
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Mario I. Vega,
University of California, Los Angeles,
United States

REVIEWED BY

Caterina Riillo,
Magna Græcia University of Catanzaro, Italy
Lenka Besse,
Cantonal Hospital St.Gallen, Switzerland

*CORRESPONDENCE

Lijie Xing

xiaopiao423@126.com

†These authors have contributed
equally to this work and share
first authorship

RECEIVED 07 April 2024
ACCEPTED 20 June 2024

PUBLISHED 17 July 2024

CITATION

Lu K, Wang W, Liu Y, Xie C, Liu J and Xing L
(2024) Advancements in microenvironment-
based therapies: transforming the landscape
of multiple myeloma treatment.
Front. Oncol. 14:1413494.
doi: 10.3389/fonc.2024.1413494

COPYRIGHT

© 2024 Lu, Wang, Liu, Xie, Liu and Xing. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Review

PUBLISHED 17 July 2024

DOI 10.3389/fonc.2024.1413494
Advancements in
microenvironment-based
therapies: transforming the
landscape of multiple
myeloma treatment
Ke Lu1†, Wen Wang1†, Yuntong Liu2, Chao Xie3, Jiye Liu2

and Lijie Xing1,4*

1Department of Lymphoma, Shandong Cancer Hospital and Institute, Shandong First Medical
University and Shandong Academy of Medical Sciences, Jinan, Shandong, China, 2Jerome Lipper
Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute,
Harvard Medical School, Boston, MA, United States, 3Department of Respiratory, Shandong Cancer
Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences,
Jinan, Shandong, China, 4Key Laboratory of Biopharmaceuticals, Postdoctoral Scientific Research
Workstation, Shandong Academy of Pharmaceutical Science, Jinan, Shandong, China
Multiple myeloma (MM) is the most prevalent malignant monoclonal disease of

plasma cells. There is mounting evidence that interactions with the bonemarrow

(BM) niche are essential for the differentiation, proliferation, survival, migration,

and treatment resistance of myeloma cells. For this reason, gaining a deeper

comprehension of how BM microenvironment compartments interact with

myeloma cells may inspire new therapeutic ideas that enhance patient

outcomes. This review will concentrate on the most recent findings regarding

the mechanisms of interaction between microenvironment and MM and

highlight research on treatment targeting the BM niche.
KEYWORDS
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1 Introduction

Multiple myeloma (MM) is characterized by clonal expansion of malignant plasma cells

within the bone marrow (BM), leading to organ failure at the time of diagnosis, which

includes calcium elevation, renal dysfunction, anemia, and/or bone disease (CRAB) (1).

Remarkable discoveries in the biology of MM have transformed the treatment paradigm

and extended median patient survival over the past two decades. Nonetheless, MM remains

mostly incurable due to genetic complexity and instability, as well as the permissive, tumor-

promoting BM microenvironment. Thus, new therapeutics targeting both myeloma cells

and immunosuppressive microenvironment are urgently needed.
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The BM microenvironment is a heterogeneous system

comprising a cellular compartment (e.g., immune cells (including

myeloid-derived suppressor cells, dendritic cells, macrophages,

T-cells, natural killer cells, regulatory B cells), osteoblasts,

osteoclasts, endothelial cells, and stromal cells) and a non-cellular

compartment [e.g., extracellular matrix (ECM), extracellular

vehicles (EVs), oxygen concentration, and the liquid milieu

(cytokines, growth factors, and chemokines)] (Figure 1). The

interaction between myeloma cells and the BM milieu encourages

tumor immune escape and promotes the former’s proliferation,

survival, dissemination, and drug tolerance via a variety of

mechanisms (2–4). In this review, we describe the mechanisms by

which each BM milieu member promotes the development of MM

cells and outline potential therapies to target them.
2 Cellular compartments of the
BM microenvironment

2.1 Myeloid-derived suppressor cells

MDSCs are a diverse population of immature myeloid cells

(IMCs) that, under normal conditions, can differentiate into

granulocytes, macrophages, or dendritic cells under steady-state

settings (5). However, in pathological conditions typical of
Frontiers in Oncology 02
malignancies, the differentiation of IMCs was reported to be

inhibited, resulting in the accumulation of MDSCs. Current

studies identify two main subtypes of MDSCs: monocytic

myeloid-derived suppressor cells (M-MDSCs), which are

phenotypically and morphologically similar to monocytes, and

granulocytic/polymorphonuclear myeloid-derived suppressor cells

(PMN-MDSCs), which are phenotypically and morphologically

similar to neutrophils. A significant presence of MDSCs is found

in the multiple myeloma tumor microenvironment, where they play

a crucial role in immune escape and disease progression (6, 7). It has

become clear that there is a bidirectional interaction between MM

cells, MDSCs, and immune effector cells. It has been demonstrated

that M-MDSC plays a more predominant immunosuppressive role

in the multiple myeloma tumor microenvironment. As a precursor

of osteoclasts, M-MDSC contribute to bone destruction, leading to

severe bone pain or pathological fractures in some MM patients.

Conversely, PMN-MDSCs are more involved in neovascularization

mechanisms within the bone marrow microenvironment (6, 8).

