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Objective: There is a paucity of research using different machine learning

algorithms for distinguishing between adrenal metastases and benign tumors

in lung cancer patients with adrenal indeterminate nodules based on plain and

biphasic-enhanced CT radiomics.

Materials and Methods: This study retrospectively enrolled 292 lung cancer

patients with adrenal indeterminate nodules (training dataset, 205 (benign, 96;

metastases, 109); testing dataset, 87 (benign, 42; metastases, 45)). Radiomics

features were extracted from the plain, arterial, and portal CT images,

respectively. The independent risk radiomics features selected by least

absolute shrinkage and selection operator (LASSO) and multivariate logistic

regression (LR) were used to construct the single-phase and combined-phase

radiomics models, respectively, by support vector machine (SVM), decision tree

(DT), random forest (RF), and LR. The independent clinical-pathological and

radiological risk factors for predicting adrenal metastases selected by using

univariate and multivariate LR were used to develop the traditional model. The

optimal model was selected by ROC curve, and the models’ clinical values were

estimated by decision curve analysis (DCA).

Results: In the testing dataset, all SVM radiomics models showed the best

robustness and efficiency, and then RF, LR, and DT models. The combined

radiomics model had the best ability in predicting adrenal metastases

(AUC=0.938), and then the plain (AUC=0.935), arterial (AUC=0.870), and portal

radiomics model (AUC=0.851). Besides, compared to clinical-pathological-

radiological model (AUC=0.870), the discriminatory capability of the plain and

combined radiomics model were further improved. All radiomics models had
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Abbreviations: LASSO, Least absolute shrinkage and se

Receiver operating characteristic; AUC, Area under

characteristic curve; DCA, Decision curve analysis; LD

Volume of interest; CI, Confidence interval; ROI, Region

class correlation coefficient; LR, Logistic regression;

machine; DT, Decision tree; RF, Random forest.
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good calibration curves and DCA showed the plain and combined radiomics

models had more optimal clinical efficacy compared to other models, with the

combined radiomics model having the largest net benefit.

Conclusions: The combined SVM radiomics model can non-invasively and

efficiently predict adrenal metastatic nodules in lung cancer patients. In

addition, the plain radiomics model with high predictive performance provides

a convenient and accurate new method for patients with contraindications in

enhanced CT.
KEYWORDS

adrenal indeterminate nodules, radiomics, different machine learning algorithms,
adrenal metastases, lung cancer
1 Introduction

Lung cancer is one of the leading causes of cancer-related deaths

worldwide, and early diagnosis, precise staging, and personalized

treatment have consistently been the focus of medical research (1–

3). The high mortality rate may be associated with the development

of metastasis, and the adrenal glands is a frequent site of metastatic

spread (4). Adrenal metastasis is the second most common tumor

after adrenal adenoma and also the most common malignancy of

the adrenal gland (5). The most common primary malignant

tumors of adrenal metastasis are lung cancer (39%), and then

breast cancer (35%), malignant melanoma and so on (6, 7). With

the widespread application of CT, MRI, and 18F-FDG PET/CT in

the diagnosis, staging, and follow-up of malignant tumors, adrenal

metastases are increasingly discovered incidentally (8). While

approximately 50% of incidentalomas were metastases in lung

cancer patients (9). The presence of adrenal metastasis influences

the treatment of lung cancer, and further evaluation is usually

required, especially in lung cancer patients with no other sites of

metastases except for the adrenal gland. Thus, precise qualitative

diagnosis of adrenal incidentalomas in lung cancer patients during

staging or follow-up is crucial for guiding treatment and

predicting prognosis.

Based on clinical symptoms, endocrine function tests, and typical

imaging features, many patients can obtain a specific diagnosis of

adrenal lesions. However, when adrenal incidentalomas are solitary,

nonfunctioning, hyperattenuating (plain CT values>10HU) nodules

(long diameter(LD) ≤ 3cm) (10, 11), immediately making an accurate

diagnosis of metastatic nodules based on initial abdominal or chest
lection operator; ROC,

the receiver operating

, Long diameter; VOI,

of interest; ICC, Intra-

SVM, Support vector
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biphasic-enhanced CT without additional diagnostic steps remains a

challenge and focus for clinicians and radiologists, especially in lung

cancer patients. Although the absolute washout rate ≥ 60% and the

relative washout rate ≥ 40% used for characterizing of adrenal lesions

have high specificity, sensitivity, and accuracy (12, 13). However, it is

sometimes not possible to accurately differentiate adrenal benign

nodules from metastases due to the overlap of absolute/relative

washout rates, especially for hyperattenuating nodules (14, 15).

Moreover, adrenal washout CT has certain drawbacks, such as the

15 min delayed scan is difficult to implement in daily work due to the

large number of patients, the additional radiation dose and medical

cost. As the most sensitive examination, the sensitivity of chemical-

shift MR for hyperattenuating adenoma was only 67%. Especially for

lesions with plain CT values greater than 30 HU, it is difficult to

distinguish them from malignant tumors such as metastases (16–18).

In addition, MRI examination is time-consuming, and some patients

have contraindications for MRI examination. For PET/CT, there is a

certain overlap in (18F) - fluorodeoxyglucose uptake between benign

lesions and metastatic tumors (19). Additionally, PET/CT will result

in greater financial and time costs for the patient. In order to achieve

differential diagnosis of adrenal indeterminate nodules in lung cancer

patients, invasive diagnostic methods such as biopsy would be chosen

by most doctors. However, it may be necessary to take multiple

samples from the tumor to determine its nature due to the

heterogeneity (such as necrosis, bleeding, and calcification),

especially larger tumors (20). In addition, it is sometimes difficult

to obtain sufficient samples through puncture due to the hidden

location of the adrenal gland (21). Lastly, biopsy may lead to

unnecessary anxiety, overtreatment, and some complications

in patients (22).

