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Colorectal cancer (CRC) is a highly prevalent and lethal cancer worldwide.

Approximately 45% of CRC patients harbor a gain-in-function mutation in

KRAS. KRAS is the most frequently mutated oncogene accounting for

approximately 25% of all human cancers. Gene mutations in KRAS cause

constitutive activation of the KRAS protein and MAPK/AKT signaling, resulting

in unregulated proliferation and survival of cancer cells and other aspects of

malignant transformation, progression, and metastasis. While KRAS has long

been considered undruggable, the FDA recently approved two direct acting

KRAS inhibitors, Sotorasib and Adagrasib, that covalently bind and inactivate

KRASG12C. Both drugs showed efficacy for patients with non-small cell lung

cancer (NSCLC) diagnosed with a KRASG12C mutation, but for reasons not well

understood, were considerably less efficacious for CRC patients diagnosed with

the samemutation. Thus, it is imperative to understand the basis for resistance to

KRASG12C inhibitors, which will likely be the same limitations for other mutant

specific KRAS inhibitors in development. This review provides an update on

clinical trials involving CRC patients treated with KRASG12C inhibitors as a

monotherapy or combined with other drugs. Mechanisms that contribute to

resistance to KRASG12C inhibitors and the development of novel RAS inhibitors

with potential to escape such mechanisms of resistance are also discussed.
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Introduction

Colorectal cancer (CRC) is the third most prevalent cancer and the second leading

cause of cancer related mortality worldwide, according to Global Cancer Statistics 2018 (1).

CRC is recognized as a heterogenous malignancy with a complex mutational landscape in

which over 45% of cases harbor KRAS mutations but with additional mutations, for

example, in components of the APC/b-catenin pathway. While only 3% of CRC patients

are diagnosed with the KRASG12C mutation, this type of CRC is often associated with rapid

progression and shorter overall survival rate compared to patients diagnosed with non-
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KRASG12C mutations (2–4). KRASG12C mutations result from a

glycine-to-cysteine substitution at position 12 of KRAS protein

leading to constitutive activation of KRAS (5).

Under physiological conditions, wild-type (WT) RAS functions

enzymatically as a GTPase to regulate normal cell proliferation, for

example, in the colonic mucosa to regenerate surface epithelium.

RAS is often described as a molecular switch that is “off” when

bound to GDP or “on” when GTP is bound, whereby “off” and “on”

refer to different conformations of RAS that regulate its capacity to

bind effectors such as RAF or PI3K that activate downstream

signaling. Upstream of RAS, endogenous mitogens such as

epidermal growth factor (EGF), that are enriched in the tumor

microenvironment, bind to cell surface receptor tyrosine kinases

(RTKs) and activate a cascade of events, starting with removal of

GDP from WT RAS isozymes by guanine nucleotide exchange

factors (GEFs). When in a nucleotide-free conformation, high

intracellular concentrations of GTP rapidly bind and switch RAS

“on”, to stimulate MAPK/AKT signaling, culminating in the

transcription of genes that encode for proteins essential for

normal cell turnover and replacement (6). RAS mutations result

in appreciably slower rates of GDP/GTP exchange caused by

preventing GTPase activating proteins (GAPs) from removing

GTP to turn RAS “off”, resulting in hyperactivation of

downstream MAPK/AKT signaling (6). WT RAS isozymes, NRAS

and HRAS, are co-expressed in KRAS mutant cancer cells whereby

their proliferation can be driven not only by mutant KRAS, but also

by extracellular mitogens that activate WT RAS isozymes.

Nonetheless, KRASG12C inhibitors have been shown to have

exquisite selectively in inhibiting the growth of tumors harboring

KRASG12C and, consequently, would not be expected to affect the

growth of tumors with other KRAS mutations (or other RAS

isozymes). However, unchecked activity from WT RAS isozymes

might contribute to intrinsic or acquired resistance. Further,

because KRASG12C mutations only account for 3% of CRC cases,

there is an urgent medical need to treat CRC patients harboring

other KRAS mutations, including patients with G12D (30.1%),

G12V (24.2%), G12R (2.1%), or other (19.6%) mutations (7).

