate the adhesion of cancer cells to the

endothelium (36). Cancer cells express different ligands specific for

endothelial selectins, including hematopoietic cell E-/L-selectins

ligand (HCELL), carcinoembryonic antigen (CEA), and P-selectin

glycoprotein ligand 1 (PSGL1) (36). The binding between P-selectin

expressed by platelets and selectin ligands on cancer cells bridges

tumor cells and platelets, favoring the adhesion of tumor cells to

endothelial cells (36). E- and P-selectins are also involved in colon

and breast cancer metastasis (37, 38). Metastases are reduced by

50% when small cell lung cancer cells are xenografted in E- and P-

selectin-deficient mice (39). Administration of GMI-1271, a small

molecule E-selectin antagonist, reduces cancer cell attachment to

the endothelium (40). In patients with metastatic melanoma, the

combination of bevacizumab with anti-cytotoxic T-lymphocyte

associated protein 4 (CTLA-4) monoclonal antibody increases the

expression of E-selectin, ICAM-1, and VCAM-1, and enhances T

cell recruitment in the tumor microenvironment and improves the

clinical outcome (41).
Exosomes and angiopellosis

Exosomes are small vesicles with a diameter of 30–200 nm,

containing nucleic acids, proteins, and other substances. Different

pro-angiogenic factors including VEGF, TGFb, fibroblast growth
factor 2 (FGF-2), IL-6, and IL-8, are present in exosomes derived
FIGURE 2

Principal mediators of the interactions between inflammatory cells
and tumor endothelial cells.
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from tumor cells. Moreover, tumor cell exosomes can be uptake by

endothelial cells and can break down vascular integrity (42). In

colorectal cancer, the cancer cell-derived exosomes contain miRNA

that downregulates ZO-1, destroying the endothelial barrier (43).

TAMs-derived exosomes containing miR-23a, miR-155, and miR-

221 induced vascular leakiness in hepatocellular carcinoma (44).

Finally, cancer-derived exosomes are the main driving force for

metastasis niche formation.

Cancer cell clusters that possess a higher metastatic potential

can extravasate using an alternative mechanism named

angiopellosis, consisting of active remodeling of endothelial cells

to cover the extravasating cells and then push these cells out of the

blood vessels (45). The endothelial cells extend protrusions and

actively remodel themselves around the exiting cells. The exiting cell

will then be either actively “pushed” from the inside of the blood

vessel, or the vascular cells will remodel around the cell so that the

cell no longer remains inside the vessel.
Discussion

The reorganization of endothelial cell junctions and cytoskeleton

allows cancer cells to pass through. Tumor cells induce rapid

endothelial cell dissociation, leading to the loss of VE-cadherin

expression and changes in vinculin distribution and organization.

The hyperpermeable nature of the tumor microcirculation is well

established and depends on altered interendothelial junctions,

transendothelial channels, fenestrations, and vescicular vacuolar

organelles. In this context, it has been speculated that large

therapeutic agents could be selectively delivered to the tumors.

Widened interendothelial junctions have been described in tumor

vessels (46). In the brain vasculature, the modulation of claudin-5 and

angulin-1 enables the blood-brain barrier permeability of molecules

of molecular weight less than 1 and 5.3 kDa, respectively (47).

Moreover, the co-regulation of claudin-5 and occludin increased

the permeability of molecules as large as 4 kDa (48), indicating that

targeted tight junction components are important in controlling the

size of molecules that pass through the blood-brain barrier in tumors.

Viruses can be utilized as tools to induce the opening of tight

junctions and enhance the permeability of the blood-brain

barrier (49).
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Cancer metastasis is a complex event involving cancer cells and

the endothelial junctional complexes (32). Adequate knowledge of

the interactions as well as the role individual role played by these

junctions could serve as a target for the treatment of metastasis.

Agents that inhibit the effects of cytokines and growth factors such

as TNFa, TGFb, VEGF, and HGF, all involved in the increase of

vascular permeability, decrease transepithelial/endothelial

resistance and increase paracellular permeability, could be a

useful tool against cancer metastasis. Drugs that neutralize VEGF,

inhibit VEGFR-2 or activate Tie2 are effective in reducing vascular

permeability and leakage.
Author contributions

DR: Writing – original draft, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This work

was supported by Associazione Italiana contro le Leucemie,

Linfomi, e Mieloma (AIL), Bari, Italy.
Conflict of interest

The author declares that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
1. Dejana E. Endothelial cell-cell junctions: happy together. Nat Rev Mol Cell Biol.
(2004) 5:261–70. doi: 10.1038/nrm1357

