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Elucidating the role of
angiogenesis-related
genes in colorectal cancer:
a multi-omics analysis
Hao-tang Wei1†, Li-ye Xie2†, Yong-gang Liu1, Ya Deng1,
Feng Chen1, Feng Lv2, Li-ping Tang3* and Bang-li Hu2*

1Department of Gastrointestinal Surgery, Third Affiliated Hospital of Guangxi Medical University,
Nanning, China, 2Department of Research, Guangxi Medical University Cancer Hospital,
Nanning, China, 3Department of Information, Library of Guangxi Medical University, Nanning, China
Background: Angiogenesis plays a pivotal role in colorectal cancer (CRC), yet its

underlying mechanisms demand further exploration. This study aimed to

elucidate the significance of angiogenesis-related genes (ARGs) in CRC

through comprehensive multi-omics analysis.

Methods: CRC patients were categorized according to ARGs expression to form

angiogenesis-related clusters (ARCs). We investigated the correlation between

ARCs and patient survival, clinical features, consensus molecular subtypes (CMS),

cancer stem cell (CSC) index, tumor microenvironment (TME), gene mutations,

and response to immunotherapy. Utilizing three machine learning algorithms

(LASSO, Xgboost, and Decision Tree), we screen key ARGs associated with ARCs,

further validated in independent cohorts. A prognostic signature based on key

ARGs was developed and analyzed at the scRNA-seq level. Validation of gene

expression in external cohorts, clinical tissues, and blood samples was conducted

via RT-PCR assay.

Results: Two distinct ARC subtypes were identified and were significantly

associated with patient survival, clinical features, CMS, CSC index, and TME,

but not with gene mutations. Four genes (S100A4, COL3A1, TIMP1, and APP)

were identified as key ARCs, capable of distinguishing ARC subtypes. The

prognostic signature based on these genes effectively stratified patients into

high- or low-risk categories. scRNA-seq analysis showed that these genes were

predominantly expressed in immune cells rather than in cancer cells. Validation in

two external cohorts and through clinical samples confirmed significant

expression differences between CRC and controls.

Conclusion: This study identified two ARG subtypes in CRC and highlighted four

key genes associated with these subtypes, offering new insights into personalized

CRC treatment strategies.
KEYWORDS
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Introduction

Colorectal cancer (CRC) ranks as a major cause of cancer-

related morbidity and mortality worldwide. It displays a wide range

of molecular heterogeneity, underscoring the complexity of its

pathobiology (1). Despite the progress in genomic profiling, there

remain significant challenges in accurately predicting outcomes and

tailoring specific therapies for individual patients. Numerous factors

contribute to the development, progression, and prognosis of CRC.

Among these, angiogenesis is a pivotal process in tumor growth and

spread, enabling cancer cells to access the bloodstream and

metastasize (2). Angiogenesis, the formation of new blood vessels

from existing vasculature, is crucial in both healthy and diseased

states (3, 4). It has been firmly established that angiogenesis

underpins tumor expansion and dissemination by supplying

essential nutrients and oxygen, affirming its status as a

fundamental characteristic of cancer and other diseases (5).

Numerous genes and signaling pathways have been identified as

critical regulators of angiogenesis, many of which are frequently

overexpressed within tumors, thereby amplifying angiogenic

signaling (6). In the context of CRC, several genes and molecular

pathways such as vascular endothelial growth factor (VEGF) (7),

platelet-derived growth factor (PDGF) (8), and fibroblast growth

factor (FGF) (9), have been reported as associated with angiogenesis.

As a result, targeting angiogenesis has emerged as a promising

therapeutic strategy in CRC treatment. For instance, anti-

angiogenic drugs like bevacizumab, a monoclonal antibody against

VEGF, have demonstrated enhanced patient outcomes when used in

conjunction with traditional chemotherapy regimens (10, 11).