Thus, a pan-KRAS inhibitor would be expected to have broader

use for CRC and other RAS driven cancers given its additional

potential to circumvent resistance from unchecked activity of WT

RAS isozymes. Nonetheless, both approaches would require a

mechanism to selectively inhibit mutant RAS in cancer cells

without affecting the activity of WT RAS in normal cells, essential

for turnover and replacement in rapidly dividing tissues.
RAS signaling

As a membrane bound small guanine nucleotide binding

protein, RAS can readily switch between an active GTP-bound

state and an inactive GDP-bound conformation under normal

physiological conditions. This cascade is modulated by RTKs

whereby dimerization is induced by ligand binding. Receptor

dimerization leads to the activation of intrinsic tyrosine kinase

and autophosphorylation of tyrosine residues. The phosphorylated
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receptor interacts with GRB2 (growth factor receptor bound protein

2) and GEFs such as SOS (Son of Sevenless), that catalyze GDP/

GTP exchange, leading to the active conformation of RAS. RAS-

GTP activates several pathways such as RAF-MEK-ERK and PI3K-

AKT-mTOR promoting cell proliferation and survival. In normal

cells, RAS is switched off by GAPs inducing GTP hydrolysis and

forming inactive RAS-GDP. But this is impeded in cancer cells by

the inability of GAPs to bind RAS, thereby reducing the hydrolysis

of GTP, favoring RAS to be in a constitutively activated

conformation (8).

The KRAS protein has a molecular weight of 21 KD and is

composed of six beta strands and 5 alpha helices, which form 2

major domains, referred to as the G-domain and the C-terminal (9).

The G-domain, which is highly conserved contains the switch I and

switch II loops that are responsible for GDP/GTP exchange (10).

Figure 1 illustrates the RAS signaling pathways. The upstream

and downstream signaling mechanism of RAS are depicted in

Figures 2, 3 respectively.
Development of KRASG12C inhibitors
for colorectal cancer

Until recently, KRAS was considered undruggable as the

protein apparently lacked deep pockets for small molecule

binding, apart from the nucleotide binding domain (13). In

addition, the high affinity of KRAS for GTP makes it difficult to

develop competitive small molecule inhibitors to block GTP

activation of RAS. Despite these challenges, multiple attempts

have been made to discover small molecules to directly inhibit

RAS. Early clinical trials of Sotorasib (the first FDA approved

KRASG12C inhibitor) in CRC patients with a KRASG12C mutation

resulted in lack of response as well as in non-small cell lung cancer

(NSCLC) patients with the same mutation. For example, Sotorasib

monotherapy in CRC KRASG12C patients previously treated with

fluoropyrimidine, oxaliplatin, and irinotecan, demonstrated 9.7%

objective response rate (ORR) in 62 patients (14). Another study

evaluated the effect of Adagrasib (the second FDA approved

KRASG12C inhibitor) in 43 CRC patients in KRYSTAL-1

(NCT03785249) trial (Table 1) which demonstrated 19% response

rates (15). The reasons underlying the lower response to the drugs

in CRC targeting G12C may be the rapid development of treatment

related adaptive signaling resistance as these tumors undergo

significant rebound in ERK phosphorylation (16). Another

hypothesis for this contradictory response is the presence of

higher levels of upstream receptor tyrosine phosphorylation

compared to NSCLC, specifically in EGFR (16). Thus,

combination therapies with small molecule KRAS inhibitors and

anti-EGFR monoclonal antibodies have gained traction recently. In

line with this, CodeBreak 101 (NCT04185883) reported an overall

survival of 30% in 40 metastatic CRC patients (Table 1) treated with

Panitumumab and Sotorasib combination therapy (17). Similarly,

Adagrasib in combination with Cetuximab demonstrated an ORR

of 46% compared to Adagrasib monotherapy with ORR of

19% (18).
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Mechanisms of resistance to
KRASG12C inhibitors

The limited response of CRC patients to KRASG12C inhibitors

may be attributed to multiple mechanisms of resistance, both

upstream and downstream of KRAS as well as co-lateral pathways
Frontiers in Oncology 03
(e.g., Wnt/b-catenin) that can compensate for the effects of a

mutant specific KRAS inhibitor. In addition, co-occurring

mutations such as G13D, R68M, and A59S/T confer resistance

selectively to Sotorasib, while Q99L alteration is selective to

Adagrasib (19). The most common X96D/S mutation confers

strongest resistance to both drugs (20). A frequently identified

mechanism of resistance that diminishes the therapeutic efficacy

of KRAS inhibitors is the induction of bypass MAPK signaling to

overcome KRAS blockade. Initial studies revealed significant

suppression of negative regulators of MAPK signaling and that

ERK dependent signaling is reactivated to bypass KRASG12C

treatment. Further insights into resistance mechanism suggest

that only the cells with KRASG12C in the inactive confirmation

are strongly inhibited by novel KRASG12C inhibitors. This leads to

non-uniform rates of inactive to active KRASG12C cycling.

