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Objective: A non-invasive method using plasma microRNAs provides new

insights into thyroid cancer diagnosis. The objective of this study was to

discover potential circulating biomarkers of papillary thyroid carcinoma (PTC)

through the analysis of plasmamiRNAs using next-generation sequencing (NGS).

Methods: PlasmamiRNAs were isolated from peripheral blood samples collected

from healthy individuals, patients diagnosed with PTC, and those with benign

thyroid nodules. The Illumina NovaSeq 6000 platform was employed to establish

the miRNA expression profiles. Candidate miRNAs for diagnostic purposes were

identified utilizing the Random Forest (RF) algorithm. The selected miRNAs were

subsequently validated in an independent validation set using RT-qPCR.

Results: NGS results revealed consistent plasma miRNA expression patterns

among healthy individuals and patients with benign thyroid nodules in the

discovery set (6 healthy cases, 17 benign cases), while differing significantly

from those observed in the PTC group (17 PTC cases). Seven miRNAs

exhibiting significant expression differences were identified and utilized to

construct an RF classifier. Receiver operating characteristic (ROC) analysis for

PTC diagnosis, and the area under the curve (AUC) was 0.978. Subsequent KEGG

and GO analyses of the target genes associated with these 7 miRNAs highlighted

pathways relevant to tumors and the cell cycle. Independent validation through

RT-qPCR in a separate cohort (15 CONTROL, 15 PTC groups) underscored hsa-

miR-301a-3p and hsa-miR-195-5p as promising candidates for PTC diagnosis.

Conclusion: In conclusion, our study established a seven-miRNA panel in plasma

by Random Forest algorithm with significant performance in discriminating PTC

from healthy or benign group. hsa-miR-301a-3p, hsa-miR-195-5p in plasma

have potential for further study in the diagnosis of PTC in Asian ethnic.
KEYWORDS

papillary thyroid cancer, circulating biomarkers, microRNA, cancer diagnosis, NGS
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2024.1410110/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1410110/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1410110/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1410110/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2024.1410110&domain=pdf&date_stamp=2024-08-07
mailto:neck130@sina.com
mailto:liaotian@fudan.edu.cn
https://doi.org/10.3389/fonc.2024.1410110
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2024.1410110
https://www.frontiersin.org/journals/oncology


Cui et al. 10.3389/fonc.2024.1410110
1 Introduction

There has been a dramatic increase in the incidence of thyroid

cancer worldwide in recent years (1). And it has become the 9th

most common cancer among all cancers in 2020 (2). The most

common type of thyroid cancer is papillary thyroid cancer (PTC),

which accounts for about 80% of all cases (3).

For the diagnosis of papillary thyroid cancer, clinical

management procedure includes medical history, physical

examination, laboratory tests (such as thyrotropin and thyroid

hormones), ultrasound, and fine-needle aspiration biopsy (FNAB)

(4). Among these, FNAB is the most important assessment tool due

to its accuracy, safety, and low cost. However, as an invasive

diagnostic method, FNAB carries several complication risks for

patients (5). Common complications range frommild issues such as

localized pain, discomfort, and hemorrhage or hematomas, to more

severe problems like temporary recurrent laryngeal nerve palsy and

vasovagal reactions, with some literature even reporting the

possibility of needle track seeding of papillary carcinoma (6–8).

Additionally, about 20% of thyroid nodules remain indeterminate

after FNAB examination, requiring molecular testing for auxiliary

diagnosis (9).

Recently, plasma miRNAs have emerged as promising diagnostic

molecular markers due to their non-invasive nature, stability and

diagnostic sensitivity. miRNAs are small noncoding RNAs encoded by

the genome. miRNAs can target multiple mRNAs through

complementary sequences, leading to degradation or translation

inhibition and ultimately regulating gene or protein expression (10).

In cancer, miRNAs function as regulatory molecules, acting as either

oncogenes or tumor suppressors. They can promote tumor formation

or progression by downregulating tumor suppressor genes, acting as

oncogenes. Conversely, they can function as tumor suppressors by

downregulating oncogenic proteins (11). miRNAs present are not

only in tumor tissues but also in serum and plasma, and the value of

circulating miRNAs as diagnostic biomarkers for thyroid tumors has

been reported in multiple studies (12–14). In contrast to serum,

plasma harbors elevated levels and increased diversity of miRNAs

(15), thus presenting heightened potential as a diagnostic biomarker.