MDSCs exert immunosuppressive effects through multiple

mechanisms: they produce and release inhibitory cytokines and

soluble factors such as IL-10 and TGF-b, and induce regulatory T

cells (Tregs) (9, 10); they generate reactive oxygen species (ROS),

which disrupt the ability of CD8+ T cells to bind to peptide-major

histocompatibility complexes (11). MDSCs also reduce tryptophan

levels in the tumor microenvironment due to the expression of Arg1
FIGURE 1

Bone marrow microenvironment of multiple myeloma.
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and Indoleamine 2,3-Dioxygenase (IDO) enzyme activity, which

diminishes TCR formation, inhibits T-cell proliferation and induces

T-cell cycle arrest by depletion of L-arginine (12, 13). Additionally,

MDSCs can increase the levels of anti-apoptotic proteins in MM

cells by inducing AMPK phosphorylation, thereby enhancing the

proliferation of MM cells (14). They also endow stem-like qualities

to myeloma cells, promoting epithelial-mesenchymal transition

(EMT) (15). Conversely, malignant plasma cells stimulate the

growth of MDSCs (16).
2.2 Dendritic cells

DCs are expert antigen-presenting cells (APCs) that deliver

antigens to T cells and, depending on their functional condition,

either induce immunity or tolerance. Two main subgroups of DCs

can be distinguished by their origin, phenotype, and function:

myeloid DCs (mDCs) and plasmacytoid DCs (pDCs) (17). In the

literature, there is no universal consensus on the phenotype,

function, and frequency of DC population in MM patients

compared to healthy individuals. Nonetheless, considerable

research has shown that DCs in MM patients’ BM are

dysfunctional, resulting in diminished anti-tumor immune

responses and myeloma escape (18–20). It has been discovered

that interactions between DCs and MM cells can confer

proliferation, survival, and medication resistance against tumor

cells through receptor activator of nuclear factor-kB (RANK)/

RANK ligand (RANKL) signaling and a proliferation-inducing

ligand (APRIL)-mediated interactions (21), as well as CD28 and

CD80/CD86 crosslinking (22, 23). In addition, pDC-MM

interaction triggers the secretion of cytokines and chemokines,

which not only helps MM cells grow, survive, and develop

treatment resistance, but also extends the survival of pDCs (24).

More recently, Ray et al. used next-generation sequencing (NGS) to

examine genomic alterations in MM cells induced by co-culture

with pDCs. They discovered that co-culturing pDCs with myeloma

cells increases CD73, CD274, HDAC6, TLR7/9, or IL3Ra/CD123

gene expression, while reducing the expression of ADAM33, BAD,

BAK1, and CASP3 in tumor cells. These results make it possible to

induce MM-specific CD8+ CTL activity by blocking CD73.

Furthermore, combining an anti-CD73 antibody with a TLR7

agonist significantly increases the cytotoxic activity of MM-

specific CD8+ CTL (25). Altogether, these findings highlight the

importance of DCs in the etiopathogenesis of MM and present

novel therapeutic targets to improve patient outcomes.
2.3 Macrophages

Macrophages are known as specialized phagocytic cells that are

essential for both innate immune response and tissue repair. There

are two main subsets of macrophages: M1 type macrophages (M1)

and M2 type macrophages (M2). In the tumor setting, M1 typically

acts as a potent anti-tumor effector and kills tumor cells by mediating

direct cytotoxicity and antibody-dependent cell-mediated

phagocytosis (ADCP). In contrast, M2 facilitates tumor growth,
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invasion, metastasis, and treatment resistance (26). Tumor-

associated macrophages (TAMs) originate from circulating

monocytes, which are recruited to the tumor site by cytokines

released by tumor cells (27, 28). In comparison to Monoclonal

Gammopathy Of Undetermined Significance (MGUS), MM

exhibits higher expression of TAMs, suggesting their potential

role in the transition from MGUS to MM (29, 30). Previous

research indicates that during disease progression, the tumor

microenvironment in MM undergoes macrophage reprogramming.

Reprogrammed TAMs demonstrate a mixed phenotype, displaying

characteristics of bothM1 andM2macrophages, with a predominant

M2-like profile. These reprogrammed TAMs are associated with

impaired phagocytic function (30, 31). Multiple myeloma cells

recruit macrophages that support tumor growth and encourage

their polarization toward an M2-like phenotype via several

different mechanisms (29, 32–34). TAMs exert multifaceted effects

on MM, influencing proliferation, migration, angiogenesis,

immunosuppression, and drug resistance (35). They promote MM

cell proliferation by upregulating secretion of IL-6 and IL-10 (36–38),

and enhance migration by inducing cytokine-mediated vascular

leakage and downregulating CD138 and C-X-C motif chemokine

receptor 4 (CXCR4), thus reducing cell adhesion (39–41). TAMs

contribute to angiogenesis both directly and indirectly: they produce

and release angiogenic factors such as vascular endothelial growth

factor (VEGF) and matrix metalloproteinases (MMPs), and in vitro,

they cooperate with MM cells to stimulate proliferation, migration,

and tubule formation of Human Umbilical Vein Endothelial Cells

(HUVECs). Additionally, TAMs exposed to VEGF and basic

fibroblast growth factor can directly form capillary-like blood

vessels by acquiring endothelial cell markers (42–44); Moreover,

TAMs induce immunosuppression by downregulating IFN-g,
inhibiting MHC Class II molecule expression to limit effector T cell

function, and modulating immunosuppression through the

macrophage immune checkpoint CD47-SIRPa (29, 41, 45, 46);

Studies also indicate that TAMs contribute to increased drug

resistance in MM cells (47, 48). To sum up, MM cells can

manipulate macrophages to facilitate tumor settlement and

progression. Accordingly, anti-TAM therapeutic strategies are

emerging as intriguing and promising approaches. Much evidence

indicates that TAMs contribute to MM cell resistance to

chemotherapeutic drugs. TAMs can mediate bortezomib resistance

by secreting IL-1b, which increases the number of MM-tumor-

initiating cells (49). Additionally, TAMs can express B-cell

activating factor (BAFF), preventing bortezomib-induced apoptosis

through the classical and alternative NF-kB pathways (50). Moreover,

TAMs impact the efficacy of CAR-T therapy. A report showed that in

B cell NHL, patients achieving complete responses with CAR-T

therapy had decreased levels of TAMs, Treg cells, and MDSCs,

whereas chemokines and MDSCs were overexpressed in patients

achieving only partial remission (51).
2.4 T-cells

The progression of MM is associated with a deteriorating innate

and adaptive immune system, particularly affecting the T-cell
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repertoire. CD8+ cytotoxic T lymphocytes (CTLs) mediated

cytotoxicity plays a pivotal role in anti-tumor T-cell responses

(52). However, T-cell dysfunction has been observed even in

individuals at precursor stages of plasma cell dyscrasia, such as

increased levels of T-cell exhaustion in monoclonal gammopathy of

undetermined significance (MGUS) (53) and reduced expression of

activation markers in smoldering multiple myeloma (SMM) (54).

