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To date, despite extensive research, the prognosis of advanced osteosarcoma

has not improved significantly. Thus, patients experience a reduced survival rate,

suggesting that a reevaluation of current treatment strategies is required.

Recently, in addition to routine surgery, chemotherapy and radiotherapy,

researchers have explored more effective and safer treatments, including

targeted therapy, immunotherapy, anti-angiogenesis therapy, metabolic targets

therapy, and nanomedicine therapy. The tumorigenesis and development of

osteosarcoma is closely related to angiogenesis. Thus, anti-angiogenesis therapy

is crucial to treat osteosarcoma; however, recent clinical trials found that it has

insufficient efficacy. To solve this problem, the causes of treatment failure and

improve treatment strategies should be investigated. This review focuses on

summarizing the pathophysiological mechanisms of angiogenesis in

osteosarcoma and recent advances in anti-angiogenesis treatment of

osteosarcoma. We also discuss some clinical studies, with the aim of providing

new ideas to improve treatment strategies for osteosarcoma and the prognosis

of patients.
KEYWORDS

advanced osteosarcoma, anti-angiogenesis therapy, mechanism of tumor angiogenesis,
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1 Introduction

Osteosarcoma is a bone-derived primary malignant tumor that is characterized by

malignant proliferation and the production of bone-like tissue and matrix (1, 2).

Epidemiological investigations showed that the age distribution of patients with

osteosarcoma was bimodal. It mainly occurs in children and young adults with rapid bone

growth between 10 and 30 years old, and in certain people over 65 years old (3–5). The first
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peak group coincides with the peak of adolescent growth, and the

second is thought to be secondary to long-term Paget’s disease and

radiation therapy (6–9). Osteosarcoma is considered to be concealed,

malignant, and aggressive. Approximately 25% of patients with

osteosarcoma present with metastasis at the time of initial diagnosis

and experience recurrence during the treatment (10, 11).

Osteosarcoma mainly occurs at the epiphyseal end of the long leg

bone, for example, around the knee and near the humerus. Patients

often experience pain, swelling, restricted limb activity, and accessible

clumps at the lesion site (2). Diagnosis depends mainly on pathological

biopsy. Osteosarcoma can be classified into eight categories according

to fifth edition of the 2020 World Health Organization (WHO)

classification of tumors of soft tissue and bone tumors, including

low-grade central osteosarcoma, conventional osteosarcoma,

telangiectatic osteosarcoma, small cell osteosarcoma, parosteal

osteosarcoma, periosteal osteosarcoma, high-grade surface

osteosarcoma, and secondary osteosarcoma (12). According to the

degree of malignancy, osteosarcoma can be classified into low and high

grade. Low-grade osteosarcoma, which consists of low-grade central

osteosarcoma and cortical osteosarcoma, is less malignant, and can

usually be treated using surgery alone. However, high-grade

osteosarcoma is one of the most malignant tumors, and is often

accompanied by lung metastases. High-grade osteosarcoma always

requires surgery combined with neoadjuvant chemotherapy and

postoperative chemotherapy, frequently requiring other

comprehensive therapies. Unfortunately, the prognosis of patients

with osteosarcoma has not improved significantly after nearly 40

years of treatment using the multi-mode combination strategy of

surgical and neoadjuvant chemotherapy or postoperative

chemotherapy (13–15). According to statistics, the 5-year survival

rate of primary osteosarcoma can reach about 65–70% (16, 17).

However, for advanced osteosarcoma, which almost always involves

lung metastasis, the 5-year survival rate is only approximately 20%

(18–21). It is believed that high invasiveness and resistance are the

main causes of poor treatment efficacy; therefore, new treatment

strategies are urgently required (22–24).

Tumor growth and progression are intricately linked to

angiogenesis, which is essential for the provision of nutrients.

Moreover, the formation of new blood vessels facilitates the

metastatic dissemination of cancer cells into circulation and

subsequent establishment of metastases (3, 20). Thus, anti-

angiogenesis treatment has become an important therapeutic

strategy and comprehensive therapy for advanced tumors, aiming

to limit the growth and metastasis of tumors by inhibiting

neoangiogenesis and normalizing tumor vessels (25). For example,

the classic anti-angiogenesis drug, Bevacizumab, has been approved

to treat lung cancer, hepatocellular carcinoma, glioma, and colorectal

cancer, and has demonstrated desirable clinical efficacy (26).

Advanced osteosarcoma, namely with metastatic, recurrent or

unresectable diseases, is a highly vascularized tumor, and the

progression of advanced osteosarcoma is closely related to

angiogenesis (27). Angiogenesis not only plays a pivotal role in

the metastasis of osteosarcoma, but also facilitates the colonization

of tumor cells at secondary sites (1, 3). Therefore, inhibiting

angiogenesis appears to be beneficial for preventing advanced

progression of osteosarcoma. Additionally, studies have shown
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that the microvascular density of osteosarcoma correlates

positively with tumor prognosis, and the expression of vascular

endothelial growth factor (VEGF), induced by angiogenesis, has

been used as an important method to evaluate the prognosis of

osteosarcoma (20). Although anti-angiogenesis therapy represents a

promising strategy to treat advanced osteosarcoma, currently, the

therapeutic effect of anti-angiogenesis treatment in osteosarcoma

remains controversial (25). Thus, this review aims to summarize the

molecular mechanism of angiogenesis and the current role of anti-

angiogenesis therapy in advanced osteosarcoma to provide new

ideas for its effective treatment.
2 The mechanism of angiogenesis
in osteosarcoma