2. Simionescu M, Simionescu N, Palade E. Segmental differentiation of cell junctions
in the vascular endothelium. J Cell Biol. (1975) 67:863–85. doi: 10.1083/jcb.67.3.863

3. Dejana E, Orsenigo F. Endothelial adherens junctions at a glance. J Cell Sci. (2013)
126:2545–9. doi: 10.1242/jcs.124529

4. Taddei A, Giampietro C, Conti A, Orsenigo F, Breviario F, Pirazzoli V, et al.
Endothelial adherens junctions control tight junctions by VE-cadherin-mediated
upregulation of claudin-5. Nat Cell Biol. (2008) 10:923–34. doi: 10.1038/ncb1752

5. Roussos ET, Condeelis JS, Patsialou A. Chemotaxis in cancer. Nat Rev Cancer.
(2011) 11:573–87. doi: 10.1038/nrc3078

6. Wolf MJ, Hoos A, Bauer J, Boettcher S, Knust M, Weber A, et al. Endothelial
CCR2 signaling induced by colon carcinoma cells enables extravasation via the JAK2-
Stat5 and p38MAPK pathway. Cancer Cell. (2012) 22:91–105. doi: 10.1016/
j.ccr.2012.05.023

7. Wendel C, Hemping-Bovenkerk A, Krasnyanska J, Mees ST, Kochetkova M,
Stoeppeler S, et al. CXCR4/CXCL12 participate in extravasation of metastasizing breast
cancer cells within the liver in a rat model. PloS One. (2012) 7:e30046. doi: 10.1371/
journal.pone.0030046

8. Pohl U. Connexins: key players in the control of vascular plasticity and function.
Physiol Rev. (2020) 100:525–72. doi: 10.1152/physrev.00010.2019

9. Springer TA. Traffic signals for lymphocyte recirculation and leukocyte
emigration: the multistep paradigm. Cell. (1994) 76:301–14. doi: 10.1016/0092-8674
(94)90337-9

10. Miyasaka M, Tanaka T. Lymphocyte trafficking across high endothelial venules:
dogmas and enigmas. Nat Rev Immunol. (2004) 4:360–70. doi: 10.1038/nri1354
frontiersin.org

https://doi.org/10.1038/nrm1357
https://doi.org/10.1083/jcb.67.3.863
https://doi.org/10.1242/jcs.124529
https://doi.org/10.1038/ncb1752
https://doi.org/10.1038/nrc3078
https://doi.org/10.1016/j.ccr.2012.05.023
https://doi.org/10.1016/j.ccr.2012.05.023
https://doi.org/10.1371/journal.pone.0030046
https://doi.org/10.1371/journal.pone.0030046
https://doi.org/10.1152/physrev.00010.2019
https://doi.org/10.1016/0092-8674(94)90337-9
https://doi.org/10.1016/0092-8674(94)90337-9
https://doi.org/10.1038/nri1354
https://doi.org/10.3389/fonc.2024.1415601
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Ribatti 10.3389/fonc.2024.1415601
11. Girard JP, Springer TA. High endothelial venules (HEVs), specialized
endothelium for lymphocyte migration. Immunol Today. (1995) 16:449–57.
doi: 10.1016/0167-5699(95)80023-9

12. Strell C, Entschladen F. Extravasation of leukocytes in comparison to tumor
cells. Cell Commun Signal. (2008) 6:10. doi: 10.1186/1478-811X-6-10

13. Bird IN, Spragg JH, Ager A, Matthews N. Studies of lymphocyte transendothelial
migration: analysis of migrated cell phenotypes with regard to CD31 (PECAM-1),
CD45RA and CD45RO. Immunology. (1993) 80:553–60.

14. Harjunpaa H, Llort Asens M, Guenther C, Fagerholm SC. Cell adhesion
molecules and their roles and regulation in the immune and tumor
microenvironment. Front Immunol. (2019) 10:1078. doi: 10.3389/fimmu.2019.01078

15. Won Jun H, Kyung Lee H, Ho Na I, Jeong Lee S, Kim K, Park G, et al. The role of
ccl2, ccl7, icam-1, and vcam-1 in interaction of endothelial cells and natural killer cells.
Int Immunopharmacol. (2022) 113:109332. doi: 10.1016/j.intimp.2022.109332

16. Bartolome RA, Torres S, Isern de Val S, Escudero-Paniagua B, Calviño E,
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