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Background: This study aimed to establish a comprehensive clinical prognostic

risk model based on pulmonary function tests. This model was intended to guide

the evaluation and predictive management of patients with resectable stage I-III

non-small cell lung cancer (NSCLC) receiving neoadjuvant chemoimmunotherapy.

Methods: Clinical pathological characteristics and prognostic survival data for

175 patients were collected. Univariate and multivariate Cox regression analyses,

and least absolute shrinkage and selection operator (LASSO) regression analysis

were employed to identify variables and construct corresponding models. These

variables were integrated to develop a ridge regression model. The models’

discrimination and calibration were evaluated, and the optimal model was

chosen following internal validation. Comparative analyses between the risk

scores or groups of the optimal model and clinical factors were conducted to

explore the potential clinical application value.

Results: Univariate regression analysis identified smoking, complete pathologic

response (CPR), and major pathologic response (MPR) as protective factors.

Conversely, T staging, D-dimer/white blood cell ratio (DWBCR), D-dimer/

fibrinogen ratio (DFR), and D-dimer/minute ventilation volume actual ratio

(DMVAR) emerged as risk factors. Evaluation of the models confirmed their

capability to accurately predict patient prognosis, exhibiting ideal

discrimination and calibration, with the ridge regression model being optimal.

Survival analysis demonstrated that the disease-free survival (DFS) in the high-risk

group (HRG) was significantly shorter than in the low-risk group (LRG)

(P=2.57×10-13). The time-dependent receiver operating characteristic (ROC)

curve indicated that the area under the curve (AUC) values at 1 year, 2 years,

and 3 years were 0.74, 0.81, and 0.79, respectively. Clinical correlation analysis

revealed that men with lung squamous cell carcinoma or comorbid chronic
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obstructive pulmonary disease (COPD) were predominantly in the LRG,

suggesting a better prognosis and potentially identifying a beneficiary

population for this treatment combination.

Conclusion: The prognostic model developed in this study effectively predicts

the prognos i s o f pa t ien ts w i th NSCLC rece iv ing neoad juvant

chemoimmunotherapy. It offers valuable predictive insights for clinicians,

aiding in developing treatment plans and monitoring disease progression.
KEYWORDS

non-small cell lung cancer, pulmonary function test, prognostic model, neoadjuvant
therapy, chemoimmunotherapy
Introduction

Lung cancer, recognized globally as a primary malignant

tumor, is treated with various mainstream methods, including

chemotherapy, targeted therapy, immunotherapy, and surgery.

These treatments can significantly improve patient prognosis

when appropriately administered (1, 2). In particular, recent

advancements in immunotherapy have significantly improved

survival rates for lung cancer cases, especially for non-small cell

lung cancer (NSCLC), which accounts for 80–85% of them (2).

Clinical trials have demonstrated that immunotherapy significantly

enhances the overall survival (OS) of patients with advanced

NSCLC, with immunotherapy recipients experiencing up to five

times longer survival than those receiving chemotherapy alone (3).

For patients with resectable IB-IIIA NSCLC receiving neoadjuvant

therapy, immunotherapy has shown superior efficacy over

chemotherapy in achieving a major pathological response

(MPR) (4).

Despite these advances, a persistent issue in clinical studies is

the variability in individual responses to immunotherapy, posing a

challenge in predicting patient outcomes and risks. Therefore,

numerous studies have sought to identify reliable prognostic

predictors and establish clinical risk models. Research employing

tumor microenvironment, genomics–pathology correlation, and

deep learning models has successfully predicted patient responses

(5–7). However, the limited availability of these diagnostic tests in

routine clinical settings hampers their widespread adoption.

In our research, patients with NSCLC who were receiving

neoadjuvant chemoimmunotherapy were chosen as the research

cohort, incorporating 68 clinical features and laboratory

parameters, including pretreatment pulmonary function

indicators and postoperative complete pathological response

(CPR) and MPR rates, to identify seven prognostic markers.

Comprehensive prognostic models were constructed utilizing

these indicators to evaluate this patient group’s disease-free

survival (DFS). This model aimed to identify patients at risk of
02
shorter DFS, for whom additional adjuvant treatment options such

as chemotherapy, radiotherapy, or targeted therapy may be

beneficial in improving patient outcomes and prolonging survival.

This research aimed to offer crucial insights for refining clinical

treatment strategies and optimizing patient care.
Patients and methods

Data collection and processing

This study meticulously gathered data from 175 patients with

stage I-III NSCLC who underwent preoperative neoadjuvant

chemoimmunotherapy at the Second Affiliated Hospital of

Zhejiang University School of Medicine from December 1, 2018,

to July 30, 2022. The immunotherapy regimen included

programmed cell death protein 1/programmed death-ligand 1

antibodies (anti-PD1/PD-L1) such as pembrolizumab, nivolumab,

durvalumab, tislelizumab, camrelizumab, sintilimab, and

toripalimab. Chemotherapy was personalized by clinicians

according to the pathology, involving the use of pemetrexed,

paclitaxel, or protein-bound paclitaxel in combination with a

platinum-based drug (carboplatin, cisplatin, nedaplatin) over 2–4

cycles of neoadjuvant therapy. A multi-disciplinary team consulted

for each patient to evaluate suitability for operation. Patient

conditions were closely monitored postoperatively for their status.

