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Objectives: The accurate assessment of lymph node metastasis (LNM) can

facilitate clinical decision-making on radiotherapy or radical hysterectomy (RH)

in cervical adenocarcinoma (AC)/adenosquamous carcinoma (ASC). This study

aims to develop a deep learning radiomics nomogram (DLRN) to preoperatively

evaluate LNM in cervical AC/ASC.

Materials and methods: A total of 652 patients from a multicenter were enrolled

and randomly allocated into primary, internal, and external validation cohorts.

The radiomics features were extracted from axial T2-weighted imaging (T2WI),

diffusion-weighted imaging (DWI), and contrast-enhanced T1-weighted imaging

(CE-T1WI). The DL features from T2WI, DWI, and CE-T1WI were exported from

Resnet 34, which was pretrained by 14 million natural images of the ImageNet

dataset. The radscore (RS) and DL score (DLS) were independently obtained after

repeatability test, Pearson correlation coefficient (PCC), minimum redundancy

maximum relevance (MRMR), and least absolute shrinkage and selection

operator (LASSO) algorithm performed on the radiomics and DL feature sets.

The DLRN was then developed by integrating the RS, DLS, and independent

clinicopathological factors for evaluating the LNM in cervical AC/ASC.

Results: The nomogram of DLRN-integrated FIGO stage, menopause, RS, and

DLS achieved AUCs of 0.79 (95% CI, 0.74–0.83), 0.87 (95% CI, 0.81–0.92), and
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0.86 (95% CI, 0.79–0.91) in the primary, internal, and external validation cohorts.

Compared with the RS, DLS, and clinical models, DLRN had a significant higher

AUC for evaluating LNM (all P < 0.005).

Conclusions: The nomogram of DLRN can accurately evaluate LNM in cervical

AC/ASC.
KEYWORDS

magnetic resonance imaging, cervical adenosquamous carcinoma, cervical
adenocarcinoma, radiomics, deep learning, lymph node metastasis
Introduction

Radical hysterectomy (RH) is widely recognized as the

established standard surgical approach in early-stage cervical

cancer (1). According to the 2018 version of the International

Federation of Gynecology and Obstetrics (FIGO) staging system, if

lymph node metastasis (LNM) is detected through preoperative

imaging or pathology, the cancers will be classified as stage IIIC (2).

Instead of RH, definitive radiotherapy is considered the preferred

treatment approach for patients diagnosed with stage IIIC (3). On

the other hand, with the routine application of RH, approximately

90% of non-metastatic lymph nodes (LN) are routinely dissected,

causing various complications, such as lymphedema, neurovascular

injury, and adhesion (4). Although a satisfactory 5-year survival rate

is observed in early-stage cervical cancer after RH, the occurrence of

LNM decreases the survival rate from 85%–90% to 50%–55% (5).

Thus, the precise preoperative assessment of lymph node metastasis

(LNM) holds great significance in personalized treatment plans and

prognosis evaluation for patients with cervical cancer (6).

Adenocarcinoma (AC) and adenosquamous carcinoma (ASC)

account for approximately 20%–25% of cervical cancers and have

exhibited a rise in morbidity and mortality over the past decades,

particularly in young women (6–9). Compared with squamous cell

carcinoma (SCC), both AC and ASC are independent risk factors

for the lower overall survival (OS) and recurrence-free survival

(RFS) (7). Additionally, ASC more commonly exhibits peripheral

nerve infiltration, whereas AC is linked to earlier FIGO stage,

smaller tumor volume, less lymphovascular space invasion

(LVSI), less deep stromal invasion (DSI), and a higher incidence

of ovarian metastasis (10). The predictive factors for LNM between

AC components and SCC are different (11). Therefore, it is

necessary to explore reliable predictive factors and construct a

powerful comprehensive model to evaluate LNM in cervical AC

and ASC.