Subsequently, these cells with KRASG12C preferentially held in

active confirmation could be insensitive to treatment and could

mediate reactivation of MAPK signaling (21, 22).

Furthermore, CRC cells show early development of adaptive

resistance to KRASG12C inhibitors by rapid upregulation of p-MEK

and p-ERK and increased basal phosphorylation and activation of

EGFR. CRC cells respond to EGF stimulation by activating RAS-

MAPK signaling even in the presence of an activating KRASG12C

mutation, which contrasts with NSCLC cells. In line with this,

preclinical studies suggest that primary resistance to KRAS

inhibition is less likely, and the predominant issue appears to be

drug-induced (acquired) resistance. This contrasts with NSCLC
FIGURE 2

Signaling upstream of RAS (12). The RAS activation is controlled by
the cycle of hydrolysis of bound GTP, catalyzed by GTPase
activating proteins and the replacement of bound GDP with fresh
GTP, which is catalyzed by guanine nucleotide exchange factors.
Reproduced here from Nature Reviews Cancer (Julian Downward
2003) under Creative Commons Attribution license.
FIGURE 1

RAS signaling is versatile as it involves numerous cellular functions. The key RAS effector pathway is the mitogen-activated protein kinase (MAPK),
Raf-MEK-ERK pathway (11). Reproduced here from Oncotarget (Ruth Nussinov et al., 2014) under Creative Commons Attribution license.
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where the key issue is primary (intrinsic) resistance. In summary,

EGFR specifically mediates adaptive resistance response in CRC

cells. Finally, resistance is also observed by induction of epithelial to

mesenchymal transition in conjunction with increased PI3K/AKT

signaling due to upregulated EGFR signaling and subsequently

leading to increased MAPK signaling via FGFR (23).

Thus, increased RTK signaling coupled with other mechanisms

such as increased GTP-bound KRASG12C leads to tumor

progression and triggers further downstream signaling. Alternate

pathways such as Wnt/b-catenin signaling is activated interacting

with mutant KRAS signaling further promoting oncogenic signaling

and increased resistance (24).

Primary resistance also plays a role in lack of efficacy of KRAS

inhibitors driven by multiple mechanisms. This includes rapid

adaptive feedback RTK-RAS-MAPK reactivation signaling upon

deficit host immune system. The formation of active GTP-bound

KRASG12C from non-uniform cycling between GTP-bound active

and GDP-bound inactive states driven by EGF and persistent

upstream RTK activity with signaling through alternative wild-

type RAS forms in CRC. The induction of EMT and disinhibition of

cell-cycle transition by co-occurring alterations in CDKN2A also

contribute to low efficacy of KRAS inhibitors. The differences in

pharmacokinetic properties of different KRAS inhibitors also

contribute to low efficacy of some of these inhibitors (25).
Early phase clinical trials of
KRASG12C inhibitors

The first human phase 1 trial on Sotorasib at a daily dose of 960mg

in 42 CRC patients (CodeBreak 100, NCT03600883) demonstrated

modest clinical activity (ORR of 7.1%) compared to NSCLC patients

with ORR of 32.3% (26). The phase 2 CodeBreak 100 trial with the

same dose of Sotorasib demonstrated an ORR of 9.7% in patients with

metastatic KRASG12C mutant CRC with prior fluoropyrimidine,
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oxaliplatin, and irinotecan treatment (14). The KRYSTAL-1 phase 1/

2 trial (NCT03785249) investigating Adagrasib in patients previously

treated with chemotherapy or anti-PD1 showed ORR of 22% and

disease control rate (DCR) of 87% in 45 CRC patients (15).
Current clinical trials involving
KRASG12C inhibitors

There are 12 different KRASG12C inhibitors currently under

clinical investigation. In total, there are 76 entries for KRASG12C

trials, out of which 39 were trials in CRC patients, while 33 were

trials involving lung cancer patients. (Two trials were excluded as

they are not specific to KRASG12C mutant tumors, and 2 others were

excluded as they are only diagnostic studies).

Noteworthy, Novartis JDQ443 binds KRAS without involving

H95 residue and maintains activity among tumors with a dual

G12C and H95 KRAS mutation. This non-selectivity may reduce or

alleviate acquired resistance (27, 28). On a similar note, JNJ-

74699157 binds near the switch II pocket through a different

cysteine residue interaction and may also mitigate resistance (29).

More recently, a striking finding on Eli Lilly’s LY3537982,

demonstrated that this novel KRAS inhibitor in combination with

Cetuximab showed 45% ORR in 11 CRC patients (30). As would be

expected, combinations of KRASG12C inhibitors and inhibitors of

other downstream components of RAS/MAPK pathways such as

BRAF or MEK offer promising approaches as well (31). Another

combination strategy was based on KRAS inhibition triggering pro-

inflammatory changes in the tumor microenvironment. This was

shown by combining anti-PD1 therapy and Sotorasib, which

demonstrated increased CD8+ T-cell infiltration in the tumor

microenvironment and promising efficacy (32).

Figure 4 shows the structure of KRAS surfaces targeted by

KRAS inhibitors. a) switch II pocket of KRASG12c bound to

AMG510 b) MRTX1133 with KRASG12D/GDP.
FIGURE 3

Signaling downstream of RAS (12). The main effector proteins with which RAS interacts, once in its active GTP-bound state, is shown. Reproduced
here from Nature Reviews Cancer (Julian Downward 2003) under Creative Commons Attribution license.
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Combination treatment strategies

Considering mechanisms of resistance upstream of RAS,

combined treatment of Sotorasib or Adagrasib with EGFR

inhibitors is currently being evaluated in clinical trials. Preclinical

studies reported that the EGRF inhibitor, Cetuximab, sensitizes

KRASG12C mutated CRC cell lines to Sotorasib, leading to sustained

downregulation of phosphorylated MEK and ERK proteins, causing

cell proliferation arrest and apoptosis (16). The KRYSTAL-1

(NCT03785249) trial conducted in 28 CRC patients reported

ORR of 46% and DCR of 100% in patients treated with

Cetuximab and Adagrasib (16).

CodeBreak 101 umbrella trial tested Sotorasib with inhibitors of

MEK, CDK4/6, mTOR, or VEGFR in additional cohorts. Similarly,

KRYSTAL-1 trial is also exploring similar combination strategies.

Combinations of Sotorasib and the MEK inhibitor, Trametinib were

tested in 18 CRC patients with promising efficacy and safety (34).

Similarly, KRASG12C inhibitors in combination with CDK4/6

inhibitors such as Palbociclib demonstrated significant
Frontiers in Oncology 05
downregulation of KRAS pathway phosphorylation (35). Another

emerging strategy includes simultaneously targeting other

components of the KRAS pathway. One such target is the SHP2

which promotes KRAS signaling and CRC progression. SHP2

inhibition increases GDP-bound KRASG12C and shows synergism

with KRAS inhibitors in vitro (36, 37).

Ongoing phase 1 trials are actively progressing on novel SHP2

inhibitors such as TN0155, BBP-398 and RMC-4630 with plans to

test in combination with KRAS inhibitors (38–40). BI-3406, an

SOS1 inhibitor demonstrates increased response in combination

with Trametinib (20).

A phase 1b trial (NCT04449874) reported the activity of

Divarasib, a covalent KRASG12C inhibitor (Table 2) that turns off

oncogenic signaling by irreversibly locking the protein in an

inactive state, and Cetuximab in 29 CRC patients with KRASG12C

mutation. The ORR was 62.5% and median duration of response

was 6.9 months. This encouraging anti-tumor activity of the

combination therapy supports further investigation (41).

Strikingly, Divarasib is also shown to be 5 to 20 times more
BA

FIGURE 4

Structures of KRAS surfaces targeted by KRAS mutant inhibitors. a Switch-II pocket (purple) of KRAS (G12C) bound to AMG510 (PDB: 6OIM). b MRTX1133
with KRAS G12D/GDP (PDB: 7RPZ). (33) Reproduced here from Molecular Cancer (Weidong Zhang et al., 2022) under Creative Commons Attribution license.
TABLE 1 Summary of key clinical trials of KRASG12C inhibitors in CRC, advanced solid tumors, and NSCLC patients.