Adjuvant treatment was tailored to individual patient conditions.

The principal inclusion criteria included: A) A preoperative

histopathological diagnosis of primary NSCLC. B) Classification as

surgically resectable stages I-III according to the 8th edition of the

American Joint Committee on Cancer (AJCC) lung cancer staging

criteria. C) Age >18 years. D) Initiation of at least one cycle of

combined immunotherapy and chemotherapy post-diagnosis in

our hospital. E) Eligibility for operation after neoadjuvant

treatment and completion of the surgical procedure in our

hospital with a minimum of 2 months follow-up. F) Availability
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of comprehensive baseline clinical data and test results. G) A

performance status (PS) score of 0 or 1.

The exclusion criteria were: A) A history of severe immune

deficiency, including positive human immunodeficiency virus (HIV)

tests or organ transplantation. B) Diagnosis of other cancers within

the past 5 years. C) Incomplete postoperative imaging data for

evaluation. D) Death due to surgical complications.

Clinical pathological characteristics and prognostic survival

data were retrieved from the electronic medical records. After

treatment, MPR was characterized by ≤10% viable tumor cells in

the surgical resection specimen. CPR was identified by the complete

absence of viable tumor cells in the resected tissue upon

pathological examination post-treatment. DFS was measured

from the surgical date to the disease progression or the last

follow-up, concluding on September 30, 2022, with outpatient

and telephone follow-ups employed. This study received approval

from the Institutional Review Board of the Second Affiliated

Hospital of Zhejiang University School of Medicine (Approval

No.: IR2022396).
Univariate and multivariate Cox
regression analysis

Survival analyses were conducted using the “survival” package

(version 3.3–1) (8) in R 4.2.2 to ascertain the variables impacting

patients’ OS. Variables with P< 0.1 were selected for a multivariate

Cox regression analysis. Survival curves were generated using the

“ggsurvplot()” function of the “survminer” package (version 0.4.9)

(9). The optimal cutoff values for continuous variables were

determined using the “surv_cutpoint()” function, categorizing

them into high-risk (HRG) and low-risk groups (LRG) accordingly.

Subsequently, multivariable Cox regression analysis was

performed using the “coxph()” and “step()” functions with a

“backward” direction. Variables with P< 0.05 were ultimately

chosen for the Cox regression model construction. The selected

variables, along with their 95% confidence intervals (CIs), hazard

ratios (HRs), and P-values, were plotted using the “forestplot”

package (version 1.0.0) (10).
Least absolute shrinkage and selection
operator regression analysis

The “glmnet” package (11, 12) (version number: 4.1–6) was

utilized to construct the LASSO regression model, incorporating

variable data and patients’ survival information. Settings were

adjusted as follows: the family parameter was set to “cox,” “alpha”

to 1, and “nfolds” to 10. The optimal value of l, minimizing the

partial likelihood deviation, was selected. This optimal l value was

substituted in the “coef()” function to obtain the regression

coefficients for each variable, facilitating the construction of the

LASSO regression model.
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Ridge regression analysis

Variables identified as significant from the univariate Cox

regression analysis were integrated with those used in the LASSO

regression model. The results were plotted using the “Vennerable”

package (version 3.0) (13) through a Venn diagram. Subsequently,

these variables, along with patient survival data, were analyzed

using the “glmnet” function with family set to “cox,” “alpha” to 0,

and “nfolds” to 10. The “cv. glmnet()” function helped observe

changes in partial likelihood deviation across different l values. The

identified optimal l was used in the “coef()” function to calculate

each variable’s regression coefficients for constructing the ridge

regression model. Moreover, a Sankey diagram was created using

the online platform SangerBox (http://vip.sangerbox.com/),

illustrating variables and their classifications (risk or protective

factors) from the three mentioned models (14).
Risk score calculation and
model evaluation

Risk scores for the three models were calculated using the

“predict()” function of the “survival” package (8), with cutoff

values determined by the “surv_cutpoint()” function from the

“survminer” package (9). Patients were subsequently classified

into HRG and LRG based on these scores, integrating this

information into their profiles for subsequent analysis. The

formulas for calculating risk scores were as follows:

Cox − associated   risk   score   (CARS)

= h0(t)� exp(b1x1 + b2x2 +⋯+bnxn)

LASSO − associated   risk   score   (LARS) = b1x1 + b2x2 +⋯+bnxn

Ridge − associated   risk   score   (RARS) = b1x1 + b2x2 +⋯+bnxn

In the above formula, x is the variable value, b is the regression

coefficient, and n is the number of variables.

Risk factor correlation diagrams were drawn based on these

scores, patient survival status, survival time, and variable values.

Model calibration was assessed through calibration curves plotted

using the “calibrate()” function of the “rms” package (version 6.5.0)

(15). Nomograms for risk scores were also plotted to check for

linear fitting.

The prognostic capability of the models was evaluated by

plotting survival curves for the different risk groups and survival

periods, calculating the area under the curve (AUC) values at three

DFS time points (1 year, 2 years, and 3 years) using the “timeROC”

package (version 0.4) (16), and drawing receiver operating

characteristic (ROC) curves. Precision recall (PR) capabilities for

predicting clinical outcomes were assessed using the “modEvA”

package (version 3.9.3) (17) to plot PR curves (PRC) and calculate

AUC values.
frontiersin.org

http://vip.sangerbox.com/
https://doi.org/10.3389/fonc.2024.1411436
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2024.1411436
The net reclassification improvement (NRI) and integrated

discrimination improvement (IDI) between the Cox, LASSO, and

ridge regression models were calculated using the “survIDINRI”

package (version 1.1–2) (18). Lastly, the clinical net benefit of the

three models at the three DFS time points was evaluated using the

“ggDCA” package (version 1.2).
Internal verification and model comparison

Without external validation cohorts, internal validation was

conducted on these models. Initially, the cohort was randomly

divided into training and validation sets at a ratio of 1:1.

Subsequently, the “cph()” function from the “rms” package (15)

was employed to fit both sets based on the risk scores of the three

models. The models’ discrimination and goodness of fit were

assessed using the “Cindex()” and “calPlot()” functions from the

“pec” package (version 2022.05.04) (19), respectively.
Clinical relevance analysis of the
optimal model

The clinical baseline data were integrated with the risk scores

and risk group categorizations derived from the optimal model.

Factors not incorporated in the model underwent correlation

analysis to explore their potential clinical relevance. For

categorical variables, such as gender and pathological type,

analyses were performed to identify significant differences in risk

scores across different baseline groupings. Similarly, the analyses

determined differences between the HRG and LRG for continuous

variables, such as age and height. The correlation between

continuous variables and risk scores was analyzed to evaluate the

potential clinical applicability of the optimal model.
Statistical analysis

The study’s data was processed using R 4.2.2 and GraphPad

Prism (version 9.0.0, San Diego, California, USA) software. The

“ggplot2” package (version 3.3.5) (20) was employed for data

visualization, adhering to default parameters for unspecified

methods. Continuous variables were presented as mean ±

standard deviation (SD). The Mann–Whitney U test was applied

to non-normally distributed data, while the Student’s t-test was

utilized to compare two groups with normally distributed and equal

variance data. For data with normal distribution but unequal

variances, Welch’s t-test was used. Categorical variables were

described using frequencies and percentages, with the chi-square

test used for group comparisons. Spearman’s correlation test was

conducted for correlation analyses, and the “ggpubr” package

(version 0.6.0) (21)was used for the statistical analysis of scatter

plots. Additional histograms were created with “ggExtra” (version
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0.10.0) (22). Statistical significance was set at P < 0.05, with

* indicating P < 0.05, ** P < 0.01, *** P < 0.001, and **** P < 0.0001.
Results

Baseline characteristics of patients

The study included 175 patients, comprising 20 (11.4%) women

and 155 (88.6%) men, aged 40–81 years, with a median age of 65

years. A total of 61 (34.9%) patients had no history of smoking,

while 114 (65.1%) were smokers. Lung squamous cell carcinoma

(LUSC) was diagnosed in 123 (70.3%) patients, with the remaining

52 (29.7%) presenting other pathologies. Staging, according to the

eighth edition of the AJCC, included six (3.4%) patients in stage I,

53 (30.3%) in stage II, and 116 (66.3%) in stage III. Tumor stages

were T1, T2, T3, and T4 in 20 (11.4%), 77 (44.0%), 53 (30.3%), and

25 (14.3%) patients, respectively, with nodal stages N0, N1, N2, and

N3 in 32 (18.3%), 51 (29.1%), 91 (52.0%), and one (0.6%)

patient, respectively.

All participants underwent preoperative neoadjuvant

chemoimmunotherapy, with two (1.1%) receiving one course, 130

(74.3%) receiving two, 36 (20.6%) receiving three, and seven (4.0%)

receiving four. MPR was achieved by 95 (54.3%) patients and CPR by

67 (38.3%). A total of 158 patients (90.3%) received postoperative

adjuvant therapy, and 17 patients (9.7%) did not undergo further

treatment. The baseline data and the results of the univariate Cox

regression analysis are shown in Supplementary Table S1.

The flowchart of this study is illustrated in Figure 1, created

using Figdraw (https://www.figdraw.com/).
Cox regression model constructed with
four variables

Univariate Cox regression analysis identified seven variables

impacting DFS among 68 studied variables. The hazard ratios (HR),

95% confidence intervals (CI), and P values for these variables are

shown in Figure 2A. Subsequently, multivariate Cox regression

analysis refined these to four significant variables, as illustrated in

Figure 2B. Smoking (P=0.007, Figure 2C) and CPR (P=0.006,

Figure 2D) were identified as protective factors. In contrast, the T

stage (P=0.017, Figure 2E) and the D-dimer/minute ventilation

volume actual ratio (DMVAR) (P=0.017, Figure 2F) were

recognized as risk factors.