Notably, T-cell function progressively deteriorates throughout the

disease course. In MM patients, especially those with relapsed/

refractory MM (RRMM), co-inhibitory molecules including PD-1

and TIGIT are upregulated on activated T-cells, which protects

myeloma cells from immune attack by directly interacting with

their ligand expressed in myeloma cells (55–57). However, up to

now, immune checkpoint inhibitors (ICIs) have failed to show

promising clinical benefits in MM, possibly due to compromised

antigen-specific T-cell function or loss of stem-like/tissue-resident

memory T (TRM) cells (53, 58).

CD4+ T-cells can be categorized into several functionally

distinct T-cell subsets: T helper 1 (TH1), TH2, TH17, TH22, T

follicular helper (TFH), and regulatory T-cells (Tregs) (59). The

specific immune imbalance of CD4+ T-cell subsets on MM remains

unclear and controversial. Nevertheless, several research findings

are more widely accepted. Firstly, TH1 cells collaborate with tumor-

infiltrating, antigen-presenting macrophages to achieve anti-tumor

responses (60). Then, MM cells induce the generation of Tregs via

multiple mechanisms (61–65), contributing to immune dysfunction

and negatively influencing clinical outcomes (66). Lastly, in MM

patients, there is a significant increase in TH17 cells and related

cytokines, such as IL-17, which promotes MM cell proliferation

while inhibiting immunological responses (67–70). Strikingly, TH2

cells, which are generally considered to have a pro-tumorigenic role,

have been shown to eradicate myeloma by triggering an in situ

inflammatory immune response (71).

In recent years, unconventional T cells have garnered increased

attention for their pivotal role in hematological tumors. Among

these, gd T cells, MAIT cells, and iNKT cells (invariant natural killer

T cells) exhibit both innate and adaptive immune characteristics,

primarily characterized by their rapid recognition of

unconventional peptide antigens. Stimulated gd T cells

demonstrate potent cytotoxic effects on MM cells in vitro (72),

with Vd1 cells being activated by various receptors, including T-cell

receptors and molecules such as NKG2D, CD3, CD2, DNAX

accessory molecule-1, and intracellular adhesion molecule-1

(ICAM-1). This activation confers cytotoxic capabilities against

MM cells, suggesting a potential therapeutic strategy for MM

(73). Additionally, studies have indicated a reduction in the

percentage of MAIT cells in MM patients compared to healthy

individuals, accompanied by decreased production of IFN-g and

reduced CD27 expression in MAIT cells at disease onset, indicative

of MAIT cell depletion (74).
2.5 Natural killer cells

Natural killer (NK) cells are vital to the innate immune response

due to their direct cytotoxic activity and antibody-dependent
Frontiers in Oncology 04
cellular cytotoxicity (ADCC). Previous studies have shown that

NK cell reactivity is mediated by the expression of a wide variety of

inhibitory receptors characterized by CD94-NKG2A heterodimeric

receptors, killer cell Ig-like receptors (KIRs), as well as activating

receptors such as CD16, NKG2D, DNAM-1, activating KIR, and the

natural cytotoxicity receptor (NCR) family (75). Malignant plasma

cells can evade NK cell-mediated killing by downregulation or

blocking activating receptors and activating Tregs or regulatory

B cells (Bregs) (76–79).
2.6 Regulatory B cells

The potential effects of B-cell subsets on the BM milieu in

MM are not well characterized. However, emerging research

suggests a small immunosuppressive B-cell subset known as

Bregs has the ability to mediate evasion of myeloma plasma

cells from the immune system. Malignant plasma cells in the bone

marrow support the survival of Bregs by preventing their

apoptosis and activating the APRIL/TACI axis (63, 79).

Consequently, Bregs promote an immune suppressive

microenvironment through the production of IL10 and

alternative mechanism including the interference with NK cell-

mediated ADCC against MM cells. Thus, Bregs are a promising

new therapeutic target in MM.
2.7 Osteoblasts (OBs) and
osteoclasts (OCs)

In a steady state, the differentiation and activity of OCs and OBs

maintain a balance between bone resorption and formation,

ensuring bone homeostasis and integrity. In MM environment,

the OC-OB axis is disrupted leading to increased bone resorption

and impaired bone formation, ultimately resulting in osteolytic

bone disease. In MM, tumor PCs produce both activators of OCs

and inhibitors of OBs (80): MM cells increase the differentiation

and activity of OCs by dramatically increasing the release of

osteoclastogenic factors (81–87) and favoring the recruitment of

OCs precursors (88–90), conversely, malignant plasma cells can

elevate Dickkopf-1 (DKK1) levels (91) and decrease the essential

OB transcription factor RUNX2 activity (92) leading to the

suppression of osteoblast activity and osteoblast differentiation.

