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Altered extracellular matrix
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Introduction: Oral cavity squamous cell carcinoma (OSCC) occurs most

frequently in patients >60 years old with a history of tobacco and alcohol use.

Epidemiological studies describe increased incidence of OSCC in younger adults

(<45 years). Despite its poor prognosis, knowledge of OSCC tumor

microenvironment (TME) characteristics in younger adults is scarce and could

help inform possible resistance to emerging treatment options.

Methods: Patients with OSCC were evaluated using TCGA-HNSC (n=121) and a

stage and subsite-matched institutional cohort (n=8) to identify differential gene

expression focusing on the extracellular matrix (ECM) and epithelial-

mesenchymal transition (EMT) processes in younger (≤45 years) vs. older adults

(≥60 years). NanoString nCounter analysis was performed using isolated total

RNA from formalin-fixed paraffin-embedded (FFPE) tumor samples. Stained

tumor slides from young and old OSCC patients were evaluated for CD8+ T-

cell counts using immunohistochemistry.

Results: Younger OSCC patients demonstrated significantly increased

expression of ECM remodeling and EMT process genes, as well as TME

immunosuppression. Gene set enrichment analyses demonstrated increased

ECM pathways and concurrent decreased immune pathways in young relative

to old patients. Transcripts per million of genetic markers involved in ECM

remodeling including LAMB3, VCAN, S100A9, COL5A1, and ITGB2 were
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significantly increased in tumors of younger vs. older patients (adjusted p-value

< 0.10). Young patient TMEs demonstrated a 2.5-fold reduction in CD8+ T-cells

as compared to older patients (p < 0.05).

Conclusion: Differential gene expression impacting ECM remodeling and TME

immunosuppression may contribute to disease progression in younger adult

OSCC and has implications on response to evolving treatment modalities, such

as immune checkpoint inhibitor therapy.
KEYWORDS

oral cavity squamous cell carcinoma (OSCC), age-related tumor aggressiveness, tumor
microenvironment, immunosuppression, extracellular matrix
1 Introduction

Arising mostly in the mucosal linings of the oral cavity,

pharynx, and larynx, head and neck squamous cell carcinoma

(HNSCC) represents an aggressive multi-factorial disease that

accounts for over 650,000 new cases annually, with a mortality

rate of approximately 50–60% per year. Specifically, oral cavity

squamous cell carcinoma (OSCC) is primarily a disease of older

adults, occurring mostly in patients older than age 60 with a

demonstrated history of tobacco and/or alcohol use (1–4).

Younger cancer patients, by virtue of their age, have typically had

a shorter durations of toxin and chemical exposure than their older

counterparts raising the question of other etiologies of disease.

Although human papillomavirus (HPV) has a well-described role in

squamous cell carcinoma of the oropharynx in younger and middle-

aged adults, it is not currently considered a driver of OSCC and data

from HPV-positive patients is not included in this manuscript

(2, 5).

Whether younger OSCC patients display a more aggressive

phenotype with a poorer prognosis and a lower 3–5-year survival

rate as compared to older OSCC patients remains controversial. A

meta-analysis of 23,382 collective patients with mostly T1/T2

disease demonstrated no difference in disease-specific survival for

patients aged 18–40 compared with those >40 years of age, yet

multiple single-center studies report worsened survival in younger

patients (4, 6–8). Oral cavity cancer is aggressive regardless of age,

and includes a similar 5-year overall survival rate to several other

head and neck cancers with HPV-negative status (9). This disease

may confer an added complexity and severity when presenting in

younger patients with no antecedent risk factors. In younger

patients that lack extensive exposure to alcohol and tobacco,

unique genetic predispositions may contribute to more severe

OSCC disease. Notably, previous studies have found local

recurrences and distant metastases are more prevalent in younger

as compared to older patients (2). Based on its unclear etiology and
02
potentially more aggressive clinical course, OSCC in younger

patients may even be considered a distinct clinical entity

compared to OSCC in older adults.

Treatment for OSCC has focused on multimodal therapy

comprised of surgery, radiation, and chemotherapy. The poor

overall survival of this cancer has prompted the search for new

treatment strategies and paradigms. Recent success has been found

with immune checkpoint inhibitors (ICI), specifically monoclonal

antibodies targeting PD-1, which have been approved in the setting

of recurrent or metastatic disease. There is intense interest in

incorporating these agents into the care of locally advanced

disease both to improve patient survival and potentially decrease

toxicity. Patients who achieve immune engagement with ICIs can

experience prolonged responses, though this occurs in less than

20% of patients. The toxicity profile is favorable and thus far does

not appear to be additive with other modalities used in the locally

advanced setting (10, 11). In order to optimize the use of novel

immunotherapeutic agents we must better understand the

enormous diversity of HNSCC. Tumors present with varying

degrees of fibrosis, immune infiltrate, and alterations in the tumor

microenvironment (TME) that may impact primary response to ICI

and facilitate secondary resistance to these agents (12, 13).

Collectively, younger adults with or without risk factors who

develop OSCC pose difficult questions of disease course and

sequelae of treatment. Oral cavity tumors in this age group have

been relatively understudied. Earlier reports have mainly focused on

the epidemiological association of younger OSCC patients with

prognosis and survival, but lack the mechanistic investigations

necessary to understand the etiology of OSCC in this specific

population (1–4, 14, 15). To address this, the present study

utilizes multiple differential gene expression analysis methods to

investigate genetic characteristics of younger and older OSCC

cohorts that we hypothesize may contribute tumor aggressiveness

and progression in the younger OSCC subset. Aggressiveness is

defined in this manuscript as carrying elements of tumor infiltration
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https://doi.org/10.3389/fonc.2024.1412212
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Estephan et al. 10.3389/fonc.2024.1412212
and known histopathologic features that contribute to worsened

disease-specific survival as it pertains to OSCC.
2 Materials and methods

2.1 TCGA data source

The RNA sequencing data as raw count matrix, and clinical data

for 506 HNSCC patients from The Cancer Genome Atlas (TCGA)

was obtained using the ‘TCGAbiolinks’ package in R/Bioconductor

(16). Clinical data was stratified (HPV-negative and oral cavity

subsite) resulting in 121 patients (n=17 [ ≤ 45 years old], n=104

[≥60 years old]) used for subsequent analysis. Upper and lower age

cutoffs were selected to isolate distinct OSCC cohorts for gene

expression analysis. The ages of <45 years for the young cohort

and >60 years for the older cohort were selected as cutoff criteria

based on epidemiological reports of OSCC disease incidence and

criteria used in prior studies pertaining to this topic (1–4).
2.2 NanoString nCounter gene
expression assay

This study was approved by the Thomas Jefferson University

Institutional Review Board. Eight subjects from our institutional

biobank were identified (4 younger and 4 older adults), and RNA

from their formalin-fixed paraffin-embedded (FFPE) tumor

samples was isolated using an miRNeasy FFPE kit (Qiagen,

Hilden, Germany). Age at the time of surgery was used to define

our young (≤45 years) and old (≥60 years) cohorts (Table 1). Briefly,

after excess paraffin was trimmed from each sample, the residual

was removed by using deparaffinization solution and incubation at

56°C for 3 minutes. At room temperature, buffer PKD was added;

samples were transferred to bead mill tubes containing 2.8 mm

ceramic beads. Tissue was disrupted using a Bead Ruptor at 5 m/sec

for 15 seconds, followed by icing for 45 seconds (Omni

International, GA, USA) three separate times. Lysates were

centrifuged at 11,000 xg 1 min. Proteinase K was added to the

clear phase (~24 mAnson Units/ml), followed by serial incubations

at 56°C and 80°C with intermittent vortexing. After centrifugation at

11,000 xg 1 minute, the lower phase was recovered, further clarified

by centrifugation, then treated with DNaseI. Buffer RBC and

ethanol were added for optimal binding conditions, and samples

were applied to RNeasy MinElute spin columns. After rinsing with

buffer RPE, total RNA was eluted in 20–30 µl of RNase-free water.

FFPE RNA sample QC was determined using an Agilent

TapeStation (Agilent Technoligies , CA, USA). DV200

determinations for percentage of total RNA fragments >200 nt,

averaged 42 (range 18–63). An nCounter analysis system was

utilized to run the PanCancer IO 360 Panel for 16 immuno-

oncology pathways and bioprocesses (NanoString, WA, USA).

NanoString technology is considered advantageous over next-

generation sequencing and polymerase chain reaction as it is

rapid, technically simple, and does not require nucleic acid
Frontiers in Oncology 03
TABLE 1 Demographic and clinical characteristics of OSCC
patient cohorts.

Old
Cohort (n=4)

Young
Cohort (n=4)

Age at Surgery (range
in years)

71–84 32–44

Sex (Male: Female) 2:2 3:1

Self-Reported Race

Caucasian 2 4

Indian 1 0

Asian 1 0

Oral Cavity Tumor Subsite

Mobile Tongue 3 1

Ventral Tongue/FOM 1 1

Lower Gingiva 0 2

HPV Status

Negative 4 4

Positive 0 0

T Stage

T2 1 1

T3/T4a 3 3

N Stage

N2b 1 3

N2c 1 1

N3 2 0

M Stage

M0 4 4

Evidence of PNI

Present 4 2

Absent 0 2

Evidence of LVI

Present 3 2

Absent/Indeterminate 1 2

Recurrence

Yes 2 2

No 2 2

Reported Alcohol Use

≥14 drinks/week 0 0

<14 drinks/week 4 4

Reported Smoking History

≥10 pack years 3 2

<10 pack years 1 2

(Continued)
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amplification. Additionally, this tool has recently been implicated in

diagnostic methods in cancers of the breast and lung, leukemia, and

lymphoma (17).
2.3 Differential expression analysis

Raw counts were utilized from the TCGA-HNSC cohort and the

NanoString nCounter PanCancer IO 360 Panel was applied to our

institutional biobank samples. Consisting of 770 genes, the

PanCancer IO 360 Panel combines vital components involved in

the complex interplay between the tumor microenvironment and

the immune response in cancer. Before differential expression,

batch effects or sample heterogeneity was tested using iSeqQC

(18). Differential gene expression was performed between young

and older adults using the DESeq2 package in R/Bioconductor (19).

Genes were considered differentially expressed if they had an

adjusted p-value ≤ 0.10. All plots were constructed using

R/Bioconductor.
2.4 Functional annotations

The DESeq2 test statistic was used as a ranking metric to

perform Gene Set Enrichment Analysis (GSEA) in pre-ranked

mode, with genes having zero base mean or “NA” test statistic

values filtered out to avoid providing numerous duplicate values.

The GSEA was performed against hallmark gene sets from MSigDB

collections (20). Additionally, an analysis using the Database for

Annotation, Visualization, and Integrated Discovery (DAVID) was

performed on our list of differentially expressed genes between

younger vs. older patients to identify biological processes

modulated between these cohorts (21). Further, IPA software was

used (Ingenuity system, Qiagen, CA, USA) to evaluate functional

changes in the young adults and network analysis was performed

using Cytoscape (22).
2.5 Immunohistochemistry analysis

Ten additional patients (n=5 each of younger and older patients)

with HPV-negative OSCC and available FFPE samples were utilized.

Patients were matched based on site and stage of their tumor. Tissue

preserved in FFPE was obtained from surgically resected specimens

and underwent staining with monoclonal antibodies directed against

CD8 (anti-CD8 (SP57) rabbit monoclonal primary antibody;
Frontiers in Oncology 04
Ventana Medical Systems, AZ, USA). The slides were digitally

scanned at 20x magnification using the iScan HT whole-slide

image scanner (Roche, Switzerland). Fully automated detection was

performed on a Ventana Discovery Ultra System (Ventana Medical

Systems, AZ, USA).
3 Results

3.1 Etiology of OSCC tumorigenesis in
young patients

To interrogate sequencing data for a signal of cancer

aggressiveness in young vs. older OSCC patients, we first utilized

the TCGA-HNSC cohort. Differential RNA expression analysis was

performed between OSCC from younger patients (n=17) and older

patients (n=104) using DESeq2 (19). Statistical power was

determined to be adequate for subsequent analysis with the size

of each respective cohort. Here, we observed 1856 genes to be

differentially expressed, where 214 genes were up-regulated, and

1642 were down-regulated in young patients (Figure 1A). Next,

using the differentially expressed genes, we performed gene

ontology analysis to evaluate the biological processes implicated

in the younger patients using DAVID (21). Here, we observed up-

regulation of ECM structural organization (Figure 1B) in the young

oral cavity patients when compared to the older patients.

Furthermore, GSEA analysis using ranked gene lists showed

epithelial-mesenchymal transition (EMT) processes to be among

the most up-regulated hallmarks in the younger cohort (Figure 1C).

These results implicate the ECM and EMT processes in promoting

disease progression in the OSCC tumors of young adults. Patient

identifiers from TCGA and a list of differentially expressed genes

can be found in the Supplementary File.
3.2 Role of ECM modifications in
promoting aggressiveness in young
adult tumors

Next, to validate our findings from the TCGA-HNSC cohort, we

utilized an institutional OSCC cohort. Here, FFPE tumor blocks

were obtained for 8 site and stage-matched patients (n=4 each for

young and old patients) and RNA was extracted to perform

NanoString nCounter gene expression assays using the

PanCancer IO 360 Panel. A summary of patient age (at time of

surgery), self-reported race, sex, tumor subsite within the oral

cavity, HPV status, TNM staging, evidence of perineural invasion,

evidence of lymphovascular invasion, disease recurrence, reported

alcohol use, reported smoking history, and current status of patients

from the institutional cohort can be found in Table 1. Patient RNA

expression for the 770 genes of the PanCancer IO 360 Panel was

obtained and differential expression was performed between young

and old OSCC patients using DESeq2. Here, we found 40 genes to

be differentially expressed in the young patients compared to older

patients (34 up-regulated, 6 down-regulated) (Figure 2A). Next,

functional annotations were performed on the differentially
TABLE 1 Continued

Old
Cohort (n=4)

Young
Cohort (n=4)

Current Status

Alive 1 1

Deceased 3 3
OSCC, oral cavity squamous cell carcinoma; FOM, floor of mouth; HPV, human
papillomavirus; PNI, perineural invasion; LVI, lymphovascular invasion.
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expressed genes, confirming our TCGA results. We found genes

involved in cell adhesion and ECM processes to be up-regulated in

young vs. older patients. These data correspond to our TCGA-

HNSC observations, and strongly suggest that ECM remodeling is a

key biological process contributing to aggressiveness in the OSCC
Frontiers in Oncology 05
tumors of young patients. NanoString outputs are available in the

public repository FigShare or are available upon request.

To characterize the key mediators that might be promoting

ECM remodeling processes in young OSCC patients, we performed

functional annotation analysis using IPA software. We identified
A B C

FIGURE 2

(A) Heatmap showing expression of differentially expressed genes between young and old patients using nCounter. (B) NanoString nCounter gene
expression profiles of different genes of interest. (C) Network analysis including genes of interest showing physical interaction with ECM-related
genes. *Adjusted p-value < 0.10 for young compared to old. ECM, extracellular matrix, TPM, transcripts per million.
A B

C

FIGURE 1

(A) Volcano plot showing RNA expression between young and old patients in TCGA. Here, red color denotes up-regulated genes in young and
green denotes down-regulated genes in young patients. (B) Biological processes being up-regulated in the young patients in TCGA. (C) GSEA
showing EMT processes to be up-regulated in the young TCGA patients (FDR q-value < 0.01, NES = 2.49). EMT, epithelial-mesenchymal transition,
FC, fold-change, FDR, false discovery rate, GSEA, gene set enrichment analysis, IHC, immunohistochemistry, NES, normalized enrichment score,
TCGA, the cancer genome atlas.
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key genes including VCAN, S100A9, COL5A1, LAMB3, ITGB2,

OLR1, HES1, CD58, TWIST1, and NECTIN2 to be of high-interest

due to their described role in functions of disease progression in

multiple cancers (Figure 2B) (23–32). To evaluate their interaction

in ECM remodeling, we constructed a network map using

Cytoscape (Figure 2C), which showed physical interaction of

LAMB3 with key ECM-regulating genes such as COL5A1, PLAU,

ITGB2, and ECM1 (33–36).
3.3 Immunosuppressed tumor
microenvironment in younger patients

Our analysis of the TCGA-HNSC and nCounter gene expression

panel showed down-regulation of immune-related processes in the

young OSCC patients. Here, functional annotation analysis of the

TCGA-HNSC cohort demonstrated down-regulation of complement

and B-cell activations, as well as the interferon gamma response

processes in the young OSCC patients (Figures 3A, B). To assess the

immune cell presence in younger patients, we performed

immunohistochemistry (IHC) of CD8+ T-cells on FFPE samples of
Frontiers in Oncology 06
younger and older OSCC patients (n=10; 5 each for younger and

older patients). Here, we observed a significant reduction (2.5-fold

change; p<0.05) of CD8+ T-cell infiltration in the young OSCC

tumors (Figure 3C). Collectively, these data suggest that younger

OSCC patients have a more immunosuppressive TME, where the

stromal cells may dynamically modulate the microenvironment to

favor tumor aggressiveness in this age group.
3.4 ECM promotion of immunosuppression
in the TME

To discern whether LAMB3 might be regulating the

immunosuppression in the TME of young OSCC adults, we

evaluated the correlation of these genes with immune-regulation

using an in-silico approach. We did so by performing network

analysis of LAMB3 to identify its interactions with the CD8A gene.

As demonstrated in Figure 4, LAMB3 is predicted to interact with

CD8A, CD3D, and CD3E. Other immune and ECM-specific genes

such as ECM1, ITGA2, COl17A1, KRT5, and HLA are also shown

to be amongst the node genes.
A B

C

FIGURE 3

(A) Biological processes being down-regulated in the young patients in TCGA. (B) GSEA showing interferon gamma response processes to be down-
regulated in the young patients in TCGA (FDR q-value = 0.01, NES = -1.61). (C) IHC expression of CD8 T-cells. *p-value < 0.05 for young compared
to old patients. EMT, epithelial-mesenchymal transition; FDR, false discovery rate; GSEA, gene set enrichment analysis; IHC, immunohistochemistry;
NES, normalized enrichment score; TCGA, the cancer genome atlas.
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4 Discussion

The present study identifies ECM remodeling and EMT

processes as central in promoting increased aggressiveness in

younger adult OSCC tumors. The ECM is an essential component

of the TME, as increased ECM component deposition and

crosslinking contributes to tumor progression and is a major

barrier to effective checkpoint immunotherapy treatment (37, 38).

Previous reports discuss the pathological role of increased ECM

remodeling in HNSCC relative to normal tissue (39–41). However,

to our knowledge, this is the first study to describe ECM remodeling

processes as having an enhanced differential expression in younger

vs. older OSCC patients. Specifically, we report increased LAMB3

activity, suggesting its role as a primary gene impacting the ECM in

younger adults. LAMB3 is known to exhibit tumorigenic effects in

multiple types of cancer, including HNSCC (42). However, its role

in promoting tumorigenesis particularly in young OSCC patients

has not been previously well-described.

As it pertains to tumor resistance in immune checkpoint

inhibition (ICI) therapy, increased ECM deposition in young

OSCC patients may drastically impact prognosis. Previous work

has demonstrated the deleterious effects of aberrant ECM

remodeling on ICI therapy in several types of cancer. In a study

of metastatic melanoma samples, Hugo et al. assessed the

transcriptomes and tumor mutanomes of pretreatment melanoma

biopsies to better define the role of genetics in resistance to anti-PD-

1 therapy. They reported that tumors with innate resistance to

immunotherapy displayed transcriptional signatures of upregulated

genes implicated in ECM remodeling in addition to cellular

adhesion, mesenchymal transition, and angiogenesis (38).

Separately, Peng et al. identified the negative consequences of

extensive tumor collagen deposition on anti-PD-1/PD-L1

effectiveness in lung tumors. Increased ECM resulted in elevated

LAIR1 activity which mechanistically exhausts T-cells by way of

tyrosine phosphatase SHP-1, rendering ICI therapy less effective. As

a proof-of-concept, when this group reduced collagen deposition in

their model through LOXL2 suppression, both T-cell exhaustion
Frontiers in Oncology 07
and anti-PD-1 resistance were diminished (37). Given these

findings, the increased ECM activity described in our young

OSCC cohort may contribute to ICI treatment resistance of

such patients.

Extracellular matrix remodeling not only contributes to tumor

progression and resistance to therapy, but also impacts TME

immune cell presence and activity. It is known that the TME is

comprised of several cell populations, including cancer and stromal

cells, in addition to non-cell ECM components. A complex

interplay exists between cellular stromal subpopulations and

tumor cells communicated through various secreted cytokines,

chemokines, growth factors and ECM proteins (39). Our findings

suggest that in young OSCC patients there is a degree of immune

suppression relative to older individuals, which we believe is due in

part to increased ECM remodeling processes. In assessing our

nCounter gene expression panel, we observed up-regulation of

genes associated with fibroblasts (LAMB3 and VCAN) in the

tumors of our younger patients. In addition, CD8+ T-cells were

not as prevalent in younger patients demonstrated through IHC.

Mechanistically, several specific effects of ECM processing on

immune cell function have been proposed. The ECM dynamically

modulates the physical organization, signaling cascades, and

cellular constituents in the tumors for both exclusion and

inactivation of T-cells (37, 43–47). Exclusion of T-cells might be

regulated through haptotaxis signals from altered ECM, where

instead of entering the TME, T-cells migrate along ECM-rich

encapsulation of tumors due to the gradients of substrate rigidity

and adhesion molecules such as aligned collagen fiber. Stiffened

ECM can induce poor diffusion that can enhances glycolytic

metabolism and acidification, which suppresses the activation of

T-lymphocytes through the specific interaction between V-domain

immunoglobulin suppressor of T-cell activation and co-inhibitory

receptor P-selectin glycoprotein ligand-1 in acidic TMEs. Proteins

of the ECM are known to contribute to the direct regulation of T-

lymphocytes. As reported, CD8+ T-cells are suppressed by collagen

through LAIR1 and tyrosine phosphatase SHP-1, and high

molecular weight hyaluronic acid could enhance the activity of
FIGURE 4

Network map demonstrating interaction of LAMB3 and CD8A.
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regulatory T-cells in vitro (37, 43–47). Concurrent increases in

matrix remodeling paralleled by suppressed TME immune activity

may promote both disease progression and tumor aggressiveness.

Our results suggest that LAMB3 may be up-regulated in the

TME of the younger OSCC patients and act as part of a gene

network along with ITGA2 and LAMC2. In a recently published

study of pancreatic ductal adenocarcinoma (PDAC), Islam et al.

proposed that these three genes potentiate disease progression and

severity. Levels of gene mRNA expression were significantly higher

in PDAC tissue as compared to normal tissue, and expression levels

were associated with increased pathological tumor stage. Disease-

specific and overall survival were significantly reduced in patients

with high LAMB3, ITGA2, and LAMC2 expression as compared to

patients with low expression (31). Similar to PDAC, these ECM-

related genes may contribute to disease aggressiveness in the young

OSCC population.

Besides LAMB3, prior reports discuss other significantly up-

regulated genes from our study as they pertain to various cancers.

Mitsui et al. studied VCAN and its potential implications in clear

cell renal cell carcinoma (ccRCC). This group concluded that

VCAN was associated with poor prognosis through induction of

tumor development by reducing TNF-mediated cellular apoptosis

(28). Besides ccRCC, VCAN has been described for its potential

negative role in malignancy of the prostate, colon, and ovary (48–

50). Similarly, COL5A1 was found to negatively contribute to

ovarian cancer, as described in a recent study by Zhang et al. This

group demonstrated elevated expression of COL5A1 in ovarian

cancer cells, while knockdown of this gene reduced cellular

capabilities to proliferate and migrate. Additionally, this protein

was found to be overexpressed specifically in cells resistant to

paclitaxel, which was significantly improved following gene

silencing (51). The remainder of genes described in our study

have also been implicated in several types of cancer, but an

extensive discussion of each is beyond the scope of this manuscript.

Converse to an apparent upregulation of such genes, we

observed a diminished CD8+ T-cell presence in the TME of

young patients. Natural killer (NK) cells have been shown to

secrete FLT3L, which is a potent driver of dendritic cell (DC)

activation and antigen presentation ability. Further, DC-CD8

interactions within the TME are vital for proper immune

surveillance. The implications of theoretically diminished FLT3L

pathway in young patients with OSCC may be drastic. Bickett et al.

used the TCGA to describe an increased 5-year overall survival in

HNSCC patients with increased FLT3L and FLT3 (ligand receptor)

expression, demonstrating the consequences of a depleted NK cell

response (52). Taken together, the immune suppression in the TME

of our young patients, as evidenced by decreased CD8+ cell

presence, may contribute to enhanced tumor aggressiveness

through obtunded immune cell signaling, activity, and

surveillance. Not only are the implications for aggressive tumor

behavior elucidated in these findings, but also the major

implications of immunotherapy resistance. As ICI treatment

becomes a front-line approach either in the neoadjuvant or

definitive setting, we need to be thoughtful about defining

patients’ TME to inform us about known resistance patterns. In
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addition, further work aimed at identifying strategies to improve

therapeutic efficacy is vitally important for patients with OSCC.

Our study is not without certain limitations. Tumor tissue

utilized for the NanoString nCounter analysis was obtained from a

cohort of 4 younger and 4 older patients from our institution. Ideally,

this matched cohort could have been enlarged to include additional

patients and possibly strengthen our findings. Additionally, the

tumor samples available for our IHC quantification of CD8+ T-

cells within the TME were of institutional patients of the same age

restrictions but were separate from the NanoString group. Under

ideal conditions, these samples would have come from the same

matched cohort, however this was not possible due to tissue

availability. Lastly, this study of young OSCC patients provides

evidence of differential expression for genetic markers known to be

involved in cancer progression, however future studies are required to

further elucidate mechanisms of relatively poor prognosis in

this population.
5 Conclusions

This study suggests that younger adults with OSCC have a TME

with depletion of effector immune cells and enhanced ECM

remodeling processes, contributing to increased disease

aggressiveness. As a downstream effect, this patient population

may also suffer from increased resistance to certain therapeutic

options, such as immunotherapy. Further work is required to

expand upon these initial findings and define specific mechanistic

pathways leading to worsened prognosis for OSCC patients of

young age.
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