Molecular subtyping of CRC has been a significant focus in recent

research, greatly enhancing our understanding and management of

the disease. CRC is composed of several molecularly distinct

subtypes, each characterized by specific genetic and epigenetic

alterations. These subtypes have demonstrated substantial influence

over prognosis, response to therapy, and overall clinical outcomes

(12, 13). Recent studies have leveraged gene profile datasets to

develop angiogenesis-related molecular subtypes, with the aim of

investigating associations with CRC’s clinical characteristics,

prognosis, and tumor microenvironment (TME) (14, 15). However,

there still remain numerous angiogenesis genes related to CRC

development that require further elucidation. Moreover, the role of

angiogenesis within CRC necessitates additional validation through

independent cohorts and clinical samples. In light of these gaps in

knowledge, we undertook an analysis of angiogenesis-related gene

subtypes within CRC. Our primary objective was to ascertain the role

of the angiogenesis subtype in the treatment of CRC and identify

potential targets for future therapeutic interventions.
Materials and methods

Bulk RNA expression acquisition

The RNA-seq data of TCGA-COADREAD dataset and the

corresponding clinical features data were achieved from UCSC
Frontiers in Oncology 02
Xena (https://xenabrowser.net/), which included the data of 576

CRC patients. Three GEO datasets, including GSE41258 (n=390),

GSE152430 (n=49), and GSE17538 (n=244) with the survival data

of CRC patients were collected from GEO database (https://

www.ncbi.nlm.nih.gov/geo/). Data of GSE164191 with blood

samples of CRC and control were also collected. In addition, we

downloaded two gene expression datasets, namely, IMVigor210

and GSE78220, comprising the data of cancer patients who

underwent immunotherapy. These data were utilized to elucidate

the role of ARC in the context of immune response modulation.

In total, we obtained the characteristic of 1,779 subjects, the

baseline of which is shown in Supplementary Table S1. The

GEO datasets were preprocessed by performing background

adjustment using the RMA algorithm. The 36 angiogenesis-

related genes (HALLMARK_ANGIOGENESIS) were acquired

from the MSigDB database.
Consensus clustering analysis

Consensus clustering of the CRC dataset samples was using the

k-means method with the “ConsensusClusterPlus” package to

classify angiogenesis-related clusters (ARC) with CRC, the

parameters of the methods were set as default. The optimal

number of the clustering was determined by the consensus

heatmap and cumulative distribution function (CDF) curves,

which was indexed by k values from 2 to 9.
Gene Ontology of angiogenesis-
related genes

GO functional enrichment analysis of biological process

of angiogenesis-related genes were performed by the

“clusterProfiler” and “org.Hs.eg.db” packages. Significant terms

were identified with a cutoff p-value of <0.01 and a false

discovery rate of <0.05.
Calculation of cancer stem cell index, CMS,
and gene mutation

Cancer stem cell (CSC) index was represented by stemness

indices mRNA stemness index (mRNAsi) and DNA methylation-

based stemness index (mDNAsi), which train a stemness signature

using normal stem cells and apply the one-class algorithm to

define a stemness index for each tumor sample. “CMScaller”

package was used to identify CRC patient’s consensus molecular

subtypes (CMS) attribution in TCGA-COADREAD dataset,

including (CMS1 to CMS4). The somatic mutation data and

tumor mutation burden (TMB) data of CRC were collected

from “maftools” package, which was from the GDC TCGA

database. The mutation status of each cluster was drawn by

waterfall plots to demonstrate the somatic mutation of CRC

patients in TCGA database.
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Tumor microenvironment estimation

Two algorithms were used to inference TME of CRC by analyzing

the TCGA-COADREAD dataset. The Cibersort algorithm was

employed to calculate the immune infiltration cells faction in the

tissues, which contains 22 types of immune cells. The tumor immune

scores were evaluated by ESTIMATE algorithm; the results included

stromal score, immune score, ESTIMATE score, and tumor purity.
Screening important genes of ARC by
machine learning methods