The dissected lymph nodes (LNs) can be categorized into three

groups based on the size of the metastases on pathology: (1) individual

tumor cells measuring less than 0.2 mm; (2) micrometastasis ranging

from 0.2 mm to 2 mm; and (3) macrometastasis measuring greater

than 2 mm (12). However, both the preoperative MRI and positron
02
emission tomography (PET)-CT demonstrate a limited discriminating

ability for the individual tumor cells and micrometastasis in LN with a

normal size (13, 14). As parts of artificial intelligence, medical image-

based radiomics and deep learning (DL) have attracted increasing

attention and shown optimistic prospects in precision medicine.

Radiomics is the process of the quantitative high-dimensional

features extraction from medical images based on high-throughput

techniques that helps to achieve precision medicine (15). Compared

with radiomics, DL can achieve automatic learning and hierarchically

organized task-adaptive image features and form automatic

predictions for precision medicine (16).

Given the distinct biological properties and the rising morbidity

and mortality of AC and ASC, the objective of this study was to

construct a DL radiomics nomogram (DLRN) for the accurate

evaluation of LNM in cervical AC and ASC.
Patients and methods

The approval of this retrospective study was obtained from the

institutional review board, and the informed consent requirement

was waived.

The inclusion criteria were as follows: (1) cervical AC or ASC

confirmed by pathology; (2) pelvic MRI examination performed

within 2 weeks prior to RH or trachelectomy; (3) availability of

complete clinicopathological data; (4) no concurrent malignancies.

The exclusion criteria were as follows: (1) chemoradiotherapy

before surgery; (2) tumor size less than 1 cm; (3) obvious imaging

artifacts; (4) incomplete MRI sequences. The lymph node status was

pathologically determined based on the tissue samples from the

radical trachelectomy or hysterectomy.

Finally, a total of 652 patients were enrolled and allocated into

the primary cohort (center A, n1 = 375, from January 2010 to

October 2019), internal validation cohort (center A, n1 = 161, from

October 2019 to December 2021), and external validation cohort

(center B and C, n1 = 116, from January 2013 to December 2021).

The patient selection process and sample size consideration are

independently presented in Figure 1 and Supplementary 1 in

Supplementary Data Sheet 1. The baseline data were extracted
frontiersin.org
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from the medical records. The tumor diameter, LNM, disruption of

the cervical stromal ring (DCSR), and parametrial invasion (PMI)

were measured and assessed on MRI, and the MRI definition of the

above features is illustrated in Supplementary 1 in Supplementary

Data Sheet 1.
MRI examination

The MRI examination was performed on 1.5 T systems

(MAGNETOM Avanto, Siemens Healthineers, Erlangen,

Germany; Optima 360, General Electric Healthcare, Milwaukee,

WI, USA). The detailed MRI parameters are listed in Table 1.
Frontiers in Oncology 03
Image segmentation and preprocessing

The regions of interest (ROIs) were manually delineated along

the tumor margin on the slice of T2-weighted imaging (T2WI),

diffusion-weighted imaging (DWI), and CE-T1WI with the largest

tumor based on ITK-SNAP (Version 3.8.0) by Radiologist 1 (with 7

years of experience in pelvic MR imaging). Normalization was

performed on T2WI and CE-T1WI by rescaling the gray values

within the range of 0–800 (17). To evaluate the features

repeatability, 30 patients were randomly selected and delineated

by Radiologist 2 (with 5 years of experience in pelvic MR imaging)

and by Radiologist 1 repeatedly 1 month later after initial

segmentation. The features with intra- and inter-class correlation
TABLE 1 The detailed sequences and parameters of MR scan systems.