The integration of next-generation sequencing and bioinformatics

has been widely used in identifying novel tumor biomarkers. Recently,

the utilization of machine learning has emerged as a powerful tool in

the identification of tumor biomarkers, with the Random Forest (RF)

classification model being one of the commonly used methods (16–

18). The RF classification model has remarkable advantages in tumor

diagnosis, as it can identify the optimal diagnostic panels (19, 20).

Currently, several studies have used the RF classification model to

identify diagnostic or prognostic panels for various cancers, including

thyroid cancer (21–23). However, there are only few reports on the use
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of NGS technology for studying the miRNA expression profile of PTC

plasma miRNAs and their potential for clinical diagnosis. This

research gap indicates the need for further studies to explore the

diagnostic potential of plasma miRNAs in thyroid cancer patients.

In this study, we aimed to profile the plasma miRNA expression

of PTC and compare it with that of benign thyroid nodule patients

and healthy population to explore potential diagnostic molecular

markers in plasma. A random forest classifier was constructed and 7

miRNAs was selected to form the panel. RT-qPCR were then

performed to determine their diagnostic performance in patients

with PTC.
2 Materials and methods

2.1 Patients and samples

This study was approved by the institutional review board of

Fudan University Shanghai Cancer Center (FUSCC), and informed

consent was obtained from all individuals included in the study.

This study contains 2 sets (Table 1). The Discovery set contains

40 samples for sequencing and training the classifier. The

Validation set contains 30 samples for RT-qPCR validation.

Blood samples and clinical information of potentially eligible

participants who were undergoing treatment at our institution

(FUSCC) were collected within three days prior to the surgery.

The criteria for the eligible participants were pathology-confirmed

cases of PTC (defined by the International Classification of Diseases

for Oncology 10th Revision as code C73) or benign thyroid nodules

(code D34). Potentially eligible participants were selected based on

preoperative ultrasound and FNA results of the patients. All

patients were pathologically confirmed by postoperative paraffin

pathology. Peripheral blood from 6 healthy people (Healthy group)

was provided by Shanghai RunanMedical Technology Corporation.
2.2 RNA isolation

Peripheral blood was collected in EDTA Vacutainer tubes (BD

Diagnostics, NJ, USA) and processed within 3 h. Plasma was

separated by centrifugation at 1,600 × g for 10 min, transferred to

microcentrifuge tubes, and centrifuged at 16,000 × g for 10 min to

remove remaining cell debris.

Plasma microRNA was isolated using the miRNeasy Serum/

Plasma Kit (Qiagen, Hilden, Germany). QIAzol Lysis Reagent was

added to the plasma samples. After the addition of chloroform, the

lysate was separated into aqueous and organic phases by

centrifugation. RNA partitions to the upper, aqueous phase, while
TABLE 1 Sample sizes of three sets.

Discovery set (N = 40) Validation set (N = 30)

Group Healthy Benign PTC Healthy (CONTROL) Benign (CONTROL) PTC

Sample size 6 17 17 3 12 15
PTC, papillary thyroid carcinoma.
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DNA partitions to the interphase and proteins to the lower, organic

phase or the interphase. The upper, aqueous phase is extracted, and

ethanol is added to provide appropriate binding conditions for all

RNA molecules from approximately 18 nucleotides (nt) upward.

The sample is then applied to the RNeasy MinElute spin column,

where the total RNA binds to the membrane and phenol and other

contaminants are efficiently washed away. High-quality RNA was

then eluted in a small volume of RNase-free water.
2.3 Construction and high-throughput
sequencing of the microRNA library

According to the protocol of the QIAseq miRNA Library Kit

(QIAGEN). Specially designed 3’ and 5’ adapters are ligated to

mature miRNAs. The ligated miRNAs are then reverse transcribed

to cDNA using a reverse transcription (RT) primer with a UMI.

Following cDNA cleanup, library amplification was performed with

a universal forward primer and indexing reverse primers. miRNA

sequencing libraries were quantified by an Agilent 2100 bioanalyzer

and sequenced on an Illumina NovaSeq 6000 platform.

Raw Illumina sequencing reads reflect the total unfiltered reads

obtained from the Illumina NovaSeq 6000 platform. Reads initially

were filtered for (1) high quality (Illumina “chastity” filter), (2) the

presence of the 3′ adaptor sequence (to ensure a small RNA was

ligated and sequenced completely), and (3) size of small RNA reads

(18–40 nt). Low complexity reads (>50% homopolymer) were

removed. These filtering steps resulted in high-quality, filtered

reads representing small RNA sequences of 18–40 nt. Then clean

unique reads were mapped against all annotated human mature

miRNA sequences [miRBase v19.0 (24)] using the program Bowtie

(25) with 1 base mismatch at most.