Three machine learning algorithms, including least absolute

shrinkage and selection operator (LASSO) regression, random

forest (Boruta), extreme gradient boosting (XGBoost), and

Decision Tree (DT) machine learning algorithms, were applied to

screen key genes associated the ARC. The machine learning

algorithm steps included loading and cleaning the dataset,

dividing the dataset into training and testing sets at a ratio of 7:3,

and finally tuning and running the model. The parameters of each

step were set as default. We then used overlapping genes from these

three algorithms to build a predictive model for the ARC using

logistic regression analysis, and estimated the predictive value of the

common genes using receiver operating characteristic (ROC) curves

and the area under the curve (AUC) measurements.
Construction of ARC signature for the
prognosis of CRC patients

The ARC signature for the survival of CRC patients was also

constructed by the common genes from the three machine learning

methods. The multivariate Cox regression model was used to

construct ARC signature incorporated in the common genes. The

prognostic value of ARC signature was estimated by AUC of ROC.
Analysis CRC scRNA-seq dataset

The scRNA-seq dataset of GSE132465 and annotation data

were downloaded from GEO database, which included data of 23

primary colorectal cancer and 10 matched normal mucosa samples.

The Seurat 4.2.0 R package was carried out to the processing of the

scRNA-seq data. In brief, we performed quality control to filter out

low-quality cells. This is followed by data normalization to mitigate

the influence of technical variations. “Harmony” function was used

to integrate the scRNA-seq data from different samples. Next, we

identified highly variable genes to focus on those most likely to be

informative for clustering. Principal component analysis (PCA) was

then applied to reduce the dataset into a more manageable size

while retaining most of the variability. Finally, the PCA result was

visualized through UMAP algorithms. The markers used for cell

identity were obtained from the ScType package (16).
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Immuno- and chemotherapeutic
response prediction

To explore the potential immunotherapy response, we

introduce IMvigor210 cohort, which included data from patients

with different types of cancer (bladder, kidney, liver, lung lymph

node, and ureter) who underwent immune treatment, and

GSE78220, which included 28 melanoma patients who underwent

PD-1 treatment. The association of ARC with the survival of

patients and treatment response was analyzed. In addition, to

excavate chemotherapeutic drugs sensitivity to ARC, we

computed the semi-inhibitory concentration (IC50) values of

common medicines using the “oncoPredict” package. The

“oncoPredict” package is an R package for predicting in vivo or

cancer patient drug response and biomarkers from cell line

screening data, and it has been widely applied to various in vitro

and in vivo contexts for drug and biomarker discovery (17).
Clinical tissue and blood
samples collection

A total of 60 CRC tissues and corresponding adjacent tissues

were collected from January 2021 to February 2022 in the hospital.

CRC patients included in the study had not undergone any prior

treatment before surgery and were excluded if they had a history

of immune disorders, inflammatory diseases, or severe

dysfunction of major organs. Fresh tissues were frozen

immediately after surgery and stored in liquid nitrogen until

used. In addition, blood samples of 60 CRC patients and 60

non-cancer patients were collected at the same period. The non-

cancer patients included patients with hypertension, diabetes, and

gastritis. A 10-mL peripheral venous blood sample was collected

with EDTA anticoagulant tube and applied for the peripheral

blood mononuclear cell (PBMC) separation. PBMC was stored at

the temperature of −80℃ until further processing. This study was

approved by the hospital’s ethics committee, and written informed

consent was obtained from each patient. The clinical features of

clinical tissues and plasma samples are listed in Supplementary

Tables S2, S3.
Reverse transcription-polymerase chain
reaction assay

Expression of genes tested by reverse transcription-polymerase

chain reaction (RT-PCR). Total RNA from the tissues and the

PBMC was isolated using TRIzol reagent (Thermo Fisher Scientific,

USA) according to the manufacturer’s instructions. The primers of

genes used for RT-PCR are listed in Supplementary Table S4. RT-

PCR was performed using the SYBR ® Premix Ex Taq kit (Takara,

Dalian, China). The relative expression of each gene was calculated

using the 2−DDCT method.
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Statistical analysis

Wilcoxon rank-sum test was applied to show the difference

between the two groups. Kruskal–Wallis H-test was performed to

compare three or more groups. Dunn test was used for multiple

comparisons. Chi-square test was used in the comparison of

observed and expected results. Kaplan–Meier curves were drawn

to exhibit the survival of each group, and log-rank test method was

employed to compare survival data. All of the statistical analyses

were conducted using R 4.1.3 (p< 0.05).
Results

Classification of angiogenesis-associated
molecular clusters in CRC

The workflow chart of the study is shown in Figure 1.