CLINICAL TRIAL
NUMBER

OF PATIENTS
INTERVENTION ORR (95% CI) MEDIAN PFS (95% CI)

NCT03600883
CodeBreak100

Phase II
62 Sotorasib 9.7% 10.6 months

NCT04185883 CodeBreak 101
Phase I

40 Sotorasib + Panitumumab 30% Not reported

NCT03785249 KRYSTAL-1
Phase I

43 Adagrasib 19% 5.6 months

NCT03785249 KRYSTAL-1
Phase I

28 Adagrasib + Cetuximab 46% 6.9 months

NCT04613596 KRYSTAL-7 53 Adagrasib + Pembrolizumab 49% Not reported
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potent and fifty times more selective than Sotorasib and

Adagrasib (42).

KRYSTAL-10 (NCT04793958) is a randomized phase 3 trial to

test Adagrasib (600mg BID) and Cetuximab (500mg) in patients

with KRASG12C metastatic CRC. This combination therapy is being

compared with standard chemotherapy receiving FOLFIRI

(leucovorin calcium (folinic acid), fluorouracil, and irinotecan

hydrochloride). Another phase 3 randomized trial NCT05198934

is testing Sotorasib and Panitumumab and comparing with Tipiracil

or Regorafenib is underway (Table 3) in previously treated

metastatic KRASG12C mutant CRC patients (43).
Other targets

BAY-293, an SOS1 inhibitor exhibits synergistic activity when

combined with ARS-1620 in KRASG12C mutant CRC cancer cell

lines proving that targeting the inactive GDP-bound form is a

promising approach for generating anti-RAS therapeutics. Another

novel SOS1 inhibitor BI-1701963 is currently under investigation as

a single agent or in combination with Trametinib (NCT04111458)

or Adagrasib (NCT04975256) (44, 45). Recently, BI-3406, another

SOS1 inhibitor was demonstrated to be more potent and selective
Frontiers in Oncology 06
for inhibiting SOS1, decreasing KRAS-GTP levels and suppressing

cancer cell proliferation (46). The tyrosine phosphorylation of

SHP2 recruits GRB2-SOS complex promoting RAS nucleotide

exchange acting as a scaffold protein. Currently, SHP2 inhibitors

have gained attention and several of them are in the early phase of

clinical trials. For example, RMC-4630 in combination with ERK

inhibitors LY3214996 is in phase 1 clinical trial for KRASG12C CRC.

(NCT04916236). Another inhibitor, TN0155 is in phase 1b/2

clinical trial (NCT0469918) in combination with KRASG12C

inhibitor, JDQ443 in KRASG12C mutant CRC patients.

A phase 1 trial (NCT01085331) evaluated the effects of MEK

inhibitor Pimasertib combined with FOLFIRI as a second line

treatment of KRAS metastatic CRC. However, GI and skin

toxicity were reported with Pimasertib (47). A novel RAF dimer

inhibitor, Lifirefenib, demonstrated acceptable safety in phase 1

trials, but no activity was observed in KRAS mutant CRC patients

(48). Three enzymes engage in post-translational modifications of

KRAS which is the 1st step of membrane localization, FTase, RCE1

and (Isoprenylcysteine carboxymethyltransferase) ICMT.

Inhibitors of ICMT such as cysmethynil and UCM-1336 showed

potential to inhibit KRAS activity and impair the growth of KRAS

mutant cell lines (49). However, clinical data are not yet available in

patients with KRASG12C mutant CRC.
Current CRC treatment and limitations

The primary therapeutic strategy for resectable colorectal cancer

is surgical removal and in non-resectable CRC, the strategies include

chemotherapy, radiotherapy, and immunotherapy along with

combination therapies. However, these approaches do not come

without limitations such as relapse of acquired multi-drug

resistance CRC. Recently, immune checkpoint inhibitors, T cell

receptor alterations, cytokine therapy, RNA-based therapies such as

siRNA and miRNA have yielded promising results (50).
Radiotherapy

Two of the adjuvant radiotherapies, a short course and long

course are currently available, which are better options for treating

stage II and stage III CRC. However, acute toxicity rates are high

with long course radiotherapy. Decreased toxicity is observed with

new delivery methods such as intensity-modulated radiotherapy

(51, 52).
Chemotherapy

The commonly approved chemotherapy medications for stage

III and IV CRC include fluoropyrimidines (capecitabine,

Fluorouracil), topoisomerase I inhibitors (irinotecan, oxaliplatin)

and tri-fluridine/tipiracil). After surgery for CRC, adjuvant

fluoropyrimidine based chemotherapy is standard to reduce

tumor recurrence and increases survival rate (53). Topoisomerase

I inhibitor irinotecan and oxaliplatin are added to 5-flurouracil and
TABLE 2 A summary of registered trials listed on clinicaltrials.gov. as of
March 24, 2024.