OBs play a crucial role in bone formation by producing bone

morphogenetic protein (BMP), which binds to receptor and

activates downstream osteoblast-specific transcription factor

RUNX2,OSTERIX, etc (93). Additionally, Wnt in OBs binds to

LRP-5/6, activates b-catenin and promotes the differentiation of

bone marrow mesenchymal stem cells to osteoblasts while

inhibiting their apoptosis (94). Sclerostin (SOST), primarily

secreted by osteoblasts, serves as a significant negative regulator

of bone formation. Elevated levels of SOST expression hinder the

Wnt and BMP signaling pathways, thereby impeding osteoblast

differentiation and proliferation and ultimately inhibiting bone

formation (95). Importantly, recent studies reveal that the

function of OCs and OBs not only contributes to bone-
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remolding, but also involves maintaining an immunosuppressive

myeloma environment. OCs shield myeloma cells from T-cell

cytolytic function via high expression of checkpoint molecules

including PD-L1, IDO HVEM, CD200, and Galectin-9 (96).

Myeloma-osteoclast interactions upregulate Chondroitin synthase

1 (CHSY1), triggering Notch signaling and boosting tumor cell

proliferation and bone resorption (97). Additionally, through the

modification of the endosteal niche, OCs are able to control the

resurgence of dormant myeloma cells (98, 99). Lastly, OCs

encourage angiogenesis, which is necessary for the survival and

multiplication of MM cells (100, 101). As for OBs, Khoo WH et al.

have found that the interactions between MM and osteoblasts may

also play a role in maintaining tumor cell dormancy (102). Taken

together, the above findings underline the therapeutic value of

targeting OCs to modulate BM microenvironment, improve anti-

tumoral immune responses, and improve the bone phenotype.
2.8 Bone marrow stromal cells and
vascular endothelial cells

Tom Cupedo et al. conducted a comprehensive mapping of the

myeloma inflammatory stromal microenvironment using single-

cell transcriptome sequencing. They identified myeloma-specific

inflammatory stromal cells that spatially colocalize with tumor

and immune cells, are induced by inflammatory factors, and

provide essential survival factors to plasma cells. The MM

microenvironment was characterized by the expansion of IFN-

responsive T cells, CD8+ Tscm cells and GZMK+CX3CR1-

CD56bright NK cells, while the distribution of other T cells, B

cells and mononuclear myeloid cells remain unaltered (103).

Additionally, Tom Cupedo and colleagues reported that

neutrophils in the bone marrow of MM patients are activated to

promote the transcription of IL-1b and myeloma cell survival

factor TNFSF13B (BAFF). These neutrophils establish a positive

feedback loop with inflammatory stromal cells, thereby

perpetuating a tumor-supportive inflammatory environment

after treatment (104). BMSCs and vascular endothelial cells can

produce a chemoattractant called stromal cell-derived factor 1

alpha (SDF-1a). The binding of SDF-1a to its receptor CXCR4 is

involved in the mobilization and homing of hematopoietic stem

and progenitor cells (105). In MM, myeloma cells utilize CXCR4

to interact with SDF-1a, resulting in the adhesion of myeloma cells

to BMSCs and endothelial cells. This interaction leads to the

overexpression of factors such as vascular endothelial growth

factor (VEGF), hepatocyte growth factor (HGF), IL-6, IL-3, and

tumor necrosis factor alpha (TNFa) which contributes to

osteolysis, angiogenesis, as well as MM cell survival and

proliferation (106). The binding of malignant plasma cells to

BMSCs also triggers the activation of various adhesion

molecules such as very-late-antigen-4 (VLA-4) and CD44,

which mediates cell adhesion-mediated drug resistance (CAM-

DR) (107). Recent studies revealed that CXCR4 could enhance the

acquisition of epithelial-to-mesenchymal transition (EMT-like)

phenotype in MM cells, promoting extramedullary disease (EMD)

development both in vivo and in vitro (40, 108).
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3 Non-cellular compartments of the
BM microenvironment

The BM extracellular matrix (ECM) consists of proteins such as

fibronectin, collagen, osteopontin, hyaluronan, and laminin, serving

as a scaffold for tumor cells to cling to and interact with its

components or other cells. MM cells directly interact with the

ECM by binding integrins like VLA-4 and integrin b7 (ITGB7) to

ECM proteins. This interaction is required for MM cell survival and

contributes to CAM-DR (109–112). Besides, CD138 expressed on

MM cells binds to type I collagen and promotes matrix

metalloproteinase 1 (MMP1) production, thereby stimulating

tumor invasion, bone resorption, and angiogenesis (113, 114).

Another important component of BM microenvironment is

extracellular vehicles (EVs). EVs are a diverse class of membranous

structures released by all kind types of cells and act as important

intermediaries between myeloma cells and the surrounding milieu

or remote premetastatic niche (115). Recent researches have

uncovered the crucial role of EVs in tumor progression through

various mechanisms, including but not limited to angiogenesis

moderation (116–118), participation in the formation of bone

lesions (119–122), mesenchymal cell education (123–126), and

immune modulation (127–130).

In addition, it has been demonstrated that the BM of MM

mouse models and MM patients is hypoxic compared to healthy

controls (131, 132). The decrease in oxygen concentration enhances

the acquisition of stem cell-like or EMT-like phenotype in MM

cells, thus enhancing their dissemination properties (133, 134).

Also, hypoxia contributes to the progression of osteolytic bone

disease as well as angiogenesis (135, 136). Targeting the hypoxia

microenvironment should be considered as a novel anti-MM

treatment strategy and has the potential to synergize with other

anti-MM therapies (137).
4 Treatment targeting MM
microenvironment components

MM treatments targeting the BM microenvironment aim to

disrupt the complex interactions between MM cells and the

surrounding environment and restore certain cellular functions,

altering the supportive environment for MM cells. By

understanding the molecular and cellular changes that occur in

the BM microenvironment in response to MM, the drugs are

selected or designed to target specific components and pathways

that are affected by MM (Figure 2). Multiple drugs have shown

efficacy in interfering with MM cell growth, survival, and drug

resistance (Table 1).
4.1 MDSCs

Given that currently available medicines like the proteasome

inhibitor and the immunomodulatory drug target both myeloma

cells and the MM milieu, the influence of these treatments on
frontiersin.org
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MDSCs has been investigated. Görgün and colleagues showed

neither bortezomib nor lenalidomide eliminated the amount or

suppressive activity of MDSCs in vitro (138). However, in contrast,

another study from Wang et al. discovered a decrease in MDSCs

after proteasome inhibitor therapy (139). These contradicting

results indicate that the impact of currently accessible treatments

on MM MDSCs is still debatable and requires further research.

Phosphodiesterase-5 (PDE5) inhibition in preclinical studies has

demonstrated down-regulation of expression of arginase 1 and

nitric oxide synthase-2 in murine tumor models, thereby

decreasing the suppressive machinery of MDSCs recruited by

tumor cells (140). Noonan et al. reported a case where the

addit ion of tadalafi l , a PDE5 inhibitor , restored the

responsiveness to lenalidomide-based therapy in one patient who

was previously refractory to lenalidomide (141). These data indicate

that strategies targeting the function and amount of MDSCs with

PDE5 inhibitors may provide a unique strategy that can synergize

with tumor-directed therapies to generate a significant and long-

lasting anti-myeloma immune and clinical response.
4.2 DCs

Currently explored MM therapeutic strategies involve pDC

immune function restoration and DCs-mediated myeloma

proliferation inhibition. Preclinical data have demonstrated that

Toll-like receptor 9 (TLR-9) agonists can restore pDC immune

function and simultaneously abrogate pDC-induced MM cell

growth (142). Unfortunately, there is no clinical trial of TLR-9

agonist in MM patients so far. In vitro studies have demonstrated

that blocking of RANKL: APRIL and CD28: CD80/CD86 pathways

can suppress myeloma growth mediated by DCs and resensitize

tumor plasma cells to lysis by cytotoxic T cells (21, 22). Currently, a
Frontiers in Oncology 06
synthetic antagonist of CD28, abatacept is being assessed in

conjunction with ixazomib and dexamethasone in a phase 2

clinical trial (NCT03457142) for participants with chemotherapy-

resistant multiple myeloma. Another therapeutic target is suggested

by Megan et al. as they reported that CD28 pro-survival signaling

relies on the phosphoinositide 3-kinase (PI3K)/protein kinase B

(AKT) pathway (143). This pathway is aberrantly activated through

numerous mechanisms in most MM patients and is essential for

MM survival and chemotherapy resistance (23). As such, PI3K/

AKT pathway inhibitors may block CD28 signaling and resensitize

MM cells to chemotherapies.
4.3 Macrophages

Existing therapeutic approaches targeting macrophages

mainly include blocking their recruitment to the tumor

microenvironment, reprogramming TAMs, inhibiting the

CD47/SIRPa checkpoint, and reversing drug resistance (35).

C lodrona t e L iposome d i r ec t l y dep l e t e BM-re s iden t

macrophages and disrupts MM cell homing (144). Reducing

monocyte/macrophage recruitment by modulating growth

factors, chemokines and cytokines in tumor and stromal cells

also diminishes the supportive role of TAMs. The CXCL12-

CXCR4 signal ing pathway is crucial for macrophage

recruitment (145). High expression of the chemokine CXCL12

in MM cells promotes monocyte recruitment and differentiation

into an M2 phenotype, which enhances angiogenesis and

immunosuppression (29). CXCR4 antibody significantly

reduces monocyte recruitment. MM secretes CCL2, which

induces the expression of monocyte chemotactic protein-1-

induced protein 1(MCPIP1) in macrophages via the JAK2-

STAT3 pathway, promoting macrophage homing, proliferation,
FIGURE 2

Targeting bone marrow microenvironment components in multiple myeloma.
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and M2-like phenotypic polarization (33, 34). Consequently,

CCR2 monoclonal antibodies or inhibitors can disrupt

macrophage recruitment in MM (146, 147).

Reprogramming TAMs involves decreasing the M2

immunosuppressive phenotype and increasing the M1 phenotype.

Gutiérrez-González et al. suggest that the combination of pro-M1

cytokine granulocyte-macrophage CSF (GM-CSF) and pro-M2

cytokine macrophage migration inhibitory factor inhibitor has

significant anti-tumor effects (148). Preclinical studies have shown
TABLE 1 Strategies targeting BM microenvironment of MM.

Targeting
component

Approach
(Agent)

Stage Findings

MDSCs

Proteasome
inhibitor
(bortezomib),
IMiDs
(lenalidomide)

Preclinical
in cells

Contradicting results

PDE5
inhibitor
(tadalafil)

Preclinical in
myeloma mouse
models;
Case report

Decreased
suppression by
tumor cells;
Generated durable
anti-tumor immune
and clinical response
in one
RRMM patient

DCs TLR-9 agonist
Preclinical
in cells

Restored pDC
immune; Inhibited
MM proliferation

CD28
agonist
(abatacept)

Phase 2 clinical
trial in
MM
(NCT03457142)

Combined with
ixazomib and
dexamethasone;
ORR 33.33%,
limited AEs

PI3K/AKT
pathway
inhibition

Proposed

Macrophages
Anti-CCL2
mAb
(carlumab)

Phase 1b clinical
trial in solid
tumors
(NCT01204996)

Combined with one
of four
chemotherapy
regimens; well-
tolerated, no
significant tumor
response; not tested
in MM

Reprogram
toward an
M1 profile

Preclinical in
MM
xenograft models

Combining pro-M1
cytokine with pro-
M2 cytokine
inhibitor produced
anti-tumor response

Deplete
mature
macrophage
(clodronate-
liposome)

Preclinical in
myeloma
mouse model

Depleted bone
marrow-resident
macrophages and
reduced myeloma
tumor burden

T-cells and
natural
killer cells

Reinvigorate
immune cell
function (PD-
1/PD-
L1 inhibitor)

Phase 1b single-
drug trial (e.g.,
KEYNOTE-013,
NCT01592370);
Phase 3
combination
therapy trials
(e.g., KEYNOTE-
183,
KEYNOTE-185)

No efficacy in MM
patients as single
agent; combination
therapy with IMiDs
in RRMM and newly
diagnosed MM
showed excessive
mortality;
discontinued
by FDA

Enhance
interaction
between
immune cells
and MM cells
(bispecific
antibody)

Preclinical
in cells

Bispecific antibody
promoted the
formation of
immune synapses
and activated
cytolytic
immune cells

(Continued)
TABLE 1 Continued

Targeting
component

Approach
(Agent)

Stage Findings

CAR-T

phase 1 and
phase 3 studies in
RRMM
(NCT02658929)
(NCT03651128)

Improving objective
remission rates and
prolonging
progression-free
survival in
RRMM patients

Osteoclasts
Target
RANKL
(denosumab)

Phase 3 clinical
trial
(NCT01345019)

Similar efficacy in
preventing skeletal-
related events in
newly diagnosed
MM as compared to
zoledronic acid;
better progression-
free
survival endpoint

Osteoblasts
Target
DKK1
(BHQ880)

Phase 1b clinical
trial
(NCT00741377)

Combination with
zoledronic acid was
well tolerated in
RRMM; relative
single agent clinical
activity was
not assessed

BMSCs and
vascular
endothelial cells

Disrupt
interaction
between MM
cells and BM
milieu
(ulocuplumab)

Phase 1b/2
clinical
trial
(NCT01359657)

Ulocuplumab alone
was safe with
acceptable AEs in
RRMM;
combination with
lenalidomide and
dexamethasone
resulted in
55.2% ORR

VEGF or
VEGF receptor
inhibition
(e.g.,
bevacizumab,
pazopanib)

Phase 2 clinical
trials (e.g.,
GW786034,
AMBER)

Neither single agent
nor combination
therapy with IMiDs
or bortezomib
showed meaningful
clinical activity

Non-cellular

Disrupt
interaction of
MM cells with
BM
ECM
(natalizumab)

Phase 1/2 clinical
trial
(NCT00675428)

Terminated because
of low
patient enrollment

Improve drug
activity in
hypoxic
condition
(evofosfamide)

Phase 1/2 clinical
trial
(NCT01522872)

Single agent or in
combination with
bortezomib had
good tolerability and
clinical activity
in RRMM
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that the JAK1/2 inhibitor Ruxolitinib reduces the M2 polarized

phenotype and increases the M1 polarized phenotype by

downregulating Tribbles Homolog 1 protein kinase expression

(149). Both CD40 agonists and blockers of IL-10R have been

shown to reprogram TAMs (150, 151).

Regarding immune checkpoints, numerous CD47-targeted

drugs, including anti-CD47 monoclonal antibodies and SIPRa
fusion proteins, are under clinical investigation (152). AO-176 is

a humanized IgG2 anti-cd47 monoclonal antibody, is being

evaluated in a phase 1/2 clinical study to assess its efficacy as a

monotherapy and in combination with bortezomib/dexamethasone

for the treatment of MM (NCT04445701).
4.4 T-cells and NK cells

Reinvigorating T-cells and NK cells is considered a compelling

and promising therapeutic option in MM. As previously discussed,

the increased expression of immune checkpoints in T- and NK cells

in MM results in impaired cytolytic immune cell function and the

establishment of a tumor-promoting and immune-suppressive

microenvironment. Inhibition of PD-1/PD-L1 has shown

potential as a treatment for myeloma based on preclinical

evidence (153, 154). However, early-phase clinical trials targeting

PD-1/PD-L1 showed no efficacy when using a single-drug approach

(155, 156). As a result, subsequent studies have focused on

investigating the blockade of the PD-1 axis as part of a

combination treatment approach with immunomodulatory drugs

(IMiDs). One of the IMiDs, lenalidomide, has been proven to

enhance checkpoint blockade-induced MM cytotoxicity in a

preclinical study (154). Encouragingly, early clinical studies have

shown acceptable safety and durable responses of this treatment

(157). Unfortunately, two phase 3 trials (KEYNOTE-183 and

KEYNOTE-185) evaluating the efficacy and safety of combining

PD-1 inhibitor pembrolizumab with IMiDs for the treatment of

RRMM and newly diagnosed MM revealed excessive mortality

(158, 159). These adverse outcomes led to the discontinuation of

these two clinical trials by the Food and Drug Administration

(FDA), along with several other similar studies. Based on these

findings, the key points in future studies should be to identify

patients who would benefit most from checkpoint targeting,

determine appropriate drug combinations, and effectively manage

adverse events. Furthermore, ongoing research is exploring the

benefit-risk profile of the other immune checkpoint or agonist

proteins, such as T-cell immunoreceptor with Ig and ITIM

domains (TIGIT), lymphocyte activation gene-3 (LAG3), OX40,

and immunoglobulin-like receptors (KIRs), as prospective

therapeutic targets for MM, either alone or in combination with

MM targeted and immunotherapies (160, 161).

An alternative approach is to enhance the interaction between

immune cells and MM cells. The vast majority of cytolytic immune

cells, such as CD8+ T cells, NK cells, and NK T cells, express an

activation receptor called NKG2D. Meanwhile, CS1 (SLAMF7),

a surface lymphocytic activation molecule, is highly expressed on

MM cells compared to NK cells and a subset of activated T-cells.

Building upon this knowledge, Wing Keung and colleagues
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engineered a bispecific antibody (biAb) to bring together immune

cells and MM cells by combining an anti-CS1 single-chain variable

fragment (scFv) with an anti-NKG2D scFv (CS1-NKG2D biAb).

They demonstrated that the CS1-NKG2D biAb effectively engaged

human MM cell lines and NKG2D+ cytolytic innate and antigen-

specific effector cells. This interaction facilitated the formation of

immune synapses and activated these immune cells against MM

(162). The compelling results from this study warrant further

research into the effects and potential benefits of CS1-NKG2D

biAb in the context of MM treatment.

Currently, novel T-cell-based immunotherapies such as

chimeric antigen receptor (CAR-T) therapy and bispecific T cell

engagers (BiTE) have significantly improved the treatment of MM.

CAR-T therapy involves genetically modifying a patient’s T cells in

vitro to express receptors that target specific antigens on tumor

cells, enabling these T cells to effectively eliminate the tumor cells

upon transfusion back into the patient. The primary targets for

CAR-T in MM include B cell maturation antigen (BCMA), CD138,

CD19, and CD38. BCMA is exclusively expressed on the surface of

mature B cells, and its overexpression and activation are associated

with MM in preclinical models and clinical studies, underscoring its

potential as a therapeutic target (163). bb2121(ide-cel), a CAR-T

therapy targeting BCMA, has demonstrated promising efficacy in

phase I and phase III studies for patients with relapsed or refractory

multiple myeloma (NCT02658929) (NCT03651128) (164, 165).

CD38, a transmembrane glycoprotein involved in calcium ion

regulation, signal transduction and cell adhesion is highly expressed

in B precursor cells, plasma cells, natural killer cells and bone

marrow precursor cells. CAR-T therapies co-targeting CD38 and

other tumor surface antigens, such as BCMA, have also been

employed to treat recurrent MM.

The inflammatory response induced by CAR-T cells can

enhance the recognition of neoantigens by the host immune

system and trigger the anti-tumor response of the natural

immune system. It promoted the recognition of other tumor

antigens by unconventional T cells through TCR and helped to

target tumor cells that were negative for CAR T cell antigens (166).

BiTE antibody molecules consist of single-chain fragment

variable (scFvs) from two monoclonal antibodies that recognize

antigens on the surface of target cells and CD3 molecules on the

surface of T cells. By binding to both the target cell surface antigen

and T cell CD3, BiTEs can activate the proliferation of polyclonal

cytotoxic T cells, thereby exerting cytotoxic effects and killing target

cells (163).

BiTEs targeting BCMA, GPRC5D (G protein-coupled receptor

family C group 5 member D), and FcRH5 (Fc receptor-homologue

5) have shown good efficacy and manageable safety profiles in

patients with relapsed/refractory multiple myeloma (RRMM) (167).

Multiple clinical studies suggest that bispecific antibodies (BsAbs)

provide significant survival benefits for RRMM patients. Currently,

there are three BiTEs approved by the FDA for the treatment of

multiple myeloma, targeting BCMA and GPRC5D.

Teclistamab, a BCMA × CD3 bispecific antibody, was the first

approved for the treatment of RRMM. In the phase 1/2 MajesTEC-1

study, teclistamab demonstrated an overall response rate (ORR) of

63.0% in 165 heavily pretreated patients with RRMM (168, 169).
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Elranatamab, another BCMA × CD3 bispecific antibody, is used for

the treatment of multiple myeloma. The approval of this drug is

based on several pivotal clinical trials where elranatamab

demonstrated high rates of deep and durable responses, including

in patients achieving ≥CR. It also exhibited manageable safety

(170, 171).

GPRC5D is a G protein-coupled orphan receptor with high

expression on malignant plasma cells and low levels on B cells and

bone marrow precursor cells, making it a promising target for

RRMM patients. Talquetamab, a first-in-class GPRC5D × CD3

bispecific antibody, showed promising results in the

MonumenTAL-1 study (NCT03399799) and (NCT04634552).

With a median follow-up of 14.9 months, 8.6 months, and 11.8

months in cohorts receiving 0.4 mg/kg QW, 0.8 mg/kg Q2W, and

prior T-cell redirected therapies, talquetamab achieved ORRs of

74%, 73%, and 63%, respectively. Cytokine release syndrome (CRS)

and immune effector cell-associated neurotoxicity syndrome

(ICANS) were observed in 79%, 75%, 77% and 11%, 11%, 3% of

patients, respectively. The incidence of grade 3/4 infections was

22%, 16%, and 26%, respectively (172).

FcRH5 is expressed on almost all myeloma cells, with significant

higher expression than normal B cells. The FcRH5-targeting BiTEs,

Cevostamab (BFCR4350A, RG6160), demonstrated promising

results in the GO39775 trial (NCT03275103), achieving an ORR

of approximately 52% in RRMM patients, with only one patient

(2%) experiencing grade 3 cytokine release syndrome (173).

Tri-specific antibodies, which can simultaneously target two

tumor antigens, such as BCMA+GPRC5D/CD3, are under

clinical investigation.

However, antibody-based drugs face challenges, particularly

related to infection risks, necessitating careful management to

prevent and treat infections like Pneumocystis pneumonia and

viral infections. Immune-related adverse reactions include

cytokine storms and immune-mediated lung injury. With

GPRC5D bispecific antibodies, there are concerns about potential

central nervous system damage and keratin-related changes (skin

and nail alterations, taste loss, dry mouth, and swallowing

difficulties). Patients still face significant hurdles and require

additional treatment post-relapse (174, 175).
4.5 OCs and OBs

As for OCs, the current focus of MM treatment is to target the

protein RANKL, which is overproduced by myeloma cells, bone

marrow stromal cells, and osteocytes in MM. This excessive

RANKL production leads to increased osteoclast activity which in

turn recruits myeloma cells and promotes their proliferation,

survival, and resistance to apoptosis (176–179). Denosumab, a

human monoclonal antibody with high affinity and specificity for

RANKL, has been studied as a potential treatment option. A phase 3

clinical trial conducted by Noopur et al. compared denosumab to

zoledronic acid as a treatment for bone disease in newly diagnosed

patients with MM. This study showed that denosumab was non-

inferior to zoledronic acid in preventing skeletal-related events.

Remarkably, denosumab demonstrated superior results in terms of
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for the efficacy of anti-RANKL therapy against myeloma. The

reduction in risk of renal adverse events further supports the

potential of denosumab as an additional treatment option for

MM patients (180).

In OBs, their dysfunction is significantly influenced by the

Dickkopf-1 (DKK1) produced by MM cells. Preclinical data

demonstrated that BHQ880, a human DKK1 neutralizing

antibody, could promote osteoblast differentiation while

inhibiting the growth of myeloma cell and the formation of

osteolytic lesions. These conclusions justify the need for clinical

evaluation of BHQ880 in MM patients (181). While BHQ880 was

well tolerated in a phase 1b trial showed that, its relative clinical

activity could not be confirmed due to the accompanied

administration of zoledronic acid and anti-myeloma therapy in

the study (182).
4.6 BMSCs and vascular endothelial cells

Certain MM treatments aim to disrupt the interaction between

MM cell and BMSCs and vascular endothelial cells. As previously

mentioned, CXCR4 is essential for myeloma cell dissemination

within and outside the BM. It acts as a pivotal regulator of EMD

formation by inducing an EMT-like phenotype in MM, highlighting

CXCR4 as a unique therapeutic target for patients with EMD and

late-stage RRMM. Both in vitro and in vivo studies have shown that

the downregulation of CXCR4 by therapeutic targeting or

knockdown can impair the interaction between MM cells and BM

milieu and increase their sensitivity to other therapeutic agents

(183), providing a rationale for investigating its usage in clinical

settings. Additionally, CXCR4 blockade decreases CD4+ T-cell

exhaustion (184), enhances cytotoxic activity of immune cells

(185), reverts the suppressive activity of Tregs (186), and

modulates immunotherapy with anti-PD-1 (187), emphasizing its

immunomodulatory effects. In a phase 1b/2 trial, ulocuplumab, a

first-in-class fully human IgG4 monoclonal anti-CXCR4 antibody,

demonstrated satisfactory safety and achieved an excellent overall

response rate of 55.2% when combined with lenalidomide and

dexamethasone in RRMM patients (188). This clinical trial

supported CXCR4 inhibitors as an attractive class of anti-

myeloma medications that deserve additional evaluation in larger

clinical studies. Further research is required to explore the synergy

between CXCR4 inhibitors and other anti-MM agents.

Also, the VEGF overexpression resulting from this interaction

represents another potential target. Preclinical researches have

shown that VEGF inhibition has activity against MM cells and

synergizes with the proteasome inhibitor bortezomib (189, 190).

However, in several clinical trials testing VEGF or VEGF receptor

(VEGFR) inhibitors as single-agent treatment, none of them have

shown significant clinical responses (191, 192). Similarly,

combination regimens involving these inhibitors with IMiDs or

with bortezomib have not yielded meaningful results (192, 193).

Hence, future attempts to inhibit VEGF in MM patients ought to be

made cautiously in patient selection and supported by a

solid justification.
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4.7 Others

Direct inhibition of VLA-4 has shown numerous beneficial

effects in the MM microenvironment in preclinical studies. It can

diminish MM stimulation by BM stroma, attenuate the pro-cancer

signals initiated by MM-mesenchymal stromal cells (MSCs)

microvesicles (MVs), abrogate angiogenesis induced by VEGF,

block signaling pathways triggered by VEGF and IGF-1that

promote MM cell migration, and restore sensitivity of MM cells

treated with MM-MSCs MVs to doxorubicin and bortezomib (194,

195). According to these advantages, natalizumab, a recombinant

humanized monoclonal antibody (mAb) against VLA-4 that is

approved for Crohn’s disease and multiple sclerosis treatment,

was evaluated in a phase 1/2 study (NCT00675428) for RRMM.

Regrettably, this trial was prematurely terminated not due to safety

concerns but due to insufficient patient enrollment. Therefore,

alternative approaches are required to specifically target VLA-4 in

the MM microenvironment.

Since hypoxic conditions have been identified in the BM of MM

patients, evofosfamide, a 2-nitroimidazole prodrug of the DNA

alkylator bromo-isophosphoramide (Br-IPM), has been specifically

engineered to exhibit activity under low oxygen conditions, and

demonstrated efficacy in both in vitro and in vivo preclinical models

of MM (196). Evofosfamide also showed a synergistic effect when

combined with bortezomib, leading to the promotion of apoptosis

in MM cells (137). A phase 1/2 trial reveals that the administration

of evofosfamide, with or without bortezomib, has excellent

tolerability and results in stable disease and improved survival in

patients with heavy prior treatments with advanced-stage RRMM

(197). These data indicate that targeting the hypoxic

microenvironment could be an effective new approach to the

treatment of MM, emphasizing the need for further investigation.
5 Conclusion

The intricate interplay between the bone marrow (BM)

microenvironment and myeloma cells plays a crucial role in

supporting MM cell growth and facilitating immune evasion through

diverse mechanisms. As a result, the tumor microenvironment is a

promising therapeutic target, particularly for heavily pre-treated

patients with end-stage RRMM. As such, multiple therapeutic

strategies targeting different MM microenvironment components

have been discovered and developed over the past decades to

improve patient outcomes. Despite the significant advancements,
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most of the strategies failed to translate into clinical practice.

Therefore, future research endeavors should focus on conducting

larger-scale and multicenter studies to elucidate the mechanisms of

action and resistance associated with different therapeutic approaches,

identify new targets, and develop more effective, selective, and well-

tolerated targeted therapies. This will contribute to improving patient

outcomes and advancing the field of MM treatment.
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