Employing GO enrichment analysis, we found that the 36 ARGs

were mostly enriched in wound healing, cell-matrix adhesion,

vascular endothelial growth factor receptor signaling pathway,

chemotaxis, and taxis (Figure 2A). To investigate the role of

ARGs in oncogenesis, we used consensus clustering method to

categorize CRC patients from TCGA-COADREAD dataset. This

dataset included data from a large-scale of CRC patients, which

enhanced the robustness of our results compared to studies with

smaller sample sizes. Two angiogenesis-associated cluster (ARC)

subtypes were identified (cluster I and cluster II; Figure 2B). To

explore the prognosis of ARC, Cox analysis and KM plot were

employed, and the results showed that patients at cluster I present
Frontiers in Oncology 04
better survival time than those at cluster II regarding the OS of CRC

patients (Figure 2C). We also clustered GSE17538 dataset using the

same method and found that the OS of CRC patients was

significantly poor in cluster II compared with that in cluster I

(Figure 2D). Collectively, these results indicated that ARC subtypes

were able to predict the survival of CRC patients.
Association of the ARC with clinical
parameters and CSC index, CMS in CRC

Using the TCGA-COADREAD dataset, we determined the

association of the ARC with clinical parameters in CRC patients.

Besides the common clinical parameters, CSC index has been

considered promising therapeutic targets for cancer therapy. CMS

classification system is currently available for CRC with clear

biological interpretability and subtype-based targeted interventions.

As listed in Supplementary Table S5, there were significant differences

between cluster I and cluster II regarding T stage and N stage of CRC,

but no greatly difference regarding patients’ age, gender, location,

histological type, M stage, and tumor stage. Furthermore, we

examined the associations of ARC with CMS and CSC index

(included mRNAsi and EREG mRNAsi index) in CRC patients

(Figure 3A); the results showed that cluster I showed higher

mRNAsi index than cluster II, but there was no significant

difference regarding EREG mRNAsi index between cluster I and

cluster II (Figure 3B). In addition, there were significant differences

between cluster I and cluster II regarding CMS proportion of CRC,

and cluster I contained high CMS2 proportion while cluster II

contained mostly CMS4 proportion (Figure 3C).
FIGURE 1

The workflow chart of the study. CSC, cancer stem cell; CMS, consensus molecular subtypes; ARC, angiogenesis-related clusters.
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Analysis of ARC with TME and gene
mutation in CRC

TME and gene mutation are known as critical factors that affect

CRC pathogenesis, progress, treatment response, and prognosis,

and have close connection with angiogenesis in CRC. We therefore

further examined the association of ARC with TME and gene

mutation in CRC. First, we employed Cibersort algorithm to

determine the proportion of 22 immune cells and ESTIMATE

algorithm to calculate tumor immune scores in the TME, and the

results were presented by heatmap (Figure 4A). The results showed

that cluster I was significantly enriched in B-cell memory, plasma

cells, T cells CD8, T-cell CD4 memory resting, NK cells activated,

and monocytes, while cluster II was remarkably enriched in

macrophages M0, macrophages M1, macrophages M2, and

neutrophils (Figure 4B). We also found that tumor immune score

of stromal score, immune score, and ESTIMATE score were greatly

increased in cluster I compared with those in cluster II, but the
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tumor purity was high in cluster I compared with that in cluster II

(Figure 4C). Furthermore, we compared the TMB between cluster I

and cluster II, but there was no significant difference between them

(Figure 4D). Moreover, in line with the results of TMB, there was no

considerable difference between cluster I and cluster II regarding the

top 10 mutation genes (Figure 4E). Collectively, these results

indicated that the ARC was associated with the TME, but little

associated with gene mutation status of CRC.
Machine-learning-based establishment of
ARC-related signature for CRC