Differential expression analysis was performed with the edgeR

(26) Bioconductor statistical library version 3.0.8 on R version

2.15.3. The calculated Counts Per Million (CPM) mapped reads

were normalized to log2 (CPM+1), and the resulting data was used

for subsequent plotting and analysis (27). After estimating the

tagwise dispersion, the gene wise exact test as implemented in

edgeR was used to measure the significance of differential

expression, using the gene “Pseudocounts”.

Novel miRNAs were predicted using the miRCat tool in the

sRNA Toolkit software package (28). miRNAs with False Discovery

Rate (FDR, the adjust P-value) ≤ 0.05 and |log2FoldChange| ≥ 2

obtained from edgeR were considered differentially expressed

between the two selected groups. The FDR, which is the q-value,

was obtained by multiple hypothesis testing correction of the P-

value (29, 30).
2.4 Random forest classification model

Random forest (RF) classification model is a commonly used

and powerful machine learning algorithm with very good

performance in classification problems, which was developed by

Breiman in 2001 (17). In this study, a RF classification model was

constructed to help distinguish the CONTROL group and the PTC
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group. The RF model was constructed in the R software by the R

package “randomForest” with the configuration of “ntree” = {500}

(the number of trees to build) (16). The primary RF model was

constructed using all the differential miRNAs obtained in

differential analysis. The number of selected differential miRNAs

was determined based on the results of 5 repetitions of 10-fold

cross-validation method. In addition, appropriate miRNAs were

selected for further model construction based on the Mean Decrease

Accuracy and Mean Decrease Gini obtained from model and the

FDR value, |log2FoldChange| obtained from differential analysis.
2.5 Validation by real-time qPCR

Total RNA was isolated from samples using the Universal

microRNA Purification Kit (EZBioscience, USA). For miRNA

analysis, reverse transcription reaction was performed via the

microRNA Reverse Transcription Kit PLUS (EZBioscience)

according to the manufacturer’s instructions. qPCR was

performed using EZ-Probe qPCR Master Mix (EZBioscience) on

the QuantStudio™ 7 Flex (Applied Biosystems). U6 RNA was

detected as an internal reference. The primer sequences used are

listed in Supplementary Material 1. The reverse primers for all

miRNAs were provided in microRNA Reverse Transcription Kit

PLUS. Relative miRNA-expression levels were measured using the

2–DDCT method for each miRNA.
2.6 Statistical and bioinformatics analyses

The correlation coefficients and principal component analysis

(PCA) were utilized to confirm the biological replicates of the

samples (31). The unsupervised hierarchical clustering heatmap

of differentially expressed miRNAs (DEmiRs) across all samples

was generated using the “Pheatmap” package in R software.

Receiver operating characteristic (ROC) curves and areas under

the curve (AUCs) were used to evaluate the diagnostic performance.

MiRanda (32) was used to predict target genes of DEmiRs

(including known and novel miRNAs), followed by Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway enrichment analysis. In addition to R, the

programs used for plotting and analysis included GraphPad

Prism software, version 9.0.0 (GraphPad Software, San Diego,

CA, United States) and SPSS version 25.
3 Results

3.1 Characterization and NGS analysis of
the discovery cohort

The clinicopathological characteristics of the 40 samples from the

discovery set were recorded in detail (Table 2). Importantly, there

were no significant differences in the distribution of patients among

the Healthy, Benign, and PTC groups in terms of age, sex,

lymphocytic thyroiditis and ethnicity, ensuring the data balanced
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and comparable. Across the discovery set, the majority of patients

were under the age of 55, with 6 (100%), 14 (82.4%), and 13 (76.5%)

individuals in the Healthy, benign, and PTC groups respectively.

Gender distribution was found to be balanced across the groups, with

3 (50%), 10 (58.8%) and 9 (52.9%) individuals in the Healthy, benign,

and PTC groups respectively. All patients in the discovery set

belonged to the Asian ethnic group. Furthermore, differences in

distribution were observed in tumor multifocality and size between

the Benign and PTC groups. Multifocality was more prevalent in the

benign group (14, 82.4%) compared to the PTC group (2, 11.8%),

demonstrating a statistically significant difference (p < 0.001).