Angiogenesis is a complex and dynamic process that is regulated

by the homeostasis of angiogenic and anti-angiogenic factors in the

physiological state (28, 29). In the tumor microenvironment (TME),

angiogenic homeostasis is disrupted, resulting in excessive

angiogenesis in the lesion (30), which provides nutritional support

for the tumor, thereby promoting the growth, invasion, and

metastasis of osteosarcoma (31, 32). The expansion of

osteosarcoma relies on neovascularization to maintain oxygen and

nutrient supplies (33), and the rapid growth of osteosarcoma

subsequently opens the “angiogenesis switch” caused by the higher

oxygen demand in the high metabolic TME, forming a vicious circle.

Large amounts of neoangiogenesis lead to disordered tumor vessels,

neovascular dysfunction, and low perfusion within the TME (34),

thus promoting the growth, invasion, immunosuppression, and

distant metastasis of osteosarcoma (35).
2.1 Angiogenesis patterns in tumors

Tumors, including osteosarcoma, demonstrate several patterns

of angiogenesis (Figure 1), such as sprouting angiogenesis (36, 37),

intussusception angiogenesis (38), vasculogenesis (39), vessel

mimicry (40, 41), trans-differentiation of tumor stem cells (26, 42,

43), and vessel co-option (44). Sprouting angiogenesis involves the

formation of a sprouting bud based on existing blood vessels and is

the main pattern of physiological and pathological angiogenesis

(45) (Figure 1A). Under hypoxia, quiescent endothelial cells (ECs)

are activated by angiogenic stimulators, such as VEGF, and are

converted into tip cells or stalk cells. Tip cells are characterized by

their location at the tip of the sprouting buds, which contain many

filopodia to sense the VEGF concentration gradient. They guide the

direction of angiogenesis, but lack proliferative activity (46). Stalk

cells are located behind the tip cells. They are highly proliferative

and mainly form the lumen to elongate the vascular buds under tip

cell guidance (47). Vasculogenesis is the process by which the bone

marrow-derived endothelial progenitor cells (EPCs) differentiate

into ECs and migrate inside the tumor to form new vessels (48)

(Figure 1B). Intussusception angiogenesis is a process that inserts

mesenchymal structures into the interior of a pre-existing vessel,

splitting the vessel into two vessels, which is considered an
frontiersin.org
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important complementary modality to sprouting angiogenesis (49,

50) (Figure 1C). Vessel mimicry involves the formation of a

“microvascular channel” by EC-like tumor cells with the

extracellular matrix (ECM), which exposes tumor stem cells to

the blood stream, thereby facilitating metastasis (40, 51)

(Figure 1D). Tumor stem cells can participate in angiogenesis

inside tumors by transforming into EC-like cells (52) (Figure 1E).

Finally, vessel co-option is not a true angiogenesis, but comprises a

pattern in which tumor cells colonize around existing blood vessels

to encapsulate them inside the tumor (44) (Figure 1F).
2.2 Molecular mechanism of angiogenesis

In osteosarcoma, the fast-growing tumor and the lagging

angiogenesis result in a long-term hypoxic TME. The main targets

affecting angiogenesis are VEGF, hypoxia inducible factors (HIFs),

platelet-derived growth factor (PDGF), epidermal growth factor

(EGF), fibroblast growth factor (FGF), hepatocyte growth factor

(HGF), insulin like growth factor (IGF), transforming growth

factor-b (TGF-b), and angiopoietins (ANGs) (53, 54). HIFs
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accumulate inside the tumor during hypoxia and subsequently

cause high expression of VEGF, which rapidly stimulates ECs (55,

56). The VEGF family includes VEGF-A\B\C\D\E\F and placental

growth factor (PLGF). VEGF-A and vascular endothelial growth

factor receptor 2 (VEGFR2) are the main inducers of angiogenesis

and the major targets of anti-angiogenesis therapy. VEGF-A activates

downstream phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/

protein kinase B (AKT), P38, and extracellular regulated kinase

(ERK)/mitogen activated protein kinase (MAPK) pathways after

binding with VEGFR2, which then promote the proliferation and

migration of ECs, resulting in angiogenesis (57–59). In addition,

studies have shown that growth factors, such as FGF and PDGF, also

promote tumor angiogenesis through VEGF/VEGFR pathways (41,

43, 60). PDGF, TGF-b, angiopoietins/TEK receptor tyrosine kinase

(TIE) are also active in the maturation of new blood vessels. ECs

attract PDGFR-b+ pericytes to complete the vascular barrier by

releasing PDGF-b. Suppressing PDGFR-b signals can lead to a

decrease in pericellular coverage and pericellular detachment,

resulting in vascular dysfunction and inhibition of tumor growth

(61). In the physiological state, angiopoietin 1 (ANG-1) is mainly

expressed around ECs, where it activates TIE-2 to mediate vascular
FIGURE 1

Potential schematic diagram of osteosarcoma angiogenesis patterns. (A) Sprouting angiogenesis: the main pattern in osteosarcoma, which is
induced by tip cells and stalk cells. (B) Vasculogenesis: EPCs are recruited and differentiate into ECs to participate in angiogenesis
(C) Intussusception: an existing vessel is split into two vessels through EC reorganization. (D) Vessel mimicry: tumor cells form tubular structures to
sustain tumor perfusion. (E) Tumor stem cell transdifferentiation: osteosarcoma stem cells differentiate into EC like cells and participate in
angiogenesis. (F) Vessel co-option: osteosarcoma cells colonize around the existing vessels.
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maturation. ANG-2 is released by tip cells and mainly has anti-ANG-