Machine-learning-based gene selection approaches are widely

used in current studies, as they have been reported to enhance

dimensionality reduction precision (18). Three machine learning

algorithms, including LASSO, Xgboost, and DT machine learning

algorithms, were applied to explore the important genes of ARGs
B

C D

A

FIGURE 2

Classification of angiogenesis-related genes clusters in CRC. (A) Biological process of angiogenesis-related genes; (B) two classification of
angiogenesis-related genes were identified by consensus clustering method; (C,D) comparison of survival time between cluster I and cluster II of
angiogenesis-associated clusters in TCGA-COADARED dataset and GSE17538 dataset.
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that were associated with the ARC using TCGA-COADREAD

dataset. After overlapping the important genes screening from the

three machine learning algorithms, four genes, which included S100

calcium binding protein A4 (S100A4), collagen type III alpha 1

chain (COL3A1), TIMP metallopeptidase inhibitor 1 (TIMP1), and

amyloid precursor protein (APP), were identified as the common

genes of the three machine learning algorithms (Figure 5A). We

found that only TIMP1 was significantly associated with the

prognosis of CRC patients, while the remaining three genes

showed minimal association with their prognosis (Figure 5B).

Then, logistic regression analysis was performed to determine the

predictive value of the four genes in distinguish ARC subtypes. As

shown in Figure 5C, these four genes could better distinguish cluster

I from cluster II, with the AUC value as 0.996.

We next constructed an ARC prognostic signature for CRC

using these four genes and divided the CRC patients into high- and

low-risk group based on the median value of the signature. We

found that patients at high-risk group harbor much more

proportion of cluster I than that at the low-risk group

(Figure 5D) and presented shorter survival time than those at the

low-risk group (Figure 5E). Finally, we verified the association of

the signature with CRC patients’ survival using three independent

cohorts, including GSE41258, GSE152430, and GSE17538. By KM

plot and log-rank analysis, we found that patients with high risk

present shorter survival time than those with low risk (Figures 5F-

H), suggesting that this signature was able to screen CRC patients at

different risk of survival.
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Exploration of four ARC-related gene at
scRNA-seq level

Through preprocessing of GSE132465 scRNA-seq dataset, 15

cell clusters were identified; then, the cell type annotation was

conducted based on “ScType” package and visualized by UMAP

plot, and 12 cell types were annotated (Figure 6A). As shown in

Figure 6B, S100A4 was highly expressed in memory CD4+ T cells,

macrophages, basophils, HSC/MPP cells, plasmacytoid dendritic

cells, classical monocytes, CD8+ NKT-like cells, and memory CD8+

T cells; COL3A1 in HSC/MPP cells and plasmacytoid dendritic

cells; TIMP1 in macrophages, basophils, endothelial, HSC/MPP

cells, plasmacytoid dendritic cells, and classical monocytes; and

APP in endothelial, HSC/MPP, and plasmacytoid dendritic cells.

We compared the expression of the four ARC-related genes

between cancer and control tissues in cancer cells and observed

that expression of S100A4, COL3A1, and TIMP1 in cancer cells was

significantly elevated in cancer tissues compared with that in

control tissues, but the expression of APP was lower in in cancer

tissues than in control tissues (Figure 6C).
Determination of ARC with the survival and
immunotherapy response