Parameters

Center 1 Center 2 Center 3

Siemens 1.5T Avanto General Electric 1.5T Optima 360 Siemens 1.5T Avanto

T2WI
DWI
(0,1000)

CE-
T1WI

T2WI
DWI
(0,800)

CE-T1WI T2WI
DWI
(50,800)

CE-
T1WI

Sequence SE EPI VIBE FSE EPI LAVA SE EPI VIBE

Repetition time (ms) 4760~5170 4000~5000 4.89 2677~2723 3700~4000 3.8~3.9 4290~4500 5100 4.49

Echo time (ms) 83 83 2.38 60.32~61.68 73~76 1.7~1.8 82 80 2.19

Field of view (mm) 280*340 200*280 280*340 280*340 200*280 280*340 280*340 200*280 280*340

Slice thickness (mm) 4~5 4~5 4~5 5~6 5~6 5~6 4~5 4~5 4~5

Gap (mm) 0.8~1 0.8~1 0.8~1 1~1.2 1~1.2 1~1.2 0.8~1 0.8~1 0.6~1
fro
CE, contrast-enhanced; DWI, diffusion-weighted imaging; EPI, echo-planar imaging; FSE, fast spin echo; LAVA, liver acquisition with volume acceleration; SE, spin echo; T1WI, T1-weighted
imaging; T2WI, T2-weighted imaging; VIBE, volumetric interpolated breath-hold examination.
FIGURE 1

The workflow of patients’ inclusion, exclusion, and grouping.
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coefficients (ICCs) more than 0.75 were considered the reliable

features and reserved for further data analysis. The construction

workflow of the DLRN can be observed in Figure 2.
Radiomics and deep learning features
extraction and selection

Pyradiomics (version 3.0.1) was adopted to extract all radiomics

features, including shape, first-order statistics, texture, and wavelet-

transform features. The texture features consist of gray-level

cooccurrence matrix (GLCM), gray-level run-length matrix

(GLRLM), gray-level-size-zone matrix (GLSZM), gray-level-

dependence matrix (GLDM), and neighborhood-gray-tone-

difference matrix (NGTDM). The ResNet 34 architecture was

adopted to extract DL features on PyTorch Lightning (Version

1.6.4). To make full use of the DL features, the full connection and

softmax layers of the ResNet 34 were removed, and the output value

of the last layer node was defined as the DL features. Then, the Z-

score normalization was applied to each radiomics and DL feature

by subtracting the mean and dividing by the standard error.

The following feature selection steps were performed respectively

on radiomics and DL feature sets in the primary cohort: (1) Pearson

correlation coefficient (PCC) of any pair of features was calculated. If

PCC was greater than 0.9, one of pair features will be randomly

eliminated to reduce redundancy (18). (2) The 125 highest-ranking

features strongly correlated with LNM were selected by using

maximum relevance and minimum redundancy (MRMR) (19). (3)
Frontiers in Oncology 04
The least absolute shrinkage and selection operator (LASSO)

algorithm was applied with 10-fold cross-validation using the

minimum criteria (1-SE criteria) to select the optimal feature set

from the primary cohort. After the LASSO method, the radiomics

and deep learning signature were generated, which were represented

as radscore (RS) and deep learning score (DLS). The RS and DLS

were independently obtained by the linear combination of selected

optimal features and the corresponding weight coefficients.
Deep learning radiomics nomogram
construction and evaluation

The independent risk factors for LNM in cervical AC/ASC were

identified using multivariate analysis by inputting significant

variables found using univariate analysis. Backward stepwise

selection was applied, in which the stopping rule was the likelihood

ratio test with Akaike’s information criterion. The DLRN and clinical

models were then constructed by integrating their respective

independent risk factors based on logistic regression analysis. The

receiver operating characteristic (ROC) curve analysis was performed

on the RS, DLS, clinical model, and DLRN to assess their diagnostic

abilities. The area under the curve (AUC), sensitivity (SEN),

specificity (SPE), positive/negative predictive values (PPV/NPV),

and positive/negative likelihood ratios (+LR/−LR) were calculated

in the primary, internal, and external validation cohorts. The

calibration curves, measuring how similar the evaluation outcome

was to the observed ones, were drawn based on the Hosmer–
FIGURE 2

Deep learning radiomics nomogram construction and evaluation.
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Lemeshow (H–L) test. Decision curve analysis was plotted to evaluate

the clinical effectiveness of DLRN by calculating the net benefits at

varied threshold probabilities (20).
Statistical analysis

R software (version 3.5.0, http://www.Rproject.org) and SPSS

(version 26.0.0.0; IBM Corp., USA) were used to implement the

statistical analyses. The normality was assessed based on the

Kolmogorov–Smirnov test. Continuous variables with normal and

non-normal distribution were expressed as mean ± standard

deviation (SD) and median with interquartile range, respectively.

The differences of variables between LNM positive and negative

groups were assessed based on Student’s t-test, Mann–Whitney U
Frontiers in Oncology 05
test, or chi-squared test. The DeLong test was employed to compare

the diagnostic performances of different models. A p-value of

statistical significance level was set as 0.05.
Results

Patients

The clinicopathological characteristics of the LNM-positive and

-negative patients in the primary, internal, and external validation

cohorts are compared in Table 2. The menopause, FIGO stage,

tumor diameter, and PMIMR and were determined as clinical

independent risk factors and were used to build the clinical

model (Table 3). The clinical mode achieved AUCs of 0.71 (95%
TABLE 2 The characteristic comparisons of LNM-positive and LNM-negative in the primary and validation cohorts.

Characteristics Primary cohort (n=375)

P-
value

Internal
validation
cohort (n=161)

P-
value External validation

cohort (n=116)

P-
value

LNM
(-) (n=269)

LNM
(+) (n=106)

LNM
(-) (n=111)

LNM
(+) (n=50)

LNM
(-) (n=88)

LNM
(+) (n=28)

Mean age (year) 46.9 ± 9.5 48.5 ± 10.6 0.161 48.5 ± 9.4 49.0 ± 10.0 0.756 49.3 ± 10.1 52.3 ± 9.9 0.174

Malignancy
Family history 0.439 0.455 0.741

(+) 19 (7.1%) 10 (9.4%) 13 (11.7%) 8 (16.0%) 10 (11.4%) 4 (14.3%)

(–) 250 (92.9%) 96 (90.6%) 98 (88.3%) 42 (84.0%) 78 (88.6%) 24 (85.7%)

Fertility 0.303 0.518 0.675

(+) 256 (95.2%) 98 (92.5%) 104 (93.7%) 45 (90.0%) 83 (94.3%) 26 (92.9%)

(–) 13 (4.8%) 8 (7.5%) 7 (6.3%) 5 (10.0%) 5 (5.7%) 2 (7.1%)

Menopause 0.011 0.312 0.106

(+) 82 (30.5%) 47 (44.3%) 46 (41.4%) 25 (50.0%) 38 (43.2%) 17 (60.7%)

(–) 187 (69.5%) 59 (55.7%) 65 (58.6%) 25 (50.0%) 50 (56.8%) 11 (39.3%)

Histology 0.288 0.818 0.536

AC 141 (52.4%) 62 (58.5%) 51 (45.9%) 22 (44.0%) 65 (73.9%) 19 (67.9%)

ASC 128 (47.6%) 44 (42.5%) 60 (54.1%) 28 (56.0%) 23 (26.1%) 9 (32.1%)

FIGO stage 0.000 0.018 0.969

IB1-IB2 219 (81.4%) 62 (58.5%) 100 (90.1%) 38 (76.0%) 72 (81.2%) 23 (82.1%)

IIA-IIB 50 (18.6%) 44 (42.5%) 11 (9.9%) 12 (24.0%) 16 (18.8%) 5 (17.9%)

Tumor diameter on
MRI (cm) 3.35 ± 1.21 3.96 ± 1.12 0.000 3.31 ± 1.15 4.26 ± 1.12 0.000 3.32 ± 1.11 4.01 ± 1.14 0.008

PMIMR 0.000 0.000

(+) 32 (11.9%) 36 (34.0%) 12 (10.8%) 21 (42.0%) 0.000 11 (12.5%) 12 (42.9%)

(–) 237 (88.1%) 70 (66.0%) 99 (89.2%) 29 (58.0%) 77 (87.5%) 16 (57.1%)