1 functions, guiding vascular degeneration (62, 63). In the TME, the

abundant tip cells secrete excess ANG-2, resulting in disturbance of

ANG-1 and ANG-2 homeostasis, thus leading to immature

neovascularization (30). The Notch and Wnt signaling pathways

also participate in tumor angiogenesis. The Notch signaling pathway

is involved in the dynamic regulation of tip cells and stalk cells.

Suppression of Notch signaling can lead to a tip cell phenotype (47),

and activating Notch signaling leads to a stalk cell phenotype and

activates the Wnt pathway, which facilitates the proliferation of the

stalk cell phenotype (42), thus promoting vascular bud formation.

Integrins are transmembrane receptors that mediate adhesion

between cells and extracellular matrices. They promote growth

factors like VEGF and FGFs, and enhance ANG-1 binding with its

receptors VEGFR-2 and FGFRs. Integrins can also promote the

maturation of neovascular tissue and regulate the connection of

ECs with the ECM (64). The molecular mechanism of angiogenesis

in osteosarcoma is summarized in Figure 2.
2.3 Other potential proangiogenic factors
in osteosarcoma

There are some other potential proangiogenic factors and

cytokines that participate in osteosarcoma angiogenesis, which could

be promising targets for anti-angiogenesis therapy in osteosarcoma.

Human interleukin (IL) family members have been shown to play
Frontiers in Oncology 04
important roles in regulating the immune and inflammatory responses

(65, 66). Recently, several IL family members were found to participate

in the regulation of the angiogenesis in osteosarcoma. Tzeng et al.

reported that IL-6 could upregulate VEGF expression through the

apoptosis signal-regulating kinase 1 (ASK1) and P38 pathways, and

induced angiogenesis in osteosarcoma (67). IL-34 is associated with

the progression of osteosarcoma and an increase in neo-angiogenesis

(68). Moreover, some evidence suggests that IL-1 and IL-8 also show

certain proangiogenic effects in osteosarcoma (69–71). In addition, the

expression of IL-17A, IL-1b and IL-10 was proven to be involved in

osteosarcoma carcinogenesis (72–74). Moreover, the latest research

indicates that IL-17A, IL-1b, and IL-10 might be related to

angiogenesis in other types of cancer (75–77). Thus, targeting them

might be a promising strategy to induce anti-angiogenesis effects

in osteosarcoma.

Tumor necrosis factor alpha (TNF-a) is involved in many

tumor cell pathological cellular pathways, including tumor

invasion, epithelial-mesenchymal transition, vascular invasion,

and the destruction of tumor vasculature (78, 79). Ségaliny et al.

reported that TNF-a could stimulate osteosarcoma cells to secrete

IL-34 and increased their angiogenesis (68). Moreover, recent

evidence suggested that nuclear factor kappa B (NF-kB) and HIF-

1a pathways might be potential downstream targets to regulate

angiogenesis in tumors (79). However, further study is needed to

confirm this molecular mechanism in osteosarcoma.

Endothelial-specific molecule 1 (ESM1) is thought to be a tip

cell marker, and was found to be significantly related to
FIGURE 2

Schematic diagram showing the angiogenic mechanism of osteosarcoma. Angiogenesis-promoting factors interact with receptors on endothelial
cell, triggering specific signaling pathways, subsequently reorganization cytoskeleton, proliferation, migration and gene expression, ultimately
influence angiogenesis.
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angiogenesis (80). Angiopoietin-like proteins (ANGPTLs) are

similar to angiopoietin and also promote angiogenesis; however,

they do not bind to the TIE family of angiopoietin receptors (81). In

recent years, these two types of proteins have gained increasing

significance as their proangiogenic effect in cancers have been

explored (80, 82, 83). Recently, a study found that ANGPTL2

could enhance angiogenesis in osteosarcoma by upregulating the

expression of hexokinase 2 (HK2) and VEGF (81). However, so far,

there has been little research on the roles of these proteins in

osteosarcoma. A more detailed understanding of how these proteins

function in osteosarcoma angiogenesis is required to develop

targeted therapy.
2.4 Metabolism regulates
tumor angiogenesis

Current anti-angiogenic therapy targeting VEGF and its related

pathways has not achieved the desired results in osteosarcoma,

which has forced scientists to explore new anti-angiogenic strategies

(3, 16, 25). Although little research has focused on targeting EC
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metabolism in the anti-angiogenic therapy of osteosarcoma, it has

received increased research attention (84), and might represent an

effective way to inhibit osteosarcoma angiogenesis.