Since the ARC was associated with the TME, we therefore

determined the association of the ARC subtypes with
B C

A

FIGURE 3

Association of the ARC with clinical parameters and CSC index and CMS in CRC. (A) A heatmap characterizing the CSC index and CMS of the ARC;
(B) comparison of CSC index (miRNAsi and EREG_mRNAsi) between cluster I and cluster II; (C) comparison of the proportion of CMS between
cluster I and cluster II. CSC, cancer stem cell; CMS, consensus molecular subtypes. ****p<0.00001, ns, not significance.
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immunotherapy by analyzing the data from the IMvigor cohort,

which included multiple cancer types in patients who underwent

immunotherapy. Although patients’ survival of cluster I

was longer than that of cluster II (Figure 7A), we failed to

find that there was significant treatment response between

cluster I and cluster II (Figure 7B). We also employed another

dataset, GSE78220, which included 28 melanoma patients who

underwent PD-1 treatment, but neither the survival time nor the

treatment response show significant difference between cluster I
Frontiers in Oncology 07
and cluster II (Figures 7C, D). Additionally, we explored the

potential treatment for each ARC by analyzing the sensitivity of

typical chemotherapeutic medicines. The “oncoPredict” package

was used to implement the treatment prediction for each ARC

showing drug sensitivity in the form of IC50. The results showed

that cisplatin, gefitinib, GSK343, and oxaliplatin present much

lower IC50 value in cluster I than in cluster II (Figure 7E),

suggesting that patients at cluster I might be sensitive to these

chemotherapeutic medicines.
B

C D

E

A

FIGURE 4

Analysis of ARC with TME and gene mutation in CRC. (A) A heatmap characterizing the immune cells and immune score; (B) comparison of 22
immune cells proportion between cluster I and cluster II of ARC; (C) comparison of tumor immune scores between cluster I and cluster II of ARC;
(D) comparison of TMB between cluster I and cluster II of ARC; (E) gene mutation status of cluster I and cluster II in CRC. TMB, tumor mutation
burden. **p<0.001, ***p<0.0001, ****p<0.00001.
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Validation of the ARC signature genes
datasets and clinical samples

To verify the expression of four ARC signature genes in CRC,

we examined their expression in two large samples of external

datasets, GSE41258 (181 tumor tissue and 46 control tissue

samples) and GSE164191 (59 tumor blood and 62 normal blood

samples), and found that S100A4, COL3A1, TIMP1, and APP were

all highly expressed in CRC compared with controls between CRC

and controls in both tissues and blood samples (Figures 8A, B).

Next, we examined the expression of the four genes in clinical CRC

tissues and blood samples using RT-PCR assay and found that the

results were similar to that of CRC datasets (Figures 8C, D), with the
Frontiers in Oncology 08
expression of the four genes significantly increased in CRC

compared with the controls, regardless of tumor tissues or blood

samples. Taken together, these results suggested that the four ARC

signature genes were closely related to the CRC.
Discussion

Angiogenesis, defined as the formation of new blood vessels

from pre-existing vasculature, is a critical component in cancer

development and progression. This process facilitates tumor growth

and metastasis by supplying rapidly proliferating cancer cells with

essential oxygen and nutrients. Analogous to other solid tumors,
B

C D E

F G H

A

FIGURE 5

Machine learning-based establishment of ARC prognostic signature for CRC. (A) Venn plot of the common genes from important genes of three
machine-learning-based algorithms; (B) association of four ARC-related genes with the survival of CRC patients; (C) predictive value of four ARC-
related genes in discriminated ARC subtypes; (D) comparison of high- and low-risk proportion between cluster I and cluster II of ARC; (E) survival
analysis of high- and low-risk of ARC-related signature for CRC in TCGA-COADREAD dataset; (F–H) survival analysis of high- and low-risk of ARC
prognostic signature for CRC patients in GSE41258, GSE152430, and GSE17538 datasets.
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CRC development, progression, and metastasis are heavily reliant

on angiogenesis (19, 20). A plethora of molecules, including growth

factors such as epidermal growth factor (EGF), FGF-2, VEGF,

transforming growth factor (TGF)-a and TGF-b (21), and

angiopoietins (22) participate in this process. These genes

orchestrate intricate signaling pathways that promote endothelial

cell proliferation, migration, and survival—processes fundamental

for angiogenesis. Understanding the molecular mechanisms and

genetic regulation underpinning angiogenesis not only sheds light

on the pathophysiology across numerous diseases but also opens

the possibility for novel therapeutic interventions.