DCSRMR 0.004 0.000 0.334

(+) 133 (49.4%) 70 (66.0%) 48 (43.2%) 40 (80.0%) 54 (61.4%) 20 (71.4%)

(–) 136 (50.6%) 36 (34.0%) 63 (56.8%) 10 (20.0%) 34 (38.6%) 8 (28.6%)

(Continued)
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CI, 0.66–0.76), 0.75 (95% CI, 0.67–0.81), and 0.71 (95% CI, 0.61–

0.79) in the primary, internal, and external validation cohorts.
Feature selection

A total of 2,499 radiomics features were extracted from ROIs of

T2WI, DWI, and CE-T1WI. After ICC, PCC, MRMR, and LASSO

algorithm, the 22 most optimal features were reserved. A total of

1,536 DL features were extracted from ROIs of T2WI, DWI, and

CE-T1WI. After ICC, PCC, MRMR, and LASSO algorithms, the 25

most optimal features were reserved. Figures 3, 4 show the feature

selection process, optimal radiomics and DL feature sets and their

respective weight coefficients. After linear combination with their

respective weight coefficients, the RS and DLS were independently

calculated. The RS and DLS differences between LNM-positive and

LNM-negative groups in three cohorts are shown in Figure 5.
The evaluation performance and
comparison of RS and DLS

For evaluating LNM, the AUCs of RS and DLS were 0.75 (95%

CI, 0.70–0.79) and 0.70 (95% CI, 0.65–0.75) in the primary cohort,

were 0.84 (95% CI, 0.77–0.89) and 0.81 (95% CI, 0.74-0.96) in the

internal validation cohort, and were 0.79 (95% CI, 0.70–0.86) and

0.78 (95% CI, 0.69–0.85) in the external validation cohort,

respectively. The DeLong test showed that there was a

comparable performance for evaluating LNM between RS and

DLS in the primary (P = 0.096), internal validation (P = 0.452),
Frontiers in Oncology 06
and external validation cohorts (P = 0.936). Therefore, both the RS

and DLS were selected to construct the DLRN.
The construction and evaluation of DLRN

In the process of constructing the nomogram, the RS, DLS,

menopause, and FIGO stage were determined as the independent

risk factors. The DLRN was constructed by integrating RS, DLS,

menopause, and FIGO stage (Figure 6). The AUC, SEN, and SPE of

DLRN were 0.79% (95% CI, 0.74–0.83), 67.9%, and 78.4% in the

primary cohort; 0.87% (95% CI, 0.81–0.92), 92.0%, and 71.2% in the

internal validation cohort; 0.86% (95% CI, 0.78–0.91), 89.3%, and

71.6% in the external validation cohort, respectively. The AUC of

DLRN was significantly higher than those of RS, DLS, and clinical

model in the primary and internal validation cohorts (all P < 0.05)

than that of the clinical model in the external validation cohort (P =

0.011). The comparison details are presented in Figures 7A–C and

Table 4. The H-L tests demonstrated that evaluation outcomes of

the DLRN had an ideal agreement with actual observation ones in

the primary (P=0.913), internal validation (P=0.958), and external

validation cohorts (P = 0.803). The calibration curves of DLRN are

shown in Figures 7D–F.
Clinical application of nomogram

The clinical decision curve along with clinical impact curve of

DLRN in the primary internal validation and external validation

cohorts are shown in Figure 8. In the external validation cohort,
TABLE 2 Continued

Characteristics
Primary cohort (n=375)

P-
value

Internal
validation
cohort (n=161)

P-
value External validation

cohort (n=116)

P-
value

LNM
(-) (n=269)

LNM
(+) (n=106)

LNM
(-) (n=111)

LNM
(+) (n=50)

LNM
(-) (n=88)

LNM
(+) (n=28)

LNMMR 0.001 0.000 0.199

(+) 82 (30.5%) 52 (49.1%) 19 (17.1%) 25 (50.0%) 32 (36.4%) 14 (50.0%)