Unique metabolic fluxes and metabolic patterns are closely

related to survival, phenotypic transformation, migration, and

proli ferat ion. Studies have shown that EC metabolic

reprogramming regulates angiogenesis through energy supply,

biosynthesis, signaling transduction, and epigenetic remodeling

(Figure 3). Unlike other cells, ECs rely mainly on aerobic

glycolysis for energy, although they are directly exposed to the

hyperoxic, high-sugar blood environment, which is similar to the

Warburg effect of cancer cells (85, 86). In the physiological state,

phalanx ECs attach to the intravascular surface in a hibernation

state, maintaining the endothelial barrier via a low aerobic glycolysis

flux. When ECs are awakened by angiogenic factors, the

transcription factors forkhead box O1 (FOXO1) and Kruppel-like

factor 2 (KLF2) are activated, and the quiescent cells transform into

tip cells or stalk cells, which is accompanied by a change in cell

metabolic patterns (87, 88). ECs obtain a tip cell phenotype via high

expression VEGFR2. VEGF upregulates the expression of fructose

6-phosphate-2-kinase/fructose-26-diphosphatase 3 (PFKFB3) and
FIGURE 3

Major metabolic pathways of endothelial cells during angiogenesis. Activation of the Notch signaling pathway inhibits intercellular glycolytic level.
VEGF binds to VEGFR2 and enhances downstream glycolysis flux. Additionally, VEGF regulates gene expression and metabolism in endothelial cells
via activating of FOXO1 and KLF2. Metabolic products like acetyl-CoA and glutamate act in energy supply, biosynthesis, signal transduction and
epigenetic remodeling through mitochondrial-related oxidative phosphorylation pathways.
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HK2 inside tip cells by binding to VEGFR2, and then increases

internal glycolysis levels to meet the high energy demands of tip

cells during pathfinding (89). At this point, tip cells activate the

Notch signaling pathway in adjacent ECs through lateral inhibition

mechanisms, which forces the neighboring cells to transform into

stalk cells (47). At the same time, activated Notch downregulates

PFKFB3 expression to reduce glycolysis levels, followed by

activation of mitochondrial fatty acid oxidation, which promotes

the synthesis of nucleotides, endowing the stalk cells with a high

proliferation status, thus facilitating angiogenesis (90). In addition

to promoting angiogenesis in ECs, PFKFB3 and HK2 are also

crucially involved in the progression of osteosarcoma by

regulating aerobic glycolysis (91, 92). Therefore, targeting

glycolytic enzymes PFKFB3 and HK2 might be a promising

therapy for osteosarcoma.

Although ECs mainly rely on glycolysis to maintain their

physiological activity, mitochondria also play a crucial role in

ECs. Mitochondria-related oxidative phosphorylation (OXPHOS)

plays an indispensable role in providing substrates and maintaining

the NAD+/NADH ratio in ECs (93). Tricarboxylic acid cycle

(TCA)-related products are important substrates for EC

biosynthesis and mitochondrial complex I is extremely important

for EC proliferation in tumors (94). Indeed, blocking mitochondrial

complexes I and III inhibits the proliferation of ECs and causes

pathological angiogenesis (95).

Lipid metabolism is also essential to maintain EC structure and

function. During angiogenesis, VEGF-B promotes the uptake of fatty

acids by upregulating the expression of fatty acid transport protein 3

(FATP3) and fatty acid transport protein 4 (FATP4) (96). Inhibiting

fatty acid synthesis reduces the proliferation and migration of ECs by

preventing post-translational modification of proteins and the

mechanistic target of rapamycin kinase (mTOR) pathways,

ultimately resulting in sprouting angiogenesis (97). Fatty acid

oxidation (FAO) maintains EC proliferation by increasing the

synthesis of aspartate through mitochondria (98). Another major

substrate of mitochondrial respiration in ECs is glutamine, which

plays important roles not only in biosynthesis, but also in

replenishing the TCA cycle as a carbon source (99). Moreover, the

integrity of glutamine metabolic pathways is closely related to the

migration of tip cells and the proliferation of stalk cells. Glutathione, a

downstream product of glutamine, also helps to maintain EC redox

homeostasis. Blocking glutamine metabolism pathways by silencing

ASNS (encoding asparagine synthase) inhibited angiogenesis by

stopping tip cell migration and stalk cell proliferation, resulting in

suppression of sprouting angiogenesis (100). Recent evidence shows

that dihydroartemisinin interferes with lipid metabolism in

osteosarcoma cells, especially the FAO process, and impedes

antiangiogenic drug resistance (101). However, there is still lack of

studies exploring EC lipid metabolism in osteosarcoma.
3 Anti-angiogenesis therapy
in osteosarcoma

The treatment of osteosarcoma mainly relies on surgery and

chemotherapy. As an effective supplement to routine treatment,
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Anti-angiogenesis therapy aims to block the nutrient supply of

tumors and impede the TME in the following ways: destruction of

tumor blood vessels by inducing apoptosis (102); inhibiting

angiogenesis by limiting cell proliferation and migration, and

promoting the normalization of blood vessels in tumors (103–

105); and restoring the perfusion inside tumors (106), thereby

altering the TME (43, 89, 90, 107). The current anti-angiogenic

treatments for osteosarcoma can be classified into the following

categories: Monoclonal antibodies (Mabs), tyrosine kinase

inhibitors (TKIs), small molecule inhibitors, Chinese herbal

medicine, aptamers, and nano-particles (NPs). The targets and

mechanisms of these drugs are shown in Table 1, and the clinical

trials involving these drugs are listed in Table 2.
3.1 Monoclonal antibodies

VEGFA/VEGFR are the main targets for anti-angiogenic

therapy; therefore, Mabs targeting VEGF are also widely used to

treat solid tumors, especially osteosarcoma. Bevacizumab was the

first Mab to be approved as an angiogenesis inhibitor for solid

tumors. Its main anti-angiogenic function is binding to all VEGFA

subtypes in the circulation and preventing them from activating

VEGFR (108). In a pre-clinical study, Zhao et al. reported that

intraperitoneal Bevacizumab injection exhibited strong anti-tumor

growth and anti-angiogenesis activity toward osteosarcoma in a

nude mouse model. However, the authors claimed that

Bevacizumab did not influence the incidence of mouse lung

metastasis (109). As mentioned above, surgery combined with

chemotherapy is still the first-line treatment for the advanced

osteosarcoma. To date, in clinical trials, Bevacizumab has been

used as an adjuvant therapy in combination with multiple

chemotherapy drugs after surgery, if required. In 2017, Navid

et al. reported the results of a phase II trial to evaluate the

feasibility and efficacy of combining Bevacizumab with

methotrexate, doxorubicin, and cisplatin (MAP) in patients with

localized and resectable osteosarcoma (Table 2) (148). They claimed

that the addition of Bevacizumab to MAP for osteosarcoma was

tolerated, with low toxicity, except for frequent wound

complications. However, the addition of Bevacizumab did not

significantly improve the outcome of patients with localized

osteosarcoma. In another clinical trial, Kuo et al. (149) reported

that combining Bevacizumab with docetaxel and gemcitabine was

well tolerated and had activity to treat relapsed or metastatic high-

grade sarcomas (including eight patients with osteosarcoma)

(Table 2). Collectively, the addition of Bevacizumab to multiple

chemotherapy drugs to treat osteosarcoma induces no additional

toxicity. However, the survival benefit is still unclear and large scale

trials are needed.

R1507 is a monoclonal antibody recognizing the insulin-like

growth factor-1 receptor (IGF-1R) (111), a receptor that plays an

important role in tumor proliferation, apoptosis, angiogenesis, and

metastasis (151). Thus, theoretically, R1507 should show some anti-

angiogenic effect. In fact, R1507 has been proven to delay tumor

growth in osteosarcoma mice xenograft tumors (152). A phase 2
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trial also showed that R1507 is safe and well-tolerated in patients

with osteosarcoma (150). However, the anti-angiogenic effect of

R1507 in the clinic is still unclear. Despite the strong targeting and

demonstrated efficacy in combination therapy for osteosarcoma,

Mabs targeting VEGF or other proangiogenic factors face

limitations in clinical application due to their high cost, uncertain

survival benefit, and side effects (148–150). Therefore, extensive

large scale clinical trials and more detailed research on the

underlying molecular mechanism of Mabs targeting angiogenesis

in osteosarcoma will be the potential research hotspots.
3.2 Tyrosine kinase inhibitors

TKIs are the most widely used angiogenesis inhibitors, being

mainly used to block multiple signals downstream of VEGFR. Other

targets include, PDGFR, Fms-like tyrosine kinase (FLT3),

recombinant activated factor (RAF), and c-kit (a receptor tyrosine

kinase, also called CD117 and stem cell factor receptor) (43).

Research has shown that TKIs, such as Sorafenib, Sunitinib,

Cediranib, Apatinib, Lenvatinib, Cabozantinib, and Regorafenib,

show certain effects in the treatment of advanced osteosarcoma

(Table 2). In particular, a phase 1/2 trial in 2021 showed that

Lenvatinib combined with etoposide and ifosfamide could exert

promising anti-tumor activity in patients with relapsed or refractory

osteosarcoma; however, a high rate of treatment emergent adverse

events was observed (119). The main concern related to TKIs is

their poor organ targeting and short half-life inside the tumor,

leading to limited efficacy and excessive side effects (119, 147).

Treatment with TKIs causes secondary activation of the mTOR

pathway in osteosarcoma (153). Small molecular inhibitors

targeting the mTOR pathway, such as Everolimus, can effectively

inhibit the proliferation and migration of ECs (153). Therefore, it

was suggested that Everolimus could be used as a supplement to

TKI therapy. However, clinicians should consider the adverse effects

caused by mTOR inhibitors, such as high blood lipids, high blood

sugar, mucositis, gastrointestinal reactions, and rashes, when

formulating a treatment strategy (137).
3.3 Chinese herbal medicine

Chinese herbal medicine is believed to exert anti-angiogenesis

effects via multiple targets and pathways, such as PI3K/AKT, Wnt/

b-catenin, Janus kinase (JAK)/signal transducer and activator of

transcription 3 (STAT3), Notch, NF-kB, and MAPK (154, 155).

Moreover, many constituents of herbs have shown significant

efficacy in anti-tumor and anti-angiogenesis therapeutics, with

lower rates of adverse events (156, 157). For example,

thymoquinone inhibits angiogenesis in osteosarcoma by

inhibiting the NF-kB pathway (123). Triptolide can also inhibit

angiogenesis in osteosarcoma through the HIF-1a, VEGF, and
Wnt/b-Catenin pathways (124). Xie et al. reported that

sinomenine, an active natural product derived from the plant

Sinomenium acutum Rehd. et Wils, can effectively reduce CD147
frontiersin.or
TABLE 1 Summary of pre-clinical studies related to anti-angiogenesis
therapy in osteosarcoma.

Class Drugs Mechanism Ref

Mab
Bevacizumab Anti-VEGF. (108–110)

R1507 Anti-IGF-1R. (111)

TKIs

Sorafenib
Anti-VEGFR, PDGFR,
ERK1/2, MCL-1,
Ezrin pathways.

(112–114)

Sunitinib Anti-VEGFR, PDGFR. (115)

Cediranib
Anti-VEGFR2
\3, PDGFR.

(116)

Apatinib
Anti-VEGFR2\STAT3
\BCL-2.

(117)

Pazopanib
Anti-VEGFR,
PDGFR, FGFR.

(118)

Lenvatinib
Anti-VEGFR1-3,
FGFR, PDGFR,
RET, KIT.

(119)

Cabozanitib
Anti-VEGFR2, c-MET,
c-KIT, FLT-3,
AXL, RET.

(120)

Regorafenib
Anti-VEGFR1-3, Tie2,
PDGFR a\b,
FGFR1\2.

(120)

Inhibitor Everolimus
Inhibition of the
mTOR pathway.

(121)

Endostain Endostar Anti-VEGF. (122)

CHM

Thymoquinone Inhibition of NF-kB. (123)

Triptolide
Inhibition of HIF-1a,
VEGF, Wnt/
b-Catenin.

(124)

Sinomenine
Inhibition
ofCD147, VEGF.

(125)

phyllanthus urinaria Decrease CD31. (126)

calotropis procera
Inhibition CD31,
VEGF, TGF-b.

(127)

Metabolic
targets
therapy

2-DG
Inhibition of
ANGPTLs, HK,
LDHA, VEGF.

(81, 128)

Bavachinin
Inhibition of
HIF-1a\HK2.

(129)

Icariside II
Inhibition of HIF-
1a \VEGF.

(130)

Aptamer LC09 Inhibition of VEGF A. (131)
Mab, Monoclonal antibody; IGF-1R, insulin-like growth factor-1 receptor; TKIs, Tyrosine
kinase inhibitor; CHM, Chinese herbal medicine; VEGF, vascular endothelial growth factor;
VEGFR, vascular endothelial growth factor receptor; PDGFR, platelet-derived growth factor
receptor; ERK, extracellular regulated protein kinase; MCL-1, myeloid cell leukemia-1;
STAT3, signal transducer and activator of transcription 3; BCL-2, B-cell lymphoma-2;
FGFR, Fibroblast growth factor receptor; RET, Ret proto-oncogene; KIT, KIT proto-
oncogene, receptor tyrosine kinase; c-MET, MET proto-oncogene, receptor tyrosine kinase;
FLT-3, Fms related receptor tyrosine kinase 3; AXL, AXL receptor tyrosine kinase; Tie-2, TEK
receptor tyrosine kinase; mTOR, mechanistic target of rapamycin kinase; NF-kB, nuclear
factor kappa B; HIF-1a, hypoxia inducible factor 1 alpha; Akt, protein kinase B; MMP9,
matrix metalloproteinase 9; HK, hexokinase; LDHA, lactate dehydrogenase A.
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and VEGF expression in OS cells through the C-X-C motif

chemokine receptor 4 (CXCR4)-STAT3 pathway, thus inhibiting

angiogenesis (125). Moreover, Phyllanthus urinaria, a widely used

folk medicine in cancer treatment, could decrease the microvessel

density and CD31 expression of osteosarcoma mouse xenografts,

suggesting its potential anti-angiogenic effect (126). In addition, a

recent study by Rabelo et al. reported that an extract of Calotropis

procera could reduce angiogenesis and tumor progression in canine

osteosarcoma cells by suppressing the expression of CD31, VEGF,

osteopontin, and TGF-b (127). Collectively, these studies

demonstrated that Chinese herbal medicine might be a promising

adjunct treatment for advanced osteosarcoma via its anti-

angiogenesis effects. However, to date, all the research on the use
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of herbal medicine in osteosarcoma has been carried out at using

cellular and animal models and there remains a significant

challenge to evaluate their safety in the clinic (157).
3.4 Potential metabolic antiangiogenic
therapies in osteosarcoma

Osteosarcoma cells and ECs have similar metabolic

characteristics, and regulating the metabolism of tumor cells

mainly involves inhibiting nucleotide synthesis, inhibiting energy

metabolism (e.g., glycolysis), and regulating redox metabolism and

other metabolic pathways (158). These metabolic pathways also
TABLE 2 Summary of clinical trials related to anti-angiogenesis therapy in osteosarcoma.

Drugs Combination
Clinical
Trial

No
of patients

Outcomes Ref

Cediranib – I 4 ORR 25%. (132)

Sorafenib

– – 4 3/4 SD. (133)

– I 8 2/8 PD; 2/8 SD; 5-year OS 64%. (134)

– II 35
3/35 PR; 12/35 SD; 4-month PFS 46%; m-PFS 4 months;
m-OS 7 months.

(135)

– – 7
4 month m-PFS 14.3%;DCR 80.0%;m-PFS 51 days;m-OS
119 days.