In this study, we segregated CRC patients into two distinct

angiogenesis-related subtypes—cluster I and cluster II—using an

unsupervised clustering algorithm. Significant disparities were

observed between these clusters concerning survival time,

mRNAsi, CMS, immune cell fraction, and tumor immune scores.

However, minimal differences were noticed regarding EREG-

mRNAsi, TMB, and the top 10 gene mutations. These findings

align with previous research (14, 15). Utilizing three machine

learning algorithms, we identified four genes significantly

associated with CRC subtypes. These genes exhibited high

predictive value for differentiating the two clusters. Additionally, a

signature built using these four genes proved to be effective in

stratifying patients into high- or low-risk survival categories, a result

corroborated by independent cohorts. Subsequent single-cell RNA-
Frontiers in Oncology 09
sequencing dataset analysis revealed the primary sources of the four

genes. Interestingly, none of these genes showed high expression in

cancer cells. Instead, they primarily manifested within various types

of immune cells, despite profound expression differences between

tumor and control tissues in the cancer cells.

Studies have shown that the presence of tumor-infiltrating

lymphocytes, particularly cytotoxic CD8+ T cells, is associated with

improved response to immunotherapy across different cancer types

(23). Recent therapeutic strategies incorporating immune-checkpoint

inhibitors and anti-angiogenic agents have significantly advanced

clinical cancer treatment. Numerous studies have explored the

interplay between immunity and angiogenesis within the TME,

including the relationship of angiogenesis-related genes—such as

VEGFA, SPP1, and CXCL16—with immune cells, the TME, and

immune therapies (24). For example, CXCL16 facilitates tumor

metastasis by modulating angiogenesis within the TME of CRC

(25). Members of the VEGF family, induced by hypoxia-inducible

factor (HIF) signaling, play a crucial role in angiogenesis by binding

to their receptors VEGFR1–2 and neuropilin (26). The interaction

between immune cells and CRC cells impacts tumor growth,

invasiveness, and angiogenesis (27). Additionally, angiogenesis

regulators such as S100A4, SPARC, and SPP1 are associated with

macrophage infiltration and serve as prognostic biomarkers in CRC

(28). These findings highlight the association of certain angiogenesis-

related genes with the TME in CRC.
B

CA

FIGURE 6

Exploration of four ARC-related genes at scRNA-seq level. (A) UMAP visualization of CRC cell clusters between tumor and control tissues at scRNA-
seq level. Color codes represent sample types; (B) distribution of four ARC genes in 12 cell types; (C) comparison of four ARC-related genes in
cancer cells between tumor tissues and control tissues. ****p<0.00001.
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We also evaluated the immunotherapeutic response of cluster I

and cluster II using the IMvigor210 and GSE78220 datasets, as done

in previous studies (29, 30). Although we identified an association

between the ARC and the TME, our analysis did not reveal a

significant correlation between these subtypes and immunotherapy

response or patient survival. Given that the patients in these cohorts

were not exclusively CRC patients, we hypothesize that the

inclusion of patients with other types of cancers might have

contributed to the observed discrepancies. Consequently, the

precise relationship between ARC subtypes and immunotherapy

effectiveness needs to be validated specifically in CRC patients who

have received immunotherapy. As our results indicated poorer

survival rates in cluster II compared to cluster I, we screened and

identified four chemotherapeutic medications sensitive to this

cluster, thus providing potential treatment options for these

patients. Finally, we examined two larger sample cohorts and

confirmed the expression of the four genes in CRC tissues. We

also collected clinical CRC tissue and blood samples for further
Frontiers in Oncology 10
validation of gene expression using RT-PCR assays. This

demonstrated the reliability of our results.

Among the four genes (S100A4, COL3A1, TIMP1, and APP)

associated with CRC, S100A4 is a notable regulator of angiogenesis.