(–) 187 (69.5%) 54 50.9(%) 92 (82.9%) 25 (50.0%) 56 (63.6%) 14 (50.0%)

PMI 0.000 0.000 0.000

(+) 16 (5.9%) 32 (30.2%) 1 (0.1%) 14 (28.0%) 3 (3.4%) 9 (32.1%)

(–) 253 (94.1%) 74 (69.8%) 110 (99.9%) 36 (72.0%) 85 (96.6%) 19 (67.9%)

DSI 0.000 0.000 0.000

(+) 177 (65.8%) 92 (84.9%) 56 (50.5%) 4 (8%) 35 (39.8%) 23 (82.1%)

(–) 92 (34.2%) 14 (13.2%) 55 (49.5%) 46 (92.0%) 53 (60.2%) 5 (17.9%)

DLS 0.250.13 0.36 ± 0.17 0.000 0.24 ± 0.18 0.47 ± 0.24 0.000 0.19 ± 0.16 0.41 ± 0.22 0.000

RS 0.24 ± 0.16 0.40 ± 0.15 0.000 0.23 ± 0.18 0.50 ± 0.18 0.000 0.19 ± 0.16 0.38 ± 0.19 0.000
front
AC, adenocarcinoma; ASC, adenosquamous carcinoma; DSI, deep stromal invasion; DCSRMR, disruption of cervical stroma ring on MRI; DLRS, deep learning radiomics score; DLS, deep
learning score; FIGO, International Federation of Gynecology and Obstetrics (2009); LNM, lymph node metastasis. LNMMR, lymph node metastasis on MRI; PMI, parametrial invasion;
PMIMR, parametrial invasion on MRI; RS, radscore.
iersin.org
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when the threshold probability was within the range of 0.12–0.98,

the use of DLRN added more net benefits than the scheme of

“treatment-all” or “treatment-none”. In the most range of the

threshold probability, the net benefit of DLRN was more than

those of DLS, RS, and clinical model.
Discussion

In this study, the DLRN, by integrating the DLS, RS, and clinical

independent risk factors, could be helpful for assessing the LNM in

patients with AC/ASC. The AUCs of DLRNwere 0.79 (95% CI, 0.74–

0.83), 0.87 (95% CI, 0.81–0.92) and 0.86 (95% CI, 0.78–0.91) in the

primary, internal and external validation cohorts, respectively.

The conventional MRI morphological criteria for the diagnosis

of LNM are as follows: short axis diameter > 8 mm, round shape,

irregular contour, lack of fat hilus on T2WI, hyperintensity on DWI

and heterogeneous enhancement on CE-T1WI (18). The
Frontiers in Oncology 07
conventional MRI morphological criteria had a combined SEN of

51% and SPE of 90% for evaluating the LNM in cervical cancer (13).

The radiomics nomogram could accurately diagnose the LNM in

cervical SCC, with the C index ranging from 0.856 to 0.909 (3, 21).

A previous cervical AC/ASC study showed that the AUC of the

support vector machine model for evaluating LNM was 0.79 and

0.82 in the primary and validation cohorts, respectively (19). This

study had the following differences compared with aforementioned

studies: (1) the sufficient multicenter samples; (2) focusing on

cervical AC/ASC; (3) the established DLRN containing multiscale

in fo rmat ion ( rad iomic s f ea tu re s , DL fea ture s , and

clinical characteristics).

The radiomics features highly depend on the accurate tumor

segmentation. The features extracted from different manual

segmentations of the same lesion may vary widely (22).

Compared with radiomics, DL can achieve automatic learning

and hierarchically organized task-adaptive image features. To

select reliable features with good reproducibility, both the
TABLE 3 The construction of the clinical model and nomogram using multivariate logistic regression analysis.

Variables
Clinical model Nomogram

b Odds Ratio P-value b Odds Ratio P-value

Menopause 0.58 1.79 (1.08-2.97) 0.025 0.07 2.16 (1.27-3.70) 0.005

FIGO stage 0.68 1.98 (1.16-3.40) 0.013 0.48 1.61 (0.92-2.82) 0.093

Tumor diameter 0.29 1.33 (1.07-1.65) 0.012 / / /

PMIMR 0.72 2.05 (1.10-3.85) 0.025 0.18 1.19 (0.60-2.39) 0.619

DCSRMR -0.06 0.94 (0.54-1.63) 0.833 -0.3 0.74 (0.42-1.32) 0.312

LNMMR 0.38 1.47 (0.87-2.48) 0.155 0.23 1.25 (0.72-2.19) 0.428

RS / / / 4.36 78.25 (12.48-490.59) 0.000

DLS / / / 3.08 21.72 (3.39-139.13) 0.001

Consistant -3.23 0.04 < 0.000 -4.16 0.02 0.000
FIGURE 3

Features determined by the LASSO algorithm. The lambda (l) is selected based on 10-fold cross-validation via minimum criteria (1-SE criteria).
(A, B) A total of 22 and 25 features were selected from radiomics and deep learning feature sets (LASSO, least absolute shrinkage and
selection operator).
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radiomics and DL features with ICCs less than 0.75 were eliminated.

Meanwhile, considering the possibility of redundancy between

radiomics and DL features, the PCC test was performed to

remove redundant features.

In the diagnostic performance comparison of radiomics

features and DL features, consistent conclusion has not been

reached yet. Some studies concluded that the diagnostic

performance of DL features was inferior to that of the radiomics

features (23, 24), whereas another study achieved a different

conclusion (25). In this study, the DLS yielded a comparable

diagnostic performance to the RS with no significant difference

between two signatures. Therefore, both RS and DLS were adopted

to construct the comprehensive nomogram.

Previous studies demonstrated that the FIGO stage and tumor

size were clinical independent risk factors and were integrated into

the model to evaluate LNM in cervical SCC (3, 21, 26). In this study,

the factors of menopause, FIGO stage, tumor diameter, and

PMIMR were determined as clinical independent risk factors and

were used to build the clinical model. In the process of constructing

a comprehensive nomogram, tumor diameter was excluded because

of the same information that had been contained in the optimal

radiomics signature. Finally, menopause, FIGO stage, RS, and DLS

were determined as independent risk factors and were used to build

the DLRN.
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The overfitting issue needed to be carefully dealt with in the

process of model building. In this study, the risk of overfitting of DLRN

was low. The reasons were as follows: (1) the AUCs of DLRN were

greater in the validation cohorts than in the primary cohort, which was

a reliable evidence for eliminating overfitting bias. (2) To reduce the

risk of overfitting, we had adopted the following guidelines in our

logistic regression model: the predictor number should generally be

within 1/20 to 1/8 of sample sizes of the training cohort, and the event-

per-predictor ratio should remain within the range of 5 to 9 (27, 28).

The potential reasons that the accuracy of primary cohort was

lower than validation cohorts are as follows: (1) To avoid the

influence of random effects on model construction, the non-

random method based on time grouping was adopted to

construct the DLRN, which was widely used in authoritative

research articles (29–31). However, this time grouping-based non-

random approach led to an imbalanced distribution of features

across the cohorts. (2) The morbidity of the AC/ASC was

significantly lower than that of SCC. The large number of AC/

ASC cases needs to collect from multiple centers over an extended

period. In this study, a total of 536 patients from center A were

enrolled and allocated into the primary cohort (from January 2010

to October 2019) and internal validation cohort (from October 2019

to December 2021). The data selection bias among primary and

validation cohorts that from different time were inevitable due to its
FIGURE 4

Radiomics (A) and DL (B) features with their respective weight coefficients after LASSO regression.
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FIGURE 5

The RS (A–C) and DLS (D–F) differences between LNM-positive and LNM-negative groups in the primary, internal validation, and external validation
cohorts (RS, radscore; DLS, deep learning score; LNM, lymph node metastasis). The symbol **** means P-value less than 0.0001.
FIGURE 6