Similarly, maximum tumor less than 2 cm were more frequently

observed in the benign group (13, 76.5%) than in the PTC group

(2, 11.8%), also displaying statistical significance (p < 0.001). This

balanced distribution of clinical characteristics minimizes errors in

subsequent comparisons, while variations in tumor multifocality and

size introduce potential sources of error.

NGS sequencing was then performed on all samples from the

discovery set. Raw reads were obtained by sequencing from 40

samples in Discovery set. Subsequently, clean reads were obtained

after filtering low-quality reads. Only clean reads of small RNAs

with lengths in the range of 18-40 nt (total 309,45 million) were

utilized for subsequent analysis. The results showed that small

RNAs were mainly distributed in the vicinity of 20-23 nt, and the

peak length of distribution was 22 nt (Figure 1A), which was

consistent with the typical length of miRNAs. Based on the

comparison with the reference genome (GRCh38) and annotation
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by miRBase, small RNAs were categorized into miRNAs, rRNAs,

tRNAs, snoRNAs, snRNAs, mRNAs, and others. A total of 89.16%

of the small RNAs were annotated as miRNAs, showing a good

quality of library construction (Figure 1B). Of the other small RNAs

that accounted for 10.84% of the total, mRNAs (59.42%) were

predominantly present, with others such as rRNAs (3.73%),

snRNAs (1.31%), snoRNAs (0.87%), and tRNAs (0.10%).

In addition, reads of small RNAs that were not annotated to any

known RNAs were used for the prediction of novel miRNAs. The

prediction of novel miRNAs relied on the signature hairpin

structure of the miRNA precursor. A total number of 569 Novel

miRNAs were predicted by miRCat software (Supplementary

Material 2).

We subsequently conducted an analysis of annotated miRNAs

and novel miRNAs to assess their differential expression across the

healthy, benign, and PTC groups. From this analysis, a total of 61

DEmiRs were identified through comparisons among the groups

(healthy vs. benign, benign vs. PTC, healthy vs. PTC) (Figure 1C).

Notably, the DEmiRs consistently showed upregulation in both

comparisons involving the PTC group (healthy vs. PTC and benign

vs. PTC). Specifically, miRNAs such as hsa-miR-145-5p, hsa-miR-

424-5p, hsa-miR-1-3p, hsa-miR-223-3p, and hsa-miR-152-3p were

found to be upregulated in the PTC group compared to both

healthy and benign groups.

Furthermore, there were only three DEmiRs between the

Healthy and Benign groups (Supplementary Material 3),

suggesting that the Healthy and Benign groups shared similar
TABLE 2 Clinicopathological information of discovery set.

Variable Healthy group Benign group PTC group P-value

Age, No. (%) 0.427

<55 6 (100) 14 (82.4) 13 (76.5)

≥55 0 (0) 3 (17.6) 4 (23.5)

Gender, No. (%) 0.909

Male 3 (50) 10 (58.8) 9 (52.9)

Female 3 (50) 7 (41.2) 8 (47.1)

Lymphocytic thyroiditis,
No. (%)

0.831

Yes 0 (0) 3 (17.6) 2 (11.8)

No 6 (100) 14 (82.4) 15 (88.2)

Multifocal <0.001

Yes / / 14 (82.4) 2 (11.8)

No / / 3 (17.6) 15 (88.2)

Maximum tumor/nodule size,
No. (%)

<0.001

<2 cm / / 13 (76.5) 2 (11.8)

≥2 cm / / 4 (23.5) 15 (88.2)

Ethnicity, No. (%) 1

Asian 6 (100) 17 (100) 17 (100)
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miRNA expression patterns. And these three miRNAs also showed

deregulation when these two groups were compared with the PTC

group. Among them, the expression of hsa-miR-219a-2-3p was up-

regulated in the Benign group than in the Healthy group; and its

expression was also up-regulated in the PTC group than in the

Benign group, suggesting that the same cut-off could be used to

separate the PTC group from the Healthy and Benign groups.
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Using all the known miRNAs of DEmiRs detected above,