A study reported that S100A4 mediates the effect of STC1 on

angiogenesis in breast cancer (31). It also serves as a prognostic

biomarker for CRC (28, 32). Furthermore, S100A4 facilitates CRC

metastasis via MACC1 (33, 34). COL3A1, encoded by SPARC, is a

cysteine-rich acidic matrix-associated protein crucial for

extracellular matrix (ECM) remodeling (35). Research has

demonstrated that COL3A1 is selectively expressed by the

microvasculature in brain tumors (36). Existing evidence indicates

that COL3A1 exhibits higher expression in CRC tissues compared

to control tissues and is associated with CRC metastasis (37–39).

TIMP1, reported to be a multi-faceted biomarker in CRC, can

function as a diagnostic biomarker for CRC and is linked to

the immunological microenvironment, drug sensitivity, and

inhibition of ferroptosis (40). Additionally, TIMP1 is correlated
B
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FIGURE 7

Determination of ARC with the survival and immunotherapy response. (A) Survival analysis of different ARC with the immunotherapy in IMvigor cohort;
(B) comparison of immunotherapy response between cluster I and cluster II in IMvigor cohort; (C) survival analysis of different ARC with the immunotherapy
in GSE78220 dataset; (D) comparison of immunotherapy response between cluster I and cluster II in GSE78220 dataset; (E) comparison of IC50 of four
chemotherapeutic medicines between cluster I and cluster II. CR, complete response; PR, partial response; SD, stable disease; PD, progression
disease; ****p<0.00001.
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with angiogenesis in CRC (41, 42), gastric cancer (43), and CRC

metastasis (44). In addition, TIMP1 was identified to be upregulated

in particularly aggressive forms of CRC liver metastases, specifically

those with the replacement histopathological growth pattern (45).

Amyloid precursor protein (APP), the biological precursor of b-
amyloids, has been extensively studied in relation to Alzheimer’s

disease (46, 47), where it is involved in angiogenesis (48, 49).

However, its role in cancer, particularly CRC, remains vastly

unexplored. A recent study revealed that TIMP-1 acts as a novel

ligand of APP, triggering a proinflammatory phenotype in human

monocytes (50). Moreover, APP mediates amyloid b peptide

interaction in basal prostate cancer and mesenchymal colon

cancer (51). Collectively, these findings suggest that these four

angiogenesis-related genes are significantly involved in the
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angiogenesis of various diseases, including cancers, and are linked

to the pathogenesis of CRC.

While previous studies have reported on the role of

angiogenesis-related clusters in CRC (14, 15), these studies lacked

clinical samples and larger sample sizes of CRC datasets for gene

expression verification. In contrast, our study utilized three

machine learning algorithms to screen for important genes,

resulting in a smaller but more accurate predictive set compared

to previous studies. This makes our findings more readily applicable

in clinical practice. Furthermore, our research mapped gene

expression at single-cell RNA levels and discovered that these

genes mainly manifest in non-cancerous cells, a finding not

previously reported. Nonetheless, several limitations in our study

should be acknowledged. First, due to a lack of survival data from
B
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FIGURE 8

Validation of the ARC signature genes datasets and clinical samples. (A,B) Comparison of the expression of S100A4, COL3A1, TIMP1, and APP in (A)
GSE41258 dataset, (B) GSE164191 dataset, (C) CRC tissues and adjacent tissues, and (D) CRC and non-cancer blood samples. Data were expressed
as mean and SD. **p<0.001, ***p<0.0001, ****p<0.00001.
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clinical samples, we were unable to conduct survival analysis for

these genes. Second, current data regarding CRC patients who

underwent immunotherapy is unavailable. Lastly, while previous

studies have reported the role of these angiogenesis-related genes in

various diseases, the exact mechanism underlying angiogenesis in

CRC needs to be confirmed through in vivo and in vitro

experiments. Therefore, future studies are required to determine

the exact association of ARG with treatment response.
Conclusions

Our study uncovered two ARG subtypes associated with the

prognosis and clinical characteristics of CRC. Additionally, we

identified potential chemotherapeutic medications for patients.

Four key genes related to ARG subtypes were also identified and

validated. These findings provide valuable targets for assessing

survival outcomes in CRC patients and offer guidance toward

individualized treatment strategies.
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