(136)

everolimus II 38 17/38 SD. (137)

everolimus – 14
4 month m-PFS 30.8%; DCR 91.7%; m-PFS 101 days;
m-OS 181 days.

(136)

Apatinib

– II 37
16/37 PR; ORR 43.24%; 4-month PFS 56.76%; m-PFS
4.5 months; m-OS 9.87 months.

(27)

– II 27
ORR 25.93%; DCR 66.67%; m-PFS 3.5 months; m-OS
9.5 months.

(138)

camrelizumab II 43 6-month PFS 50.9%; ORR 20.9%. (139)

Pazopanib

– – 3 3/3PR. (140)

– – 3 3/3CR. (141)

– – 15 1/15 PR; 6/15 SD; m-PFS 6 months; OS 7months. (142)

Regorafenib

– I 3 1/3 PR. (143)

– II 26 DCR 64%; PR 8%; SD 17/26; m-PFS 16.4 weeks. (144)

– II 42 3/22 PR; m-PFS 3.6 months; m-OS 11.1 months. (145)

– – 10
4 month m-PFS 60%;DCR 77.8%;m-PFS 167 days; m-
OS 411 days.

(136)

Cabozantinib – II 42 PR 12%;6 month PFS33% (146)

Lenvatinib

– II 31 ORR 6.7%; m-PFS 3months. (147)

Etoposide
+ifosfamide

I/II 35 4 month -PFS 51%. (119)

Bevacizumab
MAP II 31 4 year EFS 57.5 ± 10.0%;5 year OS 83.4 ± 7.8%. (148)

TAG I 8 ORR 63a; DCR88%; 2/8PR; 3/8CR; 2/8SD. (149)

R1507 – II 38 PR 2/38; SD 10/38. (150)
ORR, objective response rate (complete response +partial response); PD, progressive disease; SD, stable disease; PR, partial response; CR, clinical response; DCR, disease control rate; EFS, event-
free survival; PFS, progression-free survival; m-PFS, median progression-free survival; OS, overall survival; m-OS, median overall survival; MAP, methotrexate+ doxorubicin+cisplatin; TAG,
docetaxel+ bevacizumab+gemcitabine.
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affect EC-guided angiogenesis in osteosarcoma (84). A study

showed that 2-Deoxy-D-glucose (2-DG) could reduce

osteosarcoma growth by inhibiting HK and lactate dehydrogenase

A (LDHA), which are the key enzymes involved in anaerobic

glycolysis (128). This signaling pathway also plays a key role in

osteosarcoma angiogenesis. Bavachinin reduced osteosarcoma

angiogenesis by inhibiting glycolysis via targeting HIF-1a and

HK2 (129). Another study showed that Icariside II inhibits

glucose metabolism and reduces HIF-1a-induced VEGF

expression in human osteosarcoma cells, while simultaneously

suppressing angiogenesis (130). Recently, Wang et al. reported

that ANGPTL2 enhanced angiogenesis in osteosarcoma by

upregulating the expression of HK2 and VEGF, and treatment

with 2-DG could reversed this outcome (81) (Table 1). However,

whether these drugs also act on similar metabolic targets in ECs and

inhibit osteosarcoma angiogenesis requires further study.
3.5 Aptamers in
osteosarcoma angiogenesis

An aptamer is an RNA or single stranded DNA with a specific

three-dimensional structure, which acts as a starter or inhibitor trough

that combines with specific molecules via Van der Waals forces or

hydrogen bonds (159–161). Recent research has demonstrated that

aptamers can act as tumor suppressors by impeding tumor

angiogenesis, with advantages such as low immunogenicity,

reversibility, wide target range, and short preparation cycle (162–

164). Aptamers can be modified for different purposes. Modifications

using fluorescein, biotin, and magnetic beads can amplify the

transduction signals (165); adding polyethylene glycol (PEG) will

increase their circulating time in the body; and binding them to

drugs and NPs enable targeted delivery and controlled drug release

(131, 162, 166–168). Liang et al. reported the construction of a specific

aptamer (LC09) of osteosarcoma cells that was conjugated to a PEG-

polyethylenimine (PEI) Cholesterol (PPC) lipopolymer, followed by

combination with clustered regularly interspaced short palindromic

repeats (CRISPR)/CRISPR associated protein 9 (Cas9) plasmids

encoding VEGFA (131). They found that this system could inhibit

osteosarcoma growth, lung metastasis, and angiogenesis in vitro and

in osteosarcoma mouse models. However, further investigative studies

are required to determine its clinical efficacy.
3.6 Nanoparticles in anti-
vascular treatment

Nanotechnology is gradually being used in anti-vascular

treatment of tumors, including osteosarcoma (131, 169). Utilizing

flexible surface modification, researchers can promote drug targeting

and prolong the half-life of nanotechnology-based drugs in tumors.

Such NPs can release the drug precisely according to the specific

microenvironment of the tumor, enhance efficacy, and reduce drug

resistance and adverse reactions (170, 171). Nanotechnology can also

overcome the shortcomings of traditional anti-tumor therapy and

have a large capacity to combine anti-vascular therapy with
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chemotherapy and radiotherapy (170, 172). The development of

nanopharmaceuticals has gone through three generations: The first

generation was organ-targeted and aimed to increase the

concentration of nanopharmaceuticals in solid tumors and reduce

drug-induced off-target effects (173, 174). The second generation

were cell-targeted, mainly focusing on surface modification of NPs to

deliver drugs to specific tumor cells (175). The third generation are

designed to deliver drugs to specific organelles, such as mitochondria,

the endoplasmic reticulum, lysosomes, and nuclei (176–181).