Clinical candidate Clinical
trial

Sponsor

BPI-421286 NCT05315180 Betta Pharmaceuticals

D3S-001 NCT05410145 D3 Bio (Wuxi) Co.

Jab-21822 NCT05002270 Jacobio Pharmaceuticals

JNJ-74699157 NCT04006301 Janssen

GFH925 NCT05756153 Zhejiang
Genfleet Therapeuticals

HBI-2438 NCT05485974 Huyabio International

JDQ443 NCT05445843 Novartis Pharmaceuticals

YL-15293 NCT05119933 Shanghai
Yingli Pharmaceutical

GDC-6036 NCT04449874 Genentech

MK-1084 NCT05067283 Merck Sharp & Dohme

LY3537982 NCT04956640 Eli Lilly and Company

HS-10370 NCT05367778 Jiangsu
Hansoh Pharmaceutical
TABLE 3 A summary of current clinical trials in patients with KRASG12C

mutant CRC listed on clinicaltrials.gov. as of March 24, 2024.

Trial Treatment Arms

CodeBreak 300 (NCT05198934)
phase III

Sotorasib + Panitumumab versus
Investigator’s choice

KRYSTAL-10 (NCT04793958)
phase III

Adagrasib + Cetuximab versus
Folfox/Folfiri
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folinic acid (leucovorin) as combination therapy regimens for

metastatic CRC (known as FLOFOX and FOLFIRI) or to

capecitabine (CAPOX). Regorafenib is an FDA approved

tyrokinase inhibitor targeting VEGF, platelet derived growth

factor, fibroblast growth factor in metastatic CRC (54).
Target specific treatment

Monoclonal antibodies such as Cetuximab, Panitumumab etc.

are epidermal growth factor receptor inhibitors, while Bevacizumab

and Ramucirumab target vascular epidermal growth factor and its

receptor respectively (55). Cetuximab and Panitumumab are FDA

approved first line treatment for CRC (56). CTLA-4 inhibition

could inhibit tumor progression by upregulating effector T cell

activity and suppressing regulatory T cells. FDA approved low dose

Ipilimumab in combination with Nivolumab is used for previously

treated microsatellite instability-high and deficient mismatch repair

metastatic CRC. Pembrolizumab and Nivolumab (PD1 inhibitors)

are also used in CRC (57).
Vaccines

Several clinical trials are conducted on introducing vaccines

against CRC. The tumor associated antigens that are targeted

include surviving, EGFR, VEGFR1 etc. These vaccines could

activate local immune cells, releasing tumor antigens, increasing

T cells and dendritic cell infiltration to the site of action (58).

Thus, in summary every patient has a unique tumor

microenvironment, and individualized approaches to treating

CRC are needed. Although conventional cytotoxic drugs are the

first line of agents for CRC, their shortcomings include, toxicity and

drug resistance leading to recurrent CRC. In addition to these,

chemotherapy is associated with systemic toxicity, fever, stomatitis,

mucositis, leukopenia, and thrombocytopenia. New approaches are

emerging for treating CRC to overcome these drawbacks.
RAS PROTAC study

Despite the clinical success of KRASG12C inhibitors, acquired

resistance is the major drawback with these agents. RAS was

considered undruggable initially due to its insufficient binding

pockets. The 1st half of the RAS protein is referred to as effector

lobe (residues 1–85) while the second half of the G-domain

(residues 86–166) is referred to as allosteric lobe. The exploration

of high affinity macromolecular binders against the effector lobe

potentially to inhibit RAS signaling is in the spotlight recently.

Effective targets on the effector lobe include switch regions for

which GDP and GTP specific binders have been identified (59). By

genetically fusing E3-ligase subunits such as Von Hippel-Lindau

tumor suppressor to monobodies NS1 and 12VC1, RAS degrader

constructs were generated. These degraders have potent RAS

signaling suppression and anti-proliferative activities (60).
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These degraders emulate PROTAC (proteolysis targeting

chimera) mode of action. Compared with competitive inhibitors,

PROTACs instruct the degradation of protein by recruiting

ubiquitin-proteasome system to target protein. They can therefore

bind outside of an active protein site and after degradation abrogate

any scaffolding functions of the target. This is attributed to their

hybrid structure, containing one bonder (the warhead) for the

target protein that is tethered via a linker to a moiety recuring the

E3 ligase (61). PROTACs can be reused after reversible binding and

degradation of target proteins. Current RAS targeting protacs (XX-

4–88, LC-2, KP-14) are all built on covalent G12C inhibitor and

cannot be beneficial as these inhibitors are consumed due to

covalent cysteine engagement (62).

A remarkable development in this line is the reversible covalent

inhibitor YF135 which employs cyanoacrylamide for cystine linkage

(63). However, optimization of linker length requires further

research and developmental efforts (64).

Given the spatial temporal distinct expression of E3 ligase in

tissues and cells. PROTACs may provide a more controlled drug

action and it remains to be seen if any of the RAS ligands can be

converted to PROTACs.
Japanese guidelines for KRASG12C

The increase in targeted therapy for CRC based on genomic

status has led to the clinical development of new agents which could

be potentially used in patients with microsatellite instability and/or

mismatch repair and metastatic CRC (mCRC) due to BRAFV600E

mutations. In Japan, Trastuzumab combined with Pertuzumab was

approved in March 2022, for ERBB2 (ErbB2 Receptor Tyrosine

Kinase 2) positive mCRC. This development devised a better

strategy for precision oncology for rare genomic alterations. The

tumor genomic status in mCRC was determined for KRAS and

NRAS, BRAFV600E mutations, ERBB2 and microsatellite instability

(MSI)/mismatch repair (MMR) (65, 66).

The SCRUM-Japan GI-SCREEN was launched in Japan by the

National cancer center hospital East in 2015. Approximately, 30,000

patients were screened using tissue and plasma assays in this

nationwide screening project. In 2017, the regulatory graded

registry platform (SCRUM-Japan-Registry) was established to

collect efficacy data of standard therapy in patients with rare

molecular alterations. Their treatment strategy was based on the 4

genomic status, along with the primary tumor location (67, 68).

In this SCRUM-Japan-GI-screen, the phase II TRIUMPH study,

demonstrated the efficacy of Trastuzumab plus Pertuzumab in patients

with ERBB2 amplification and this study showed ORR of 30% in 27

patients who were ERBB2 positive in tissues (69). Another interesting

ongoing randomized multicenter phase II trial SWOG S1613 is

recruiting patients with RAS and RAF wild type ERBB2 positive

mCRC who received at least one prior line of therapy. The aim of

this study is to compare the efficacy of trastuzumab plus Pertuzumab

versus Cetuximab plus Irinotecan (NCT03365882) (65). A combination

of chemotherapy plus anti-VEGF therapy along with immune oncology

therapy could potentially be more effective in triggering immunogenic
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cell death and release of tumor antigens (70). In summary, for patients

with MSI/MMR or BRAF V600E mCRC, Pembrolizumab is the first

line therapy and Encoratinib plus Cetuximab with or without

Binimetinib is considered as the second line therapy. New agents are

proposed for rare molecular fractions such as ERBB2 amplification.

While the efficacies of Trastuzumab plus Pertuzumab were indicated in

single -arm trails, no anti-ERBB2 therapies are approved in the United

States and European Union (65).
Conclusion

The understanding of KRAS signaling, structural biology, and

biochemistry over the last several years has led to FDA approval of

the first direct acting KRASG12C inhibitors. While KRASG12C

inhibitors are efficacious for NSCLC, their use for CRC faces

challenges due primarily to the development of resistance.

Although the monotherapy response rates remain low in CRC

patients, combination therapies are more promising. Another

option recently explored are the pan-KRAS and pan-RAS

inhibitors which inhibit RAS regardless of the mutated allele, or

in the latter case, also independent of the RAS isozyme, which may

compensate for effects of mutant specific KRAS inhibitors (71, 72).

The development of KRASG12C inhibitors for CRC is ongoing

and larger randomized clinical trials may reveal more promising

approaches. The recent development of KRASG12C targeted therapy

in CRC has clearly ignited the field to develop new RAS inhibitors

potentially with broader scope and reduced potential for resistance.
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