Therefore, radiologists and clinicians encounter a real dilemma

that needs to be addressed. In clinical practice, adrenal indeterminate

nodules are often identified when lung cancer patients undergo

routine chest or abdominal CT scans. Unfortunately, most patients

are subjected to additional examinations due to the challenges

associated with diagnosing adrenal metastatic nodules using
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traditional imaging techniques. Consequently, there is an urgent need

for an efficient, straightforward, and non-invasive method to predict

adrenal metastases in lung cancer patients with adrenal indeterminate

nodules based on initial biphasic-enhanced CT.

Although Cao et al. (23) suggested the diagnostic model based on

traditional biphasic-enhanced CT imaging features could effectively

predict adrenal metastases in lung cancer patients with adrenal

indeterminate tumors. However, these traditional imaging features

are assessed by radiologists with the naked eye, and the subjective

influence of personal clinical experience is the main limitation of this

study. As an advanced image analysis technology, Radiomics can

non-invasively and objectively evaluate the heterogeneity and

biological characteristics of tumors, thereby partially addressing the

limitations of traditional medical imaging (24–26). Recent researches

have demonstrated that CT radiomics has good differential diagnostic

ability for adrenal lesions, particularly in distinguishing between

benign and malignant tumors (27, 28). Furthermore, Moawad et al.

(29) have indicated that a radiomics model established by random

forest (RF) based on plain CT images showed good diagnostic

performance for adrenal indeterminate tumors. However, a

previous study found that certain texture features had limited

utility, with a maximum AUC of 0.69, in differentiating adrenal

metastases from benign tumors when using portal CT images in lung

cancer patients (30). Moreover, most of these studies have primarily

focused on the differential diagnostic value of a limited set of

radiomics features derived from single-phase CT scans with

relatively small sample sizes. Additionally, research specifically

addressing “adrenal indeterminate nodules in lung cancer patients”

remains scarce. Most importantly, the reliability, efficacy, and high

accuracy of predictive models are critical factors in facilitating the

success of radiomics (31). Therefore, a robust radiomics study should

evaluate the differential diagnostic efficacy of models based on various

machine learning algorithms to identify the optimal model (32). To
Frontiers in Oncology 03
our knowledge, there is a paucity of research exploring the optimal

individualized model for accurately predicting adrenal metastatic

nodules in lung cancer patients with indeterminate nodules based

on a large sample size, multi-phase CT radiomic features, various

machine learning algorithms, and comparison of diagnostic

performance between radiologists and radiomics models. Such a

comparison is crucial for validating the effectiveness of the

radiomic models; only when the diagnostic performance of these

models surpasses that of the radiologists can the advantages of

radiomics be conclusively demonstrated.

Therefore, we chose different machine learning algorithms to

develop and explore the simplest and most optimal personalized

radiomics model for predicting adrenal metastases in lung cancer

patients with adrenal indeterminate nodules based on initial biphasic-

enhanced CT, promoting the implementation of precision medicine.

The study design and pipeline are shown as Figure 1.
2 Materials and methods

2.1 Patients

Tangshan People’s Hospital Institutional Ethics Committee

approved this retrospective study and the written informed

consent was obtained from each patient. The patient enrollment

pathway is shown in Figure 2. From February 2015 to August 2023,

patients histologically confirmed lung cancer, underwent

abdominal or chest biphasic-enhanced CT, and with complete

clinical-pathological and imaging information and adrenal

indeterminate tumors: unilateral hyperattenuating (plain CT

values > 10 HU) nodules (1 cm ≤ LD ≤ 3 cm) were included. The

primary reasons for using biphasic-enhanced CT were: (a) lung

cancer patients often accidentally discovered adrenal tumors during
FIGURE 1

The overall workflow of the development and validation of the models.
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chest biphasic-enhanced CT. If the initial chest biphasic-enhanced

CT can effectively distinguish between adrenal metastases and

benign tumors, it can avoid the economic burden and radiation

exposure associated with additional adrenal or abdominal enhanced

CT examinations. Consequently, to standardize the inclusion

criteria, we also included abdominal biphasic-enhanced CT

images, excluding the delay phase. (b) previous studies have

demonstrated that biphasic-enhanced CT is adequate for effective

differential diagnosis of adrenal tumors (23). The main reasons for

using 1cm LD as the cut-off value were: (a) allowing sufficient

nodule volume for reliable quantitative measurement and (b)

increasing confidence in the presence of a truly focal adrenal

nodule. Additionally, patients without good image quality and

imaging follow-up, or those diagnosed pathologically with cortical

cancer or pheochromocytoma were excluded. Finally, 154 patients

were included in the metastases group and the inclusion criteria

were: (1) histologically confirmed (n =46), (2) during lung cancer

treatment, the volume of adrenal nodules in the same patient

increased or decreased by 20% within 6 months (33) (n = 70),

and (3) newly developed adrenal lesions during follow-up (n = 38).

138 patients conformed to the inclusion criteria for benign tumors:

(1) histologically confirmed (n = 89) and (2) during lung cancer

treatment, the size of adrenal nodules did not change at least 1year
Frontiers in Oncology 04
interval (34) (n = 49). To test the performance of the diagnostic

model, we randomly assigned patients to the training dataset

(n = 205; 96 benign nodules, 109 metastases) and testing dataset

(n = 87; 42 benign nodules, 45 metastases) at a 7:3 ratio.
2.2 Image protocol

This research employed two CT scanners (GE Discovery CT 750

HD and Philips Ingenuity core 64) owing to retrospective analysis. All

patients first undergone abdominal or chest plain CT scan, followed

by intravenous injection of 80-100 ml of nonionic iodinated contrast

agent (350 mg I/ml) at a rate of 3.5 ml/s using a power injector. Then

arterial (approximately 25-30 s) and portal (approximately 60-70 s)

biphasic-enhanced CT scans were performed. The scanning

parameters of the Philips Ingenuity core 64 were as follows:

automatic tube current modulation,120 kV, matrix of 512 × 512,

standard soft tissue window, 2 mm slice thickness and 2 mm slice

interval, no reconstruction. The scanning parameters of the GE

Discovery CT 750 HD were as follows: automatic tube current

modulation,120 kV, matrix of 512 × 512, standard soft tissue

window, 5 mm slice thickness and 5 mm slice interval, and

reconstruction 1.25 mm slice thickness and 1.25 mm slice interval.
FIGURE 2

The process of dataset establishment, short time: within 6 months.
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2.3 Traditional clinical-pathological-
radiological model

Two radiologists with 4 and 8 years of abdominal CT experience

evaluated the baseline clinical-pathological and radiological features,

respectively. When there was a disagreement, a consensus was

reached through discussion. The clinical-pathological and

radiological features included gender, age, clinical stage and

histological type of lung cancer, and the size, shape, location, CT

values, cystic degeneration/necrosis, peak enhancement phase and

enhanced ratio of adrenal nodules. The traditional clinical-

pathological-radiological model was constructed based on the

independent risk factors for predicting adrenal metastases screened

by univariate logistic regression (LR) and multivariate LR.
2.4 Radiomics feature extraction
and selection

The volume of interests (VOIs) of adrenal nodules were

delineated by two radiologists with 4 and 7 years of experience in

using 3D Slicer (version 4.13.0, https://www.slicer.org) based on CT

images from each phase (including unenhanced, arterial and

portal), respectively. VOIs should encompass as much lesion as

possible, while being careful to avoid extratumoral structures

(Figure 3A). An open-source software (PyRadiomics, version

2.2.0) was used to process and extract radiomics features, which

could provide standardized algorithms to improve data

reproducibility. The calculations of radiomics features can be

performed on the original or pre-processed images using wavelet

and Laplacian of Gaussian filter. Radiomics features were extracted

from the VOIs of adrenal indeterminate nodules (Figure 3B),

including shape features, first-order features, second-order

features (texture features), and higher-order features. Based on

randomly selected 40 patients in each phase images, intra-class

correlation coefficients (ICCs) were used to evaluate the

interobserver reproducibility of feature extraction, respectively.

ICC<0.5 meaned low consistency, 0.5-0.79 middle, and ≥ 0.8

high. Finally, the radiomics characteristics with good stability

(ICC≥ 0.8) were used for subsequent analysis (Figure 3C). The

dimensionality and redundancy of radiomics features was reduced

by using the least absolute shrinkage and selection operator

(LASSO) in the training dataset. The value of the penalty

parameter lambda (l) was selected through fivefold cross-

validation to maintain the model’s loss within one standard error

of the minimum (Figures 3D, E). Lastly, useful radiomics features

with non-zero coefficients were selected from the plain, arterial, and

portal CT images, respectively.
2.5 Radiomics models construction
and validation

The useful features with high collinearity in the plain, arterial,

and portal phases were deleted, respectively, and then the

independent risk features were screened by using multivariate LR.
Frontiers in Oncology 05
In order to select the classifier model with the highest recognition of

adrenal metastasis data, single-phase and combined-phase

radiomics models were constructed and validated by using four

machine learning algorithms, including decision tree(DT), logistic

regression (LR), random forest (RF), and support vector machine

(SVM). In addition, a clinical-pathological-radiomics model was

developed by incorporating combined radiomics and the

independent risk factors of clinical-pathology. Area under the

receiver operating characteristic(ROC) curve(AUC), sensitivity,

and specificity were used to evaluate the performance of the

models in both the training and testing datasets. The comparison

of AUCs between models was achieved through DeLong analysis,

and the clinical value of each model was evaluated through decision

curve analysis (DCA). Then, the best optimal personalized

radiomics model was selected.
2.6 Statistical analysis

Statistical analysis and model construction were implemented

by R software (version 4.2.1, http://www.rproject.org). The

differences of categorical variables between two groups were

compared using Fisher’s exact test or chi square. The differences

of level variables such as clinical staging of lung cancer between two

groups were compared using rank sum test. The differences of

continuous variables between two groups were compared using

Mann Whitney U-test. ICC and Kappa coefficients were used to

evaluate the inter-observer reproducibility of the clinical-

pathological and imaging features. Highly collinear variables

(correlation coefficient>0.7) were automatically found using the

“caret” package and then were deleted. LASSO was implemented

using the “glmnet” package. The independent risk factors were

screened using LR (“rms” package). The “rms” package “, “e1071”

package “, “randomForest” package “, and “rpart” package “ were

used to implement LR, SVM, RF, and DT algorithms, respectively.

The “repoertROC” package was used to extract parameters for each

ROC, including AUC (95% confidence interval (CI)), specificity,

and sensitivity. The “caret” package was used to create a confusion

matrix and extract parameters including precision, recall and F1

score. The “pROC” package was used to implement Delong test.

The “ggplot2” package was used to draw calibration and decision

curves. P value < 0.05 was statistically significant.
3 Results

3.1 Clinical-pathological-
radiological model

Two diagnostic physicians showed good consistency in the

analysis of each traditional clinical-pathological and radiological

characteristics of biphasic-enhanced CT (Supplementary Table S1).

There was no significant difference in parameters between the

testing and training datasets (P>0.05), indicating the random

grouping of total data was reasonable (Table 1). Age, gender,

clinical stage and histological type of lung cancer, plain CT value,
frontiersin.org
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arterial enhancement rate, portal enhancement rate, and peak

enhancement phase were all statistically significant between the

two groups both in the training and testing datasets (P<0.05)

(Table 1). Only arterial enhancement rate was remained for

subsequent analysis due to high collinearity between arterial

enhancement rate and portal enhancement rate (Supplementary
Frontiers in Oncology 06
Figure S1). And then gender, age, clinical stage of lung cancer, plain

CT value, and peak enhancement phase were independent risk

factors for predicting adrenal metastases screened by multivariate

LR (Supplementary Table S2). The clinical-pathological-

radiological model constructed by above five risk factors showed

an AUC of 0.918 [95% CI: 0.879-0.958], a sensitivity of 0.864, a
FIGURE 3

Delineation of VOI and selection of radiomics features: (A) Delineation of intratumoral region in the plain CT images. (B) Three dimensional VOI of
adrenal tumors. (C) ICC distribution of the plain CT phase. (D) Binomial error graph of LASSO. (E) Coefficients path diagram of LASSO. VOI, volume
of interest; ICC, intra-class correlation coefficient; LASSO, least absolute shrinkage and selection operator.
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TABLE 1 Clinical-pathological and radiological features of all the patients.

Parameters Training dataset (n=205)

P value

Testing dataset (n=87)

P value P+ valueBenign
(n=96)

Metastases
(n=109)

Benign
(n=42)

Metastases
(n=45)

Age(year) 58.0[48.0;64.0] 61.0[55.0;66.0] 0.002 53.5[44.2;64.5] 62.0[55.0;67.0] 0.013 0.653

Gender <0.001 <0.001 0.826

Female 57(59.4%) 30(27.5%) 26(61.9%) 9(20.0%)

Male 39(40.6%) 79(72.5%) 16(38.1%) 36(80.0%)

Long diameter (cm) 1.90[1.30;2.40] 1.90[1.50;2.30] 0.885 1.80[1.30;2.40] 2.20[1.50;2.70] 0.119 0.626

Short diameter (cm) 1.50[1.20;1.90] 1.40[1.20;1.90] 0.498 1.40[1.10;1.80] 1.60[1.20;2.00] 0.185 0.988

Location 0.293 0.072 0.834

Left 65(67.7%) 65(59.6%) 32(76.2%) 25(55.6%)

Right 31(32.3%) 44(40.4%) 10(23.8%) 20(44.4%)

Shape 0.176 0.120 0.421

Regular 90(93.7%) 95(87.2%) 39(92.9%) 36(80.0%)

Irregular 6(6.3%) 14(12.8%) 3(7.1%) 9(20.0%)

Calcification 0.624 1.000 1.000

No 95(98.9%) 106(97.3%) 41(97.6%) 44(97.8%)

Yes 1(1.1%) 3(2.7%) 1(2.4%) 1(2.2%)

Cystic degeneration/
necrosis

0.148 0.143 0.736

No 84(87.5%) 86(78.9%) 37(88.1%) 33(73.3%)

Yes 12(12.5%) 23(21.1%) 5(11.9%) 12(26.7%)

Plain CT value (HU) 25.00[20.00;31.20] 37.00[32.00;42.00] <0.001 26.00[19.00;36.80] 38.00[32.00;42.00] <0.001 0.549

Arterial CT value (HU) 66.00[52.00;80.20] 64.00[53.00;77.00] 0.925 61.00[51.20;87.80] 63.00[50.00;74.00] 0.437 0.428

Portal CT value (HU) 73.50[60.00;86.20] 74.00[61.00;87.00] 0.611 77.50[63.50;95.80] 70.00[60.00;82.00] 0.103 0.959

Arterial enhancement rate 1.49[0.92;2.15] 0.69 [0.43;1.12] <0.001 1.44[1.02;2.00] 0.57[0.43;0.81] <0.001 0.431

Portal enhancement rate 1.87[1.16;2.58] 0.89[0.71;1.39] <0.001 1.82[1.27;2.86] 0.79[0.65;1.03] <0.001 0.468

Peak enhancement phase <0.001 <0.001 0.639

Arterial phase 23(23.9%) 3(2.7%) 9(21.4%) 1(2.2%)

Portal phase 54(56.3%) 66(60.6%) 29(69.1%) 27(60.0%)

Equally enhanced 19(19.8%) 40(36.7%) 4(9.5%) 17(37.8%)

Clinical staging of
lung cancer

<0.001 <0.001 0.463

I 15(15.6%) 2(1.8%) 10(23.8%) 1(2.2%)

II 24(25.0%) 6(5.5%) 6(14.3%) 2(4.4%)

III 33(34.4%) 42(38.5%) 16(38.1 %) 16(35.6%)

IV 24(25.0%) 59(54.2%) 10(23.8 %) 26(57.8%)

Histological types of
lung cancer

<0.001 0.006 0.335

Small cell 7(7.3%) 35(32.1%) 5(11.9%) 18(40.0%)

Non small-cell 89(92.7%) 74(67.9%) 37(88.1%) 27(60.0%)
F
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The bold values indicate the statistically significant parameters.
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specificity of 0.844, and an accuracy of 0.854 in the training dataset,

respectively; While the AUC, sensitivity, specificity, and accuracy

were 0.883 [95% CI: 0.804-0.962], 0.822, 0.905, and 0.862 in the

testing dataset, respectively (Figure 4).
3.2 Single-phase radiomics models using
different machine learning algorithms

A total of 1316 radiomics features were extracted from the plain,

arterial, and portal CT images, respectively. 1088 plain features, 1012

arterial features, and 983 portal features with ICC ≥ 0.8, respectively,

were used for subsequent analysis. And the average ICCs of the plain

features, arterial features, and portal features were 0.909, 0.889, and

0.881, respectively. A total of 22 plain features, 10 arterial features,

and 13 portal features were selected using LASSO, respectively, and

then features with high collinearity were all deleted. Finally, 5 plain

radiomics predictors, 4 arterial radiomics predictors, and 4 portal

radiomics predictors were selected by multivariate LR, respectively

(Table 2). The correlation coefficients between the independent risk

radiomics features of each phase were all relatively low

(Supplementary Figures S2A–C). Table 3 showed the ROCs of

different machine learning radiomics models (including SVM, RF,

LR, and DT) both in the testing and training datasets. The SVM

models of each phase all showed the best performance in predicting

adrenal metastases of lung cancer in the testing dataset, with AUC

values ranging from 0.851 to 0.938, and then the RF models, LR

models, and DT models (Table 3; Figures 5A–C). In the testing

dataset, the four machine learning models of each phase all showed

good calibration curves (Figures 6A–C), and DCA showed they all

had high clinical net benefits (Figures 7A–C).
3.3 Combined-phase radiomics models
using different machine learning algorithms

The independent risk factors of the combined radiomics model

were identified by multivariate LR based on the radiomics
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predictors of each phase in the training dataset. Finally, 5 plain

radiomics features and 2 arterial radiomics features were

incorporated into the combined radiomics model and correlation

coefficients between the independent risk features were relatively

low (Table 2; Supplementary Figure S2D). Table 3 showed the

ROCs of four radiomics models both in the testing and training

datasets. The SVM model showed the best performance in

predicting adrenal metastases of lung cancer in the testing

dataset, achieving an AUC of 0.938, along with specificity,

sensitivity, precision, recall, and F1 score values of 0.911, 0.857,

0.872, 0.911, and 0.891, respectively, and then the RF model, LR

model, and DT model (Table 3; Figure 5D). Additionally, the

Delong test indicated that the AUC of the SVM model was

significantly greater than that of the DT model; however, no

significant differences were observed between the SVM model and

the RF or LR models (Supplementary Table S3). In the testing

dataset, the four machine learning models all showed good

calibration curves (Figure 6D), and DCA showed they all had

high clinical net benefits (Figure 7D).
3.4 Clinical-pathological-radiomics model

The independent risk factors of the clinical-pathological-radiomics

model were identified by multivariate LR based on the radiomics

predictors of each phase and the clinical-pathological predictors

(gender, age, and clinical stage of lung cancer) in the training dataset.

Finally, the clinical-pathological features were excluded and only the

combined radiomics features were included in the clinical-pathological-

radiomics model. Therefore, the clinical-pathological-radiomics model

was ultimately equivalent to the combined radiomics model.
3.5 Comparison of the radiomics models

In order to ensure the sustainability and stability of radiomic

models, we chose SVM models to uniformly assess the predictive

performance of different radiomics models (Figure 8A). The
FIGURE 4

ROCs of clinical-pathological-radiological model in the training dataset (A) and testing dataset (B). ROC, receiver operating characteristic.
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predictive performance of the combined radiomics model

(AUC=0.938) was highest, and then the plain radiomics model

(AUC=0.935), arterial radiomics model (AUC=0.870), and portal

radiomics model (AUC=0.851) in the testing dataset (Table 4). In

addition, compared with the clinical-pathological-radiological

model (AUC=0.870), the diagnostic ability of the combined

radiomics model was further improved, but there was no

significant difference between the two models. All the radiomics

models had good calibration curves in the testing dataset

(Figure 8B). DCA showed that the area under the curves of the

plain and combined radiomics models were relatively larger than
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other models, and the combined radiomics model had the greatest

net benefit in the probability of low risk threshold (about 0-0.8) for

the testing dataset (Figure 8C).
4 Discussion

Our study developed four radiomics models and a traditional

clinical-pathological-imaging model for predicting adrenal

metastatic nodules in lung cancer patients using four different

machine learning algorithms based on biphasic-enhanced CT.
TABLE 3 Comparison of diagnostic efficacy for the four classification models based on different CT phase.

CT phase algorithm Training dataset Testing dataset

AUC(95%CI) sensitivity specificity AUC(95%CI) sensitivity specificity precision recall F1 score

Plain phase LR 0.978(0.963-0.993) 0.963 0.896 0.923(0.870-0.975) 0.911 0.833 0.854 0.911 0.882

SVM 0.977(0.961-0.992) 0.908 0.938 0.935(0.888-0.983) 0.867 0.881 0.886 0.867 0.876

RF 0.989(0.975-1.000) 0.982 0.958 0.929(0.875-0.983) 0.911 0.905 0.911 0.911 0.911

DT 0.905(0.864-0.946) 0.868 0.899 0.808(0.715-0.900) 0.767 0.864 0.846 0.767 0.805

Arterial
phase

LR 0.909(0.870-0.948) 0.899 0.760 0.841(0.748-0.934) 0.911 0.786 0.820 0.911 0.863

SVM 0.928(0.896-0.961) 0.862 0.865 0.870(0.788-0.952) 0.822 0.857 0.861 0.822 0.841

RF 0.978(0.961-0.995) 0.853 0.990 0.867(0.795-0.939) 0.791 0.7864 0.850 0.791 0.819

DT 0.911(0.871-0.952) 0.901 0.883 0.813(0.726-0.900) 0.930 0.727 0.769 0.930 0.842

Portal
phase

LR 0.903(0.864-0.943) 0.752 0.896 0.849(0.768-0.930) 0.867 0.738 0.780 0.867 0.821

SVM 0.909(0.871-0.947) 0.908 0.750 0.851(0.769-0.933) 0.800 0.810 0.818 0.80 0.809

RF 0.967(0.946-0.987) 0.817 0.979 0.818(0.732-0.905) 0.686 0.889 0.897 0.686 0.778

DT 0.867(0.818-0.916) 0.891 0.832 0.781(0.688-0.873) 0.809 0.750 0.792 0.809 0.800

Combined
phase

LR 0.993(0.986-1.000) 0.972 0.969 0.924(0.870-0.979) 0.867 0.881 0.886 0.867 0.876

SVM 0.992(0.983-1.000) 0.972 0.958 0.938(0.890-0.958) 0.911 0.857 0.872 0.911 0.891

RF 0.995(0.991-1.000) 0.954 1.000 0.930(0.887-0.974) 0.745 1.000 1.000 0.745 0.854

DT 0.906(0.867-0.945) 0.963 0.833 0.808(0.716-0.899) 0.841 0.841 0.822 0.841 0.832
fron
AUC, area under the receiver operating characteristic curve; CI, confidence interval; LR, logistic regression; SVM, support vector machine; RF, random forest; DT, decision tree.
The bold values indicated the SVM models of single-phase and combined-phase all showed the best performance in the testing dataset.
TABLE 2 Selected radiomics features in the plain, artial, portal, and combined radiomics models.

Plain radiomics model Artial radiomics model Portal radiomics model Combined radiomics
model

Original shape Elongation Original shape Flatness Original shape Flatness #Original shape Elongation

wavelet-LLH glcm Idn log-sigma-5-0-mm-3D
firstorder InterquartileRange

log-sigma-3-0-mm-3D
glszm LowGrayLevelZoneEmphasis

#wavelet-LLH glcm Idn

wavelet-LLH
glcm DependenceEntropy

wavelet-LLH firstorder 90Percentile log-sigma-4-0-mm-3D
gldm SmallDependenceHighGrayLevelEmphasis

#wavelet-LLH
glcm DependenceEntropy

wavelet-LHH
glszm
SmallAreaLowGrayLevelEmphasis

wavelet-LLH glcm Imc1 wavelet-LLH
glszm GrayLevelNonUniformityNormalized

#wavelet-LHH
glszm
SmallAreaLowGrayLevelEmphasis

wavelet-LLL firstorder Median #wavelet-LLL firstorder Median

*Original shape Flatness

*wavelet-LLH glcm Imc1
# The plain radiomics features, * The arterial radiomics features.
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Our results suggested SVM was the most optimal algorithm for the

qualitative diagnosis of adrenal indeterminate nodules in lung

cancer patients. Among all single-phase radiomics models, the

plain radiomics model had the highest discriminative diagnostic

performance, while the performance of combined radiomics model

(including 5 plain and 2 arterial radiomics features) was further

improved compared to all single-phase radiomics models and

clinical-pathological-imaging model. Radiomics may provide a

reliable and non-invasive method for evaluating adrenal

indeterminate nodules in lung cancer patients.

In recent years, radiomics and machine learning have been

already widely used for diagnosis, staging, and prognosis of tumors

(35–37). Moreover, the application of radiomic analysis has been

expanding within the field of adrenal lesions research. Our study

has filled a gap in the literature on lung cancer patients with adrenal

indeterminate nodules in the setting of CT radiomics. Ho et al. (27)

found that 18 enhanced CT texture features and 9 plain CT texture

features showed significant differences in distinguishing adrenal

malignant and benign lesions, with an average AUC value of 0.80.

However, this study analyzed only 21 second-order features and

had a small sample size of just 20 patients. Winkelmann et al. (28)
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suggested that radiomics features derived from portal dual-energy

CT could effectively distinguish between adrenal adenomas and

metastases, reporting AUC values ranging from 0.89 to 0.93.

Nonetheless, this study included only 32 adenomas and 17

metastases, and did not exclude lipid-rich adenomas. In contrast

to these studies, our research focused specifically on adrenal

indeterminate nodules in lung cancer patients to effectively

predict metastases. The previous studies examined all adrenal

tumors without considering tumor size and plain CT value and

were not restricted to lung cancer patients. Additionally, our study

had the advantage of a larger sample size encompassing all

radiomics features, while the aforementioned studies had

relatively small cohorts and assessed only partial radiomics

features. Although Andersen et al. (30) concentrated on lung

cancer patients, their study was not restricted to adrenal

indeterminate nodules. And they found that the diagnostic model

developed using LR based on portal CT images had limited value

(the maximum AUC of 0.69) in distinguishing adrenal metastases

from benign tumors. In contrast, Moawad et al. (29) focused

exclusively on adrenal indeterminate tumors (LD <4cm, plain CT

value >10HU, and absolute washout rate <60%), but their study was
FIGURE 5

ROCs of four machine learning models in the testing dataset with different phases: (A), plain phase; (B), artial phase; (C), portal phase; (D), combined
phase. ROC, receiver operating characteristic.
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not limited to lung cancer patients. And they reported that the

radiomics model established using RF based on plain CT texture

features demonstrated good diagnostic performance (AUC = 0.85),

with a specificity of 71.4% and a sensitivity of 84.2%. In addition,

our study had the advantage of analyzing multi-phase CT radiomic

features using various machine learning algorithms, while the

previous studies employed single-phase CT radiomics with only

one machine learning algorithm.

SVM, LR, RF, and DT are currently the most commonly used

machine learning algorithms in radiomics (32, 38, 39). No one can

be applicable to every medical problem among numerous

algorithms. Therefore, for specific medical problem, it is necessary

to compare the performance of models constructed by different

machine learning algorithms in order to explore the best machine

learning algorithm (32, 40). This study constructed different

radiomics models using four algorithms (including SVM, LR, RF,

and DT) based on enhanced CT. Our results showed SVM

radiomics models of each single and combined phase had the best

predictive performance in the testing dataset (AUC: 0.870-0.938),

which was higher than LR model, RF model, and DT model. This

indicated that SVM was the optimal algorithm for qualitative
Frontiers in Oncology 11
diagnosis of adrenal indeterminate tumors in lung cancer patients

in our study, and SVM could be the preferred algorithm for future

radiomics research on adrenal metastatic nodules. SVM is a

nonlinear machine learning algorithm with the strongest

generalization ability for the unknown data, which can solve

high-dimensional, nonlinear, and small sample problems. It is a

relatively mature machine learning algorithm (41). SVM has

satisfactory stability and effectiveness, and the performance of

models trained with small samples is almost the same as that of

models trained with large samples (42, 43). The diagnostic ability of

LR models were lower than that of SVMmodels, suggesting that the

data of adrenal indeterminate tumors may be nonlinear or linearly

indivisible. Therefore, LR models based on linear algorithms were

not as effective as nonlinear SVM models (32). In addition, our

study found that the radiomics model constructed by RF and DT

algorithms had significantly higher AUC values in the training

dataset (AUCRF range: 0.967-0.995; AUCDT range: 0.867-0.911)

than in the testing dataset (AUCRF range: 0.818-0.930; AUCDT

range: 0.781-0813), indicating the poor generalization ability of this

models. This results suggested that models constructed by RF and

DT algorithms for predicting adrenal metastatic nodules in lung
FIGURE 6

Calibration curves of four machine learning models in the testing dataset with different phases: (A), plain phase; (B), artial phase; (C), portal phase;
(D), combined phase.
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cancer may exist a certain degree of overfitting, which had adverse

effects on the diagnostic ability of radiomics models. This issue may

be attributed to the small sample size of this study (32, 44).

The differential diagnostic efficacy of the single-phase and

combined radiomics models based on the optimal algorithm SVM

were further comparative analysis. This research found that the

combined radiomics model included 5 plain radiomics features and

2 arterial radiomics features had the highest predictive performance

for adrenal metastatic nodules of lung cancer in the testing dataset,

with an AUC value of 0.938. This performance surpassed previous

research results, which reported AUC values ranging from 0.69 to

0.93 (27–30). This results indicated that only the plain and arterial

CT images from the initial chest or abdomen enhanced CT could

reliably distinguish adrenal metastatic nodules and benign nodules

in lung cancer patients by utilizing radiomics, effectively avoiding

the psychological and economic pressure, and additional radiation

hazards caused by unnecessary further examinations, and

promoting the effective formulation of individual treatment

programs. Besides, compared to 15-min delayed scan of adrenal

washout CT, arterial single phase enhanced CT scan has a shorter

scanning time and is easier to be widely applied. As a result, we
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boldly assume that 15-min delayed scan has the potential to be

replaced by the arterial phase. However, this conclusion still needs

further validation. A further point for concern was that the plain

SVM radiomics model had the highest predictive performance in

the testing dataset (AUC=0.935) among all the single phase

radiomics models, slightly lower than the combined radiomics

model (△ AUC=0.003). And the plain radiomics features had

the greatest contribution to the combined radiomics model. This

results suggested that the plain CT images may have the potential to

better reflect the heterogeneity of adrenal metastatic nodules. We

speculated that intra-tumoral heterogeneity may be masked by

contrast agents because the blood supply of benign and metastatic

adrenal nodules is relatively abundant. Feliciani (45) and Zhang

(46) showed that the radiomics model based on plain CT could

efficiently distinguish adrenal lipid-poor adenoma from other

tumors (average AUCFeliciani=0.93, AUCZhang=0.93), indicating

that plain CT radiomics features were important markers of

heterogeneity in adrenal tumors, which was consistent with our

study. Therefore, for the high-risk population with potential risks

associated with contrast agents (such as diabetes, renal insufficiency,

elderly and children), the plain radiomics model is undoubtedly the
FIGURE 7

DCAs of four machine learning models in the testing dataset with different phases: (A), plain phase; (B), artial phase; (C), portal phase; (D), combined
phase. DCA, decision curve analysis.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1411214
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Cao et al. 10.3389/fonc.2024.1411214
best method for safe, economical, and effective prediction of adrenal

metastatic nodules in lung cancer patients.

To sum up, our findings may hold significant value for clinical

practice. The primary objective of imaging in lung cancer patients

with an adrenal indeterminate nodule is to differentiate between a

metastatic lesion and a benign tumor. Our study has yielded very

encouraging results, suggesting that further examinations may not

be necessary. A plain CT scan or biphasic-enhanced CT is more

readily available, offers reliable image quality, and is less expensive

and time-consuming compared to adrenal contrast-enhanced CT or

other imaging modalities such as MRI and PET/CT. More

importantly, the initial CT images already acquired for clinical

purposes may suffice for radiologists and clinicians to make

accurate diagnoses based on this study. Consequently, our results

could be swiftly integrated into clinical practice.

The radiomics characteristics have tight relation with the

biological behavior and microstructure of lesions (47). The

combined radiomics model constructed in this study included a

total of 1 first-order statistical feature, 2 shape features, 1 gray level

size zone matrix feature, and 3 gray level co-occurrence matrix
Frontiers in Oncology 13
features. The first-order statistical features mainly reflect the

symmetry, uniformity, and local intensity distribution within the

tumor. Shape features, in simple terms, are used to describe

geometric features (48). The gray level size zone matrix features

and the gray level co-occurrence matrix features can both reflect the
FIGURE 8

Comparison of AUCs for different radiomics models using four machine learning algorithms (A); Calibration curves (B) and DCA (C) of different SVM
radiomics models in the testing dataset. AUC, area under the receiver operating characteristic curve; DCA, decision curve analysis; SVM, support
vector machine.
TABLE 4 Comparison of AUCs between different models in the
testing dataset.

Models AUC Z statistic P

Combined radiomics model vs
Plain radiomics model

0.938vs0.935 0.143 0.886

Combined radiomics model vs
Arterial radiomics model

0.938vs0.870 1.692 0.091

Combined radiomics model vs
Portal radiomics model

0.938vs0.851 2.424 0.015

Combined radiomics model vs
Clinical-pathological-
radiological model

0.938vs0.870 1.456 0.148
fro
AUC, area under the receiver operating characteristic curve.
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heterogeneity and complexity of tumors from a microscopic

perspective. The former mainly focuses on the texture,

complexity, and clarity of lesion images, while the latter mainly

focuses on the non-uniformity of grayscale levels and the variability

of size regions (49–52). On the other hand, the combined radiomics

model incorporated 5 wavelet transform features and 2 original

features, showing that the preprocessed image features are more

stable than the original image features (40).

There is another issue that requires our attention. As is well

known, traditional radiological features are evaluated by

radiologists using the naked eye, which can be subjectively

influenced by their personal clinical experience. Additionally,

radiologists tend to diagnose malignancy uncertain, relying on the

likelihood of malignancy in real-world scenarios. These factors

contribute to a certain degree of variability in radiological

features, ultimately affecting the accuracy of the results. Although

radiomics transforms traditional medical images into mineable data

for a deeper and more objective analysis of the potential

information within the images, inconsistencies may arise due to

variations in CT scanners, imaging protocols, and the delineation of

VOIs by different radiologists. Furthermore, the single-center and

retrospective nature of the study may introduce selection bias and

limit the generalizability of the results. To mitigate these issues, we

selected radiomic features with good stability and employed various

machine learning algorithms along with cross-validation. Our

developed model could assist less experienced physicians when

expert radiologists are absent or unavailable in resource-limited

hospitals. Additionally, this model could serve as a primary reader

for CT images of adrenal indeterminate nodules in lung cancer

patients, thereby reducing the workload for radiologists. When

significant differences are observed, it is essential to actively

monitor or perform biopsies to confirm the diagnosis, thus aiding

clinical practice in achieving precise staging of lung cancer and

promoting individualized treatment.

In addition, although clinical staging of lung cancer was an

independent risk factor of clinical-pathological features for

distinguishing between adrenal metastatic nodules and benign

nodules, the clinical-pathological-radiomics model did not include

any clinical-pathological features. It was speculated that this may be

related to a small sample size, a smaller contribution of clinical-

pathological features to the comprehensive model, and a lower

impact weight than radiomics features, which further confirmed the

advantages of radiomics. Previous studies also found that the predictive

performance of the comprehensive model may not be improved by

combining radiomics features with clinical-pathological features or

traditional imaging features (41, 53). However, this area warrants

further investigation. Integrating these significant clinical-pathological

features could potentially enhance the model’s diagnostic capability

and should be explored in future research.

There were several limitations in this study: Firstly, our study

was a single-center and retrospective analysis, which may lead to

selection bias and limit the generalizability of the results. A future

multi-center prospective study would provide a more diverse

patient population and help to validate the findings across

different clinical settings, thus enhancing the robustness and

external validity of the developed models. Secondly, this study
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diagnosed some adrenal nodules according to imaging follow-up,

which reflects and is also in line with the current clinical reality.

Thirdly, the use of two different CT scanners and imaging protocols

in this study may lead to variability in the radiomics features

extracted, potentially impacting the performance of the model.

Standardizing imaging protocols would reduce this variability and

ensure consistent and reproducible radiomics feature extraction;

However, it can be considered a strength of this study as it is more

in line with the actual situation of Chinese healthcare and has a

certain potential universality. Fourthly, our study only applied 3D

VOI. Although previous studies reported that 3D VOI had a better

ability to reflect tumor heterogeneity than 2D Region of interest

(ROI) (54), 2D ROI had the advantage of being more convenient to

operate, so it may be more feasible to use and easier to promote.

Fifthly, the radiomics models constructed in this study had no

external validation, and multi-center cooperation is needed to

further improve the predictive performance and generalization

ability of the models.

The combined radiomics model based on independent risk

radiomics features of the plain and arterial CT images can non-

invasively and efficiently predict adrenal metastatic nodules in lung

cancer patients, and the predictive performance of which was

significantly higher than the clinical-pathological-imaging model.

In addition, the plain radiomics model, which also had high

predictive ability, provided a convenient and accurate new

method for predicting adrenal metastatic nodules in patients with

contraindications for enhanced CT examination, effectively

avoiding unnecessary further examinations.
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