A regression model was developed based on regression

coefficients. The formula for calculating the risk score in this

model was:

CARS = −1:197433� exp( − 0:750512� Smoking   value

− 1:025211� CPR   value + 0:358675� T   stage   value

+ 0:012522� DMVAR   value)
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In the above formula, smoking history was indicated by 1 (presence)

or 0 (absence); the attainment of CPR was characterized by 1 (achieved)

or 0 (not achieved), and the T stage was represented by values 1, 2, 3, or 4

corresponding to T1, T2, T3, or T4 stages, respectively.
Construction of the LASSO regression
model using five variables

LASSO regression was applied to all 68 variables, employing the

minimized l and a 10-fold cross-validation method to identify five

variables with non-zero regression coefficients (Figure 3A). As

illustrated in Figure 3B, the model had the lowest partial

likelihood deviation when l was at its minimum, leading to the

construction of a LASSO regression model based on the regression

coefficients of five variables, with the risk score formula being:

LARS = −0:202190� Smoking   value − 0:057328� CPR   value

− 0:225867�MPR   value + 0:046980� T   stage   value

+ 0:004285� DMVAR   value
Frontiers in Oncology 05
The classification for variables remained consistent with that in

CARS. MPR, a protective factor, was assigned a value of 1

(achieved) or 0 (not achieved) (P=0.004, Figure 3C).
Construction of the ridge regression model
using seven variables

A ridge regression model was developed by using seven

variables identified from univariate analysis. The overlap of

variables across the three models is visualized in Figure 3D. The

minimum l value was determined by employing the minimization

of l through 10-fold cross-validation, as shown in Figure 4A.

Figure 4B demonstrates the model’s lowest partial likelihood

deviation at this l value. Regression coefficients for each variable

were calculated at this l, leading to the following risk formula:

CARS = −0:454011� Smoking  value − 0:389617� CPR value

− 0:360084�MPR value + 0:227656� T  stage value

+ 0:000871� DWBCR value + 0:001024� DFR value

+ 0:005581� DMVAR value
FIGURE 1

Flowchart of the study.
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In the above formula, the assignment of variables mirrors that

in CARS or LARS. Variables with positive coefficients in the

formula were suggested as risk factors, whereas those with

negative coefficients were deemed protective. Among them, the

D-dimer/white blood cell ratio (DWBCR) (P=0.047, Figure 4C) and

the D-dimer/fibrinogen ratio (DFR) (P=0.047, Figure 4D) were

identified as risk factors. Figure 4E displays the variables and their

classifications as factors in the three models.
All three models could effectively predict
patient outcomes with optimal
discrimination and calibration

By calculating the CARS, LARS, and RARS for each patient and

correlating these with survival status and variable values, the prognostic

prediction for the 175 patients was made using risk factor correlation

diagrams (Supplementary Figure S1A). Subsequently, patients were

organized by ascending CARS scores, with the optimal cutoff value of
Frontiers in Oncology 06
0.334, segregating patients into HRG and LRG. The HRG showed a

significantly higher mortality rate than the LRG, with high-risk factor

values predominating in the HRG and protective factors in the LRG.

Similar patterns were observed when patients were divided using the

optimal cutoff values LARS=-0.062 (Supplementary Figure S1B) and

RARS=0.4737 (Figure 5A), leading to comparable conclusions.

Moreover, all three models exhibited precise fitting accuracy. Model

calibration diagrams at the 140-day mark revealed optimal fitting;

however, the goodness of fit (GOF) of the Cox regression model

(Supplementary Figure S1C) was slightly inferior to that of the LASSO

(Supplementary Figure S1D) and ridge regression models (Figure 5B).

The nomograms show that the Cox (Supplementary Figure S1E), LASSO

(Supplementary Figure S1F), and ridge regression models (Figure 5C) all

had an optimal linear fitting, with risk scores linearly correlating with the

nomogram’s total score, indicating prognostic prediction value.

Survival curves were plotted for HRG and LRG based on the risk

stratification to evaluate the models’ prognostic prediction and

discrimination capabilities. The median DFS for HRG in the Cox

regression model was 777 days, significantly shorter than that of LRG,
A B

D

E F

C

FIGURE 2

Construction of the Cox regression model. (A) Forest plot of univariate Cox regression analysis detailing variables along with their HR, 95% CI, and P
values; (B) Forest plot of multivariate Cox regression analysis showing variables, regression coefficients, HR, 95% CI, and P values; (C) Survival curve
based on smoking status; (D) Survival curve based on CPR achievement; (E) Survival curve according to T stage; (F) Survival curve derived from the
optimal cutoff value of DMVAR (DMVAR=26.702).
frontiersin.org

https://doi.org/10.3389/fonc.2024.1411436
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2024.1411436
where the median DFS was not reached, indicating a significant

difference between the two groups (P =6.32×10-6, Supplementary

Figure S2A). Similarly, the median DFS for HRG in the LASSO

regression model was 721 days, significantly shorter than that of the

LRG, indicating a significant difference between the two groups

(P=1.77×10-6, Supplementary Figure S2B). The ridge regression

model followed this pattern, with HRG’s median DFS at 673 days,

significantly shorter than that of the LRG, indicating a significant

difference (P=2.57×10-13, Figure 6A). Time-dependent ROC curves

revealed that the AUC values for the Cox regression model at 1-, 2-,

and 3-year time points were 0.756, 0.807, and 0.825, respectively

(Supplementary Figure S2C); 0.725, 0.811, and 0.723, for the LASSO

regression model, respectively (Supplementary Figure S2D), and 0.743,

0.813, and 0.786, for the ridge regression model, respectively

(Figure 6B). Moreover, PRCs were plotted to analyze the models’

accuracy in identifying patients with the disease, showing an increase in

disease identification probability from 19.4% (34/175) to 38.6%

(Supplementary Figure S2E), 37.9% (Supplementary Figure S2F), and

39.7% (Figure 6C) for the Cox, LASSO, and ridge regression models,

respectively. These results suggest that all three models offer excellent

discrimination and can predict patient prognosis and survival reliably.
The ridge regression model emerged as
the optimal model for this study

To further establish the superiority of the ridge regression

model over the other two models, the accuracy of the three
Frontiers in Oncology 07
models was evaluated using classifiers. The accuracies for the Cox

and the LASSO regression models were 57.1% (Supplementary

Figure S2G) and 63.4% (Supplementary Figure S2H), respectively.

These values were surpassed by those of the ridge regression model,

which achieved an accuracy of 73.1% (Figure 7A). Moreover,

decision curve analysis (DCA) (Figure 7B) results indicated that

all three models could enhance net benefits at the 1-, 2- and 3-year

time points, with the ridge regression model showing a slight

increase in net benefit compared to the other models. A thorough

comparison across the models revealed that the ridge regression

model consistently outperformed the others, at the 1-year, 2-year,

and 3-year benchmarks, regardless of IDI, continuous NRI, or

median improvement. This finding suggests that the ridge

regression model had a superior predictive capability for outcome

events in our study, as shown in Supplementary Table S2.

Due to the absence of external validation cohorts, internal

validation was performed for the three models. The dataset was

randomly partitioned into training and validation sets at a 1:1 ratio.

Subsequently, the variation in C-statistics over survival time was

charted. While the C-statistics for all three models displayed

similarity, the ridge regression model exhibited superior

discrimination, which was evident in training (Figure 7C) and

validation sets (Figure 7D). Subsequently, the calibration curves

for the three models were plotted for the training (Figure 7E) and

validation sets (Figure 7F). The outcomes indicated that the ridge

regression model exhibited superior GOF. Consequently, the ridge

regression model emerged as the optimal model in this study based

on the comprehensive evaluation and analysis of the models. It
A B

DC

FIGURE 3

Construction of the LASSO regression model. (A) Diagram illustrating the distribution of LASSO regression coefficients, showcasing the variation in
regression coefficients (ordinate) against log(l) (abscissa) under 10-fold cross-validation. (B) Graph depicting LASSO regression parameters,
highlighting the trend of partial likelihood deviation (ordinate) with log(l) (abscissa) under 10-fold cross-validation; vertical dashed lines represent the
optimal l value using the minimum criterion and one standard error from the minimum; (C) Survival curve based on MPR achievement; (D) Venn
diagram illustrating the variables included across the three models.
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demonstrated the best discrimination and GOF, offering a more

precise prediction of patients’ DFS in our cohort.
Correlation of ridge regression model with
multiple clinical prognostic factors

To further explore the clinical utility of the ridge regression

model, this study investigated its correlation with various clinical

factors not initially included in the model. The analysis focused on

significant differences in RARS across genders, stages, and other

clinical factors. Significant variations in RARS were observed across
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genders (P<0.0001, Figure 8A) and different pathological types

(P=0.004, Figure 8B). Significant differences in the actual forced

expiratory volume in one second/forced vital capacity (FEV1/FVC)

(P=0.028, Figure 8C) were found between different risk groups.

Similarly, a considerably higher incidence was noted among male

patients in LRG (P=0.003, Figure 8D), those with LUSC (P=0.017,

Figure 8E), and individuals with comorbid chronic obstructive

pulmonary disease (COPD) (P=0.016, Figure 8F), suggesting these

groups are more likely to exhibit a favorable prognosis.

Subsequently, the correlation between continuous variables,

such as age and pulmonary function indicators, and RARS, was

compared and analyzed. The findings revealed significant negative
A B

D

E

C

FIGURE 4

Construction of the ridge regression model. (A) Distribution diagram of ridge regression coefficients, illustrating changes in coefficients (ordinate)
against log(l) (abscissa) within 10-fold cross-validation; (B) Ridge regression parameter graph, showing the likelihood deviation trends (ordinate) with
log(l) (abscissa) under cross-validation; (C) Survival curve derived from the optimal DWBCR cutoff value (DWBCR=78.873). (D) Survival curve from
the optimal DFR cutoff value (DMVAR=111.675). (E) Sankey diagram reflecting the integration of variables and their roles across the three
regression models.
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correlations between RARS and six pulmonary function indicators:

actual diffusing capacity of the lung for carbon monoxide corrected

for hemoglobin concentration per single breath (DLCOc/SB) actual

(R = -0.237, P = 0.0016, Figure 8G), actual/estimate ratio (AER) of

DLCOc/SB (R = -0.216, P = 0.004, Figure 8H), AER of DLCOc/

alveolar volume (VA) (R = -0.161, P = 0.0328, Figure 8I), actual VA

(R = -0.162, P = 0.0326, Figure 8J), actual vital capacity max (VCM)

(R = -0.205, P = 0.0064, Figure 8K), and actual FVC (R = 0.205,

P = 0.0066, Figure 8L). These results further underscore the

prognostic predictive value of the model.
Discussion

Patients with early-stage resectable NSCLC can benefit

significantly from surgical treatment. However, certain patients

with NSCLC may require neoadjuvant therapy to qualify for

surgery (23). Recent advancements in immunotherapy have

demonstrated that combining it with neoadjuvant therapy offers

more benefits than purely neoadjuvant chemotherapy. Rosner et al.

(24) discovered that achieving a postoperative MPR postoperatively

can result in a 5-year DFS rate of up to 89%. MPR is associated with

extended event-free survival (EFS) and OS (25, 26). However,
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relying on the postoperative pathological response rate as a single

indicator has limitations. Clinical practice has observed that even

among patients with identical clinical stages and similar treatment

protocols, responses to treatment, postoperative efficacy, and

prognostic outcomes vary. This variability could stem from the

combined effects of individual factors, tumor heterogeneity, the

immune microenvironment, PD-L1 expression, and tumor

mutation burden (TMB) (27). Therefore, effective prediction

models must be constructed to navigate these complexities.

Most existing studies on the prognosis of neoadjuvant therapy

rely on bioinformatics analysis. For instance, Pang et al. (28)

constructed a predictive model by analyzing immune-related

differentially expressed genes. Ouyang et al. (29) constructed a

risk prognostic model for LUAD by analyzing hypoxia-, immunity-,

and epithelial-to-mesenchymal transition-related genes. However,

these indicators are frequently challenging to measure in routine

clinical settings. In contrast, pulmonary function tests provide

critical insights into lung ventilation and diffusion functions, and

are relatively easy to obtain. However, the application of pulmonary

function tests in predicting the outcomes of NSCLC

immunotherapy remains underexplored. This study pioneers

prognostic models based on pulmonary function tests performed

before the treatment, incorporating 68 clinical variables potentially
A B

C

FIGURE 5

Calibration evaluation of the Ridge regression model. (A) Risk factor correlation diagram featuring histograms of the distribution of patients’ risk
scores, scatter plots of patient survival distributions, and heatmaps showing changes in variables with risk scores. The horizontal axis represents
patient numbers, ranked from lowest to highest risk score; the vertical axis shows patients’ risk scores, DFS, and variables included in the model.
(B) Calibration curve at the optimal calibration time point of 140 days, displaying predicted vs. actual survival status. Every 50 patients were grouped
and resampled 1000 times. (C) Nomogram based on patients’ risk scores, showing total scores and the probability of 1-year, 2-year, and 3-year DFS.
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influencing patient prognosis and survival. With DFS as the

primary endpoint, predictive models were developed,

encompassing a broad spectrum of factors, including individual

drug treatments, surgical interventions, chronic conditions, and

markers of coagulation and inflammation. After a thorough

evaluation, seven indicators were identified as significant for the

prognosis of patients with stage I-III NSCLC undergoing

neoadjuvant chemoimmunotherapy. The constructed models

demonstrated commendable discrimination, GOF, and accuracy,

suggesting substantial clinical applicability.

T staging emerged as a crucial risk assessment indicator within our

predictive framework. Universally acknowledged as a critical metric for

evaluating the primary tumor’s size and extent of invasion, T staging

holds paramount importance, especially for surgical candidates (7, 30).

The application of T staging to predict postoperative survival in patients

with early NSCLC is well-recognized. Wang et al. (7) demonstrated that

patients with stage I NSCLC tumors measuring<20 mm in diameter

exhibit improved postoperative prognoses. Sayan et al. (31) identified
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that a tumor size >21.5 mm significantly predicts occult lymph node

metastasis in patients with stage IA NSCLC. Similar to neoadjuvant

therapy, neoadjuvant immunotherapy aims to shrink the primary tumor

and enable downstaging, thereby facilitating or simplifying surgery (32).

Despite the variety of clinical prognostic prediction models for

neoadjuvant therapy, T staging is commonly included and recognized

as a critical predictor of patient outcomes (33, 34), aligning with the

findings of our model.

Smoking stands as a primary independent risk factor for various

types of cancer, accounting for up to 20% of all cancer cases in the

United States, and is regarded as the most significant risk factor for

cancer (35). Contrary to this general risk association, our research

identified a history of smoking as a protective and prognostic factor

in neoadjuvant chemoimmunotherapy, a conclusion supported by

the findings of a meta-analysis (36). Furthermore, Li et al. (37)

observed that among patients with LUAD and positive PD-L1

expression, those with over a year of smoking history showed an

85.2% survival rate post-immunotherapy, compared to 56.1% for
A

B C

FIGURE 6

Discrimination evaluation of the Ridge regression model. (A) The survival curve plotted based on the optimal cutoff values of 0.042. (B) The ROC
curve at 1-, 2-, 3-year disease-free survival time points, respectively. (C) PRC curve for the normalized risk scores of the ridge regression model.
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former smokers and 42.6% for individuals with no smoking history.

Another study highlighted that in the absence of TMB, smoking

intensity could serve as a clinical predictor for immunotherapy

effectiveness (38). Wang et al. (39) reported that tobacco smoke

triggers PD-L1 expression in lung epithelial cells via the aryl

hydrocarbon receptor (AhR), facilitating immune evasion and

tumorigenesis. Experiments with mouse models have confirmed

that AhR inhibitors significantly inhibit tumor growth and

synergize with PD-L1 antibodies. To the best of our knowledge,

smoking is a known risk factor for chronic COPD and lung cancer.

Our study’s clinical correlation analysis indicated that patients with

COPD, akin to those with a history of smoking, may experience

longer DFS. This finding contradicts our previous understanding of

lung cancer chemotherapy, where COPD was generally seen as a
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factor that significantly worsens the prognosis of patients receiving

chemotherapy (40). In this context, Mark et al. (41) suggested that

COPD subtypes might influence immune characteristics, with a

significant increase in CD4+ cell proportion and Th1 polarization

in COPD potentially underlying the enhanced response to immune

therapy. Our analysis of pretreatment pulmonary function test data

revealed that patients in the LRG exhibited lower FEV1/FVC ratios,

correlating with a more favorable prognosis. Therefore, a history of

smoking, FEV1/FVC ratios, and COPD presence were closely aligned

with our study findings, suggesting that patients with a history of

smoking history might fare better with neoadjuvant immunotherapy

combined with chemotherapy, particularly those in the LRG who

tend to have lower FEV1/FVC values and were more likely to have

COPD comorbidities.
A B

D

E F

C

FIGURE 7

Clinical applicability and internal validation of models. (A) Confusion matrix for the ridge regression model, created based on the patients’ risk groups
and their actual recurrence or death outcomes. (B) DCA for the three models at 1-year, 2-year, and 3-year intervals, with the risk threshold on the
horizontal axis and net benefit on the vertical axis. (C, D). Plots of C-statistics (vertical axis) versus patients’ DFS (horizontal axis) for the three models
in the (C) training and (D) validation sets of internal validation; (E, F). Calibration curves for the three models in the (E) training and (F) validation sets,
displaying predicted versus actual survival probabilities.
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Our research found chemoimmunotherapy to be more effective

in male patients or those with LUSC, which emerged as significant

prognostic indicators. Previous research has highlighted the

influence of gender on the efficacy of immunotherapy across

various cancer types, with male patients frequently deriving more
Frontiers in Oncology 12
benefits (42). Pinto et al. (43) observed that while overall mortality

risk for NSCLC decreased in women, men experienced a 24%

reduction in risk with PD-L1 inhibitor therapy, unlike women,

who did not show significant improvement. This disparity might

stem from the complexity of immune expression in women, who
A B

D E F

G IH

J K L

C

FIGURE 8

Clinical relevance analysis of the ridge regression model. (A–C) Significant differences in RARS were observed across (A) gender and (B) pathological
types; (C) Significant differences in actual FEV1/FVC were observed between risk groups; (D–F) Significant disparities in risk groups were noted based
on (D) gender, (E) pathological type, and (F) COPD status; (G–L) Significant negative correlations existed between RARS and pulmonary function
indicators, (G) actual DLCOc/SB, (H) DLCOc/SB AER, (I) DLCOc/VA AER, (J) actual VA, (K) actual VCM, and (L) actual FVC. *P< 0.05, **P< 0.01, and
****P< 0.0001.
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typically exhibit more robust innate and adaptive immune

responses (44). In our model’s clinical baseline data, LUSC was

predominantly found in men (77.4%), whereas a higher proportion

of women had other pathological types (85.0%); this difference was

significant (P<0.0001). The variation in pathological types affects

the prognosis of neoadjuvant therapy for NSCLC, with Faruki et al.

(45) revealing significant differences in the molecular expression

subtypes between LUSC and LUAD regarding the immune host

response, potentially explaining the varied reactions to

immunotherapy. Gao et al. (46) observed a significant difference

in the MPR rates between LUSC and LUAD during immunotherapy

with sintilimab (48.4% vs 0%). Moreover, a multicenter study on

neoadjuvant chemoimmunotherapy revealed that patients with

LUSC achieved an MPR of 80%, significantly higher than the 53%

observed in those with LUAD (47). However, LUAD has a higher

likelihood of epidermal growth factor receptor (EGFR) mutations,

especially among the Asian population, where the incidence is

approximately 50% (48), necessitating alternative treatment

strategies. Therefore, the differential response to immunotherapy

in patients with NSCLC between LUSC and LUAD warrants further

confirmation through additional clinical trials and extensive

prospective studies.

Inflammation and coagulation are closely interconnected, with

fibrinogen and D-dimer as coagulation markers and molecular links

in inflammation and immunity. The meta-analysis by Perisanidis

et al. (49) indicated that elevated pretreatment plasma fibrinogen

levels are significantly associated with reduced survival rates in

patients with solid tumors. In immunotherapy, initial fibrinogen

concentrations correlate with patient prognoses (50). Further

research has underscored fibrinogen’s involvement in cell

migration, proliferation, angiogenesis, and hematogenous

metastasis (51, 52). As fibrinogen’s final degradation product, D-

dimer is associated with worse progression-free survival (PFS) and

OS in patients with advanced NSCLC undergoing immunotherapy

with elevated levels before undergoing immunotherapy (53). The

association between raised D-dimer levels and the development of

deep vein thrombosis is well-documented; some researchers

propose that an abnormal increase in D-dimer could influence

the expression of tissue factor (TF), frequently considered to be

associated with cancer metastasis and progression (54, 55). A

multicenter study indicated that the neutrophil-to-lymphocyte

ratio (NLR) in patients with NSCLC might significantly impact

the efficacy of neoadjuvant immunotherapy (56). Although in our

study, direct or indirect inflammatory indicators such as D-dimer,

fibrinogen, and WBC count did not show significance in the

univariate analysis of DFS, their ratios presented substantial

prognostic value. The DWBCR and DFR represent the interaction

between the body’s inflammatory and coagulation systems. For

instance, active fibrinolysis could lead to elevated D-dimer levels

and increased fibrinogen consumption, particularly during

immunotherapy. This treatment phase could provoke immune-

related adverse reactions such as hemolysis, the release of

tumor cells into the bloodstream, and vasculitis associated

with inflammatory damage. Moreover, abnormal coagulation

responses could exacerbate inflammatory reactions and immune

system dysfunctions, ultimately leading to reduced effects of
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immunotherapy (57). The capability of these ratios to improve

the prognosis of neoadjuvant chemoimmunotherapy outcomes

warrants further investigation. However, understanding the

intricate coagulation and inflammatory mechanisms demands a

multifaceted approach, integrating relevant data to evaluate the

patient’s treatment responses and prognoses comprehensively.

Pulmonary function tests play a critical role in the preoperative

assessment of lung cancer, essential for determining surgical

viability through evaluations of respiratory function and gas

exchange capacity (58). However, the predictive value of

pulmonary function tests following neoadjuvant therapy remains

underexplored. Despite including extensive pretreatment

pulmonary function test data, only the DMVR emerged as an

independent prognostic indicator in our study. The MV, a

measure of lung function, efficiency, and burden, is hypothesized

to be related to adverse reactions to immunotherapy. The inherent

association between DMVR and its prognostic effectiveness requires

further research. Typically, advanced tumor stages correlate with

poorer outcomes, and the degree of pulmonary function decline

before treatment can influence both treatment outcomes and

prognoses. The pulmonary function data in this study were

collected from patients before initiating therapy. While our

research indicated that pretreatment pulmonary function does

not significantly influence patient prognosis, a distinct negative

correlation was observed between several indicators in the

pretreatment pulmonary function tests, including VA, VC, FVC,

and DLCO, and the model scores. The pulmonary immune

response’s escalation following neoadjuvant therapy likely

exacerbates pulmonary function. Therefore, integrating the pre-

and post-treatment pulmonary function changes into the predictive

model could yield more accurate forecasts for patient tumor

recurrence. This hypothesis is intended to be explored in our

subsequent studies.

This study has several limitations. Firstly, it was a single-center

retrospective analysis involving a relatively small cohort of 175

patients, exclusively from the Chinese population, potentially

introducing bias. However, carefully applying the inclusion and

exclusion criteria lends a degree of representativeness to the study

population. The prognostic model may be particularly predictive for

Chinese patients with stage I-III NSCLC receiving neoadjuvant

chemoimmunotherapy. However, the small sample size means the

models’ discrimination and calibration were demonstrated through

internal validation, lacking external validation. In subsequent

studies, the sample size is intended to be expanded, and diverse

populations are incorporated to enhance the model ’s

generalizability. Furthermore, although seven variables and RARS

emerged as promising prognostic indicators, the categorical

variables’ threshold values require validation in large-scale

prospective clinical trials. Moreover, the study’s laboratory and

clinical data were pretreatment measures, which might change

dynamically during subsequent diagnosis and treatment,

potentially affecting the accuracy of prognostic predictions.

Therefore, when utilizing this model for prognostic evaluations, it

is crucial to manage the timing of tests and data collection

meticulously. Acknowledging these limitations illustrates the

necessity for more extensive and higher-quality prospective studies.
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Conclusions

This study has identified seven prognostic factors associated

with neoadjuvant chemoimmunotherapy in NSCLC, incorporating

pulmonary function indicators, clinical baseline data, and

postoperative pathological characteristics. These variables include

smoking, T stage, MPR, CPR, DWBCR, DFR, and DMVAR. Risk

models were constructed using these indicators to predict the

efficacy of combined treatments and patient prognoses.

Specifically, the ridge regression model from our study can assist

clinicians in more accurately determining which patients have a

potential risk of recurrence. Male patients with LUSC, those with

concurrent COPD, and patients with a history of smoking are the

likely beneficiaries of this combined therapeutic strategy. In

summary, this model offers significant clinical utility.
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SUPPLEMENTARY FIGURE 1

Calibration evaluation of the Cox and LASSO regression models. (A, B). Risk
factor correlation diagrams for the (A) Cox regression model, and (B) LASSO
regression model, featuring histograms of the distribution of patients’ risk
scores, scatter plots of patient survival distributions, and heatmaps showing

changes in variables with risk scores. The horizontal axis represents patient
numbers, ranked from lowest to highest risk score; the vertical axis shows

patients’ risk scores, DFS, and variables included in the model. (C, D).
Calibration curves for the (C) Cox regression model, and (D) LASSO
regression model at the optimal calibration time point of 140 days,

displaying predicted vs. actual survival status. Every 50 patients were
grouped and resampled 1000 times. (E, F). Nomograms for the (E) Cox

regression model, and (F) LASSO regression model, based on patients’ risk
scores, showing total scores and the probability of 1-year, 2-year, and 3-

year DFS.

SUPPLEMENTARY FIGURE 2

Discrimination Evaluation of the Cox and LASSO regression models. (A, B).
The survival curves plotted based on the optimal cutoff values of 1.445, and

-0.197 for the (A) Cox regression model, (B) LASSO regression model,
respectively. (C, D). The ROC curves for the (C) Cox regression model, and

(D) LASSO regression model at 1-, 2-, 3-year disease-free survival time points,
respectively. (E, F) PRC curves for the normalized risk scores of the (E) Cox
regression model, and (F) LASSO regression, respectively. G-H. Confusion

matrices for the (G) Cox, and (H) LASSO regression models, created based on
the patients’ risk groups and their actual recurrence or death outcomes.
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