The DLRN based on RS, DLS, and independent risk factors of menopause and FIGO stage (FIGO, International Federation of Gynecology
and Obstetrics).
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retrospective nature. Therefore, the imbalanced distribution of

optimal clinical, radiomic, and deep learning features selected

among the primary and validation cohorts was the primary factor

contributing to the lower accuracy in the training data.
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The nomogram is a visual tool used to generate personalized

probability predictions. Gynecologists and radiologists can make

preoperative individualized predictions of the risk of LNM using

this user-friendly scoring system, aligning with the current trend
FIGURE 7

The ROC curves of RS, DLS, clinical model, and DLRN for predicting LNM in the primary (A), internal (B), external validation (C) cohorts. The
calibration curves of the DLRN in the primary cohort [(D), P = 0.913], internal validation [(E), P = 0.958], and external validation cohorts [(F),
P = 0.803] ROC, receiver operator characteristic; CM, clinical model.
TABLE 4 The diagnostic performance of DLRN, DLS, RS, and clinical models for predicting the LNM in patients with cervical AC and ASC.

Cohorts Model AUC P-value SEN SPE +LR -LR PPV NPV

Primary

DLRN 0.79 (0.74-0.83) / 67.9 78.4 3.2 0.4 55.4 86.1

DLS 0.70 (0.65-0.75) 0.000 69.8 61.0 1.8 0.5 41.3 83.7

RS 0.75 (0.70-0.79) 0.023 71.7 69.1 2.3 0.4 47.8 86.1

Clinical 0.71 (0.66-0.76) < 0.000 62.3 72.9 2.3 0.5 47.5 83.1

Internal validation

DLRN 0.87 (0.81-0.92) / 92.0 71.2 3.2 0.1 59.0 95.2

DLS 0.81 (0.74-0.96) 0.022 88.0 64.9 2.5 0.2 53.0 92.3

RS 0.84 (0.77-0.89) 0.037 86.0 71.2 3.0 0.2 57.3 91.9

Clinical 0.75 (0.67-0.81) 0.001 56.0 87.4 4.4 0.5 66.7 81.5

External validation

DLRN 0.86 (0.78-0.91) / 89.3 71.6 3.1 0.2 50.0 95.5

DLS 0.78 (0.69-0.85) 0.067 78.6 64.8 2.2 0.3 41.5 90.5

RS 0.79 (0.70-0.86) 0.068 92.9 62.5 2.5 0.1 44.1 96.5

Clinical 0.71 (0.61-0.79) 0.011 60.7 83.0 3.6 0.5 53.1 86.9
f

DLRN, deep learning radiomics nomogram; AUC, the area under the curve; +LR, positive likelihood ratio; –LR, negative likelihood ratio; NPV, negative predictive value; PPV, positive predictive
value; SEN, sensitivity; SPE, specificity.
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toward personalized precision medicine. In this study, the RS, DLS,

FIGO stage, and menopause were identified as independent risk

factors and were utilized to develop the DLRN. When using the

nomogram, the specific points of individual patients are plotted on

each risk factor axis. A vertical line is drawn upward to determine

the points assigned to each risk factor. Then, the total of these

points is marked on the total points axis to indicate the probability

of LNM in each patient.

This study had the following limitations. First, the data selection

bias and data sampling bias were inevitable to some extent due to its

retrospective nature. Furthermore, the DLRN should be validated in

a prospective research with larger external sample size. Second,

the serum tumor biomarkers were not used to develop a model

due to incomplete data. Third, the DLRN built could not accurately

evaluate the specific location of metastatic lymph nodes. Finally,

instead of specific features of LN, such as edge, length, and

diameter, the MRI morphological criteria for the diagnosis of

LNM (LNMMR) were adopted to explore its potential value (28).

In conclusion, the DLRN, by integrating menopause, FIGO

stage, RS, and DLS, achieved a significantly better performance

than DLS, RS, and clinical model in evaluating LNM in patients

with cervical AC and ASC. The prediction outcome derived from

DLRN may facilitate clinical decision-making of radiotherapy

or RH.
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