In anti-vascularization therapy, many studies have focused on

selectively delivering NP-loaded drugs to the tumor’s vascular

system. Researchers modified short peptides on NPs to ensure

their specific binding with integrin avb3 on the surface of tumor

vascular ECs (182). Nano-particle platforms include liposomes,

albumin NPs, polymer micelles, gold NPs, and mesoporous silica

(183). Studies have placed effectors, such as small interfering RNAs

(siRNAs) or other small molecule drugs (e.g., Rapamycin), on the

surface of, or inside, NPs (169), thus allowing the successful delivery

of the effectors into tumor ECs to exert a therapeutic function.

Meanwhile, some studies focused on the combination of aptamers

and NPs. As mentioned in the aptamers section, the osteosarcoma

cell-targeted aptamer LC09 could be loaded into special NPs, which

exert an anti-vascular effect with reduced adverse reactions (131). In

addition, researchers assembled gold nanoclusters (GNCs) with

Sgc8, an aptamer targeting TKIs, to form the GNCs@aptamer.

This not only improved drug targeting, but also increased the

duration of the drug’s residence in the tumor (184). Although

there is still lack of research focusing on the anti-angiogenic effect of

aptamers or NPs on osteosarcoma, this research direction might

provide valuable new perspectives on anti-vascular treatment.
4 Challenges and perspectives

Multi-mode therapy, including surgery, chemotherapy,

immunotherapy, radiotherapy, gene therapy, or other targeted

drugs, can help to improve the therapeutic effect against

osteosarcoma compared with any single method (185, 186). Anti-

angiogenesis therapy is mainly used to inhibit the formation of new

blood vessels, not to destroy existing vessels. Therefore, we still need to

consider the coincidental destruction of existing blood vessels, because

this might inhibit the delivery of drugs to the tumor. Traditional anti-

angiogenic drugs, such as Everolimus, have many shortcomings in the

treatment solid tumors, such as drug resistance, unexpected adverse

reactions, poor targeting, and short tumor residency time.

In recent years, the role of metabolism in tumor anti-

angiogenesis therapy has been widely recognized. Although

limited research has been conducted on targeting EC metabolism

in the anti-angiogenic therapy of osteosarcoma, recently it has

attracted considerable attention (84, 91, 92). Consequently, we

anticipate that metabolic regulation will emerge as a promising

therapeutic strategy for advanced osteosarcoma in the future.

However, several challenges still need to be addressed, including

the identifying unique metabolic patterns specific to osteosarcoma,

developing targeted drugs, and rigorously evaluating the safety and

efficacy of metabolic regulation therapy. Therefore, further research
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and clinical exploration in related fields are imperative to propel the

advancement of metabolic regulation in osteosarcoma treatment.

Additionally, the TME maintains the endothelium in a highly

proliferative and metabolic state through various mechanisms. Studies

have shown that the secondary hypoxia environment within the

tumor after anti-angiogenesis treatment will stimulate a new

pathway of angiogenesis, which might lead to drug resistance or

tumor recurrence, and thus poor anti-tumor efficacy (187–189).

Therefore, we anticipate that anti-angiogenic therapy targeting the

TMEwill hold great promise for preventing drug resistance and tumor

recurrence in the treatment of advanced osteosarcoma in the future.

Exploring new multi-targeted anti-vascular drugs or improving

the pharmacokinetics of current drugs will also be helpful in future

treatment strategies (190, 191). The ultimate aim is to induce a

series of intracellular cascade reactions through multi-target

synergies, exert a full range of anti-angiogenesis effects, maintain

more stable pharmacodynamics, and avoid side effects and drug

interactions (26, 192). In addition, the development of

nanomedicine can help with the targeted delivery of drugs,

improve their bio-availability, and reduce adverse reactions,

thereby playing an innovative role in anti-tumor treatment (183,

193, 194). Comprehensive treatment based on nanotechnology can

also combine chemotherapy, radiotherapy, anti-vascular therapy,

and immunotherapy (170), thus exerting synergistic anti-tumor

effects (105). However, many nanopharmaceuticals failed in phase

II or III clinical trials, which was mainly ascribed to poor treatment

effects (195). Therefore, while comprehensive treatment based on

nanotechnology might be a potential strategy in future therapy, it

requires improvement and optimization.
5 Conclusion

Angiogenesis is crucial for the growth, expansion, and

metastasis of osteosarcoma. Therapy combining anti-angiogenic

treatments and other methods has gradually emerged as the anti-

tumor strategy with the most potential to treat advanced

osteosarcoma. However, there are still some limitations that

require optimization, such as an insufficient therapeutic effect,

drug resistance, and side effects. Developing new angiogenesis

inhibitors, exploring the possibility of multi-target drug

combinations and sequential therapy, and combining classical

drugs with NPs to improve delivery and reduce off-target side

effects, will help to break the current bottleneck of treatment, thus

providing more benefits to patients and improving their outcomes.
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