clustering analysis were performed to assign the Discovery set

plasma samples into groups with similar miRNA expression patterns

(Figure 1D). Interestingly, clustering analysis showed that Healthy and

Benign group shared common miRNA expression profiles. And the

principal component analysis (PCA) also showed that the Healthy

samples were included in the Benign samples (Figure 1E).
B C

D

E

A

FIGURE 1

Characterization of small RNA sequencing data. (A) The percentage of small RNAs with a length ranging from 18 ~ 40 nt. (B) Annotated-reads
distribution of small RNAs. The left diagram illustrates the annotation status of annotated small RNAs ranging from 18 to 40 nt; the right diagram shows
the annotation status of other small RNAs depicted in the left diagram. (C) Venn diagram of differentially expressed miRNAs in three differential analyses
(Healthy VS Benign, Healthy VS PTC, Benign VS PTC). (D, E) Clustering analysis (D) and principal component analysis (E) of all 50 known miRNAs of
significant miRNAs that were differentially expressed in three differential analyses (Healthy VS Benign, Healthy VS PTC, Benign VS PTC).
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The aim of this study was to identify a panel of miRNAs capable

of distinguishing PTC samples from both healthy and benign

samples. Given the similarity in miRNA expression patterns

between the Healthy and Benign groups in plasma, combining

these samples into a single group (CONTROL group) may facilitate

the identification of significant DEmiRNAs.
3.2 Identification of differential miRNAs and
classification model

We then analyzed the differential expression of the miRNAs

between the CONTROL and PTC groups. Analysis of plasma

samples between the CONTROL and PTC groups revealed a total
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of 51 DEmiRs by the criteria of False Discovery Rate (FDR, the

adjusted P-value) ≤ 0.05 and |log2FoldChange| ≥ 2 (Figure 2A). The

Table 3 showed some of the miRNAs with significant expression

differences (List of all DEmiRs in the analysis of the CONTROL vs

PTC groups is provided in Supplementary Material 4).

Including all known miRNAs of DEmiRs from the results of the

four previous comparisons for principal component analysis (PCA)

and unsupervised clustering analysis, the CONTROL and PTC

samples clustered into different categories, as expected that Healthy

and Benign samples had similar expression patterns (Figures 2B, C).

To further screening, the Random Forest (RF) algorithm was

used to construct a classifier to distinguish PTC from CONTROL.

After two step-by-step screenings and final debugging, a panel of 7

miRNAs were identified from all known DEmiRs using the Random
B

C

A

FIGURE 2

Differentially expressed miRNAs in plasma between CONTROL and PTC samples. (A) Volcano diagram of Differentially expressed miRNAs in plasma
between CONTROL and PTC group. miRNAs with False Discovery Rate (FDR) ≤ 0.05 and |log2FoldChange| ≥ 2 were considered significant. (B, C)
Principal component analysis (B) and clustering analysis (C) of all 59 known miRNAs that were differentially expressed in four differential analyses
(Healthy VS Benign, Healthy VS PTC, Benign VS PTC, CONTROL VS PTC).
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Forest algorithm. The 7 miRNAs panel is a powerful predictor used

to distinguish PTC from CONTROL patients (including hsa-miR-

301a-3p, hsa-miR-424-5p, hsa-miR-18a-3p, hsa-miR-195-5p, hsa-

miR-152-3p, hsa-miR-92b-3p, hsa-miR-517a-3p). Principal

component analysis was performed using these 7 miRNAs, with

the first two principal components explaining 74.3% of the total

variance and the first three principal components explaining 85.7%

of the total variance. The diagram of PCA showed that the majority

of the CONTROL and PTC group samples were well separated

(Figure 3A). In addition, unsupervised cluster analyses also showed

that the CONTROL group samples were well clustered, with only 1

sample incorrectly clustered to the PTC group (Figure 3B). Receiver

operating characteristic (ROC) analysis further demonstrated the

sensitivity and specificity of this 7-miRNAs panel in distinguishing

PTC from CONTROL patients. The area under curve (AUC) of this

panel reached an astonishing 0.978 (Figure 3C). In addition, to

verify the specificity of the classifier in thyroid cancer, we tested it

using 3 negative control sets consisting of patients with other types

of cancer from an external database, which also had good detection

results (Supplementary Material 5). In contrast, when the

expression levels of the 7 miRNAs were compared individually,

reduced differences were found between the two groups

(Figure 3D). And when these 7 miRNAs were used to distinguish

the two groups of patients alone, the AUC was only 0.64-0.89, much

lower than that of the 7 miRNAs panel (Figure 3E).
3.3 Target gene prediction and pathway
enrichment analysis

In order to gain further insight into the possible role of these 7

miRNAs in PTC, target gene prediction was performed for these 7
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miRNAs. There were ten genes co-targeted bymore than twomiRNAs,

one of which was co-targeted by three miRNAs (CCND1), and another

nine genes were co-targeted by twomiRNAs (Figure 4A). Nine of these

10 genes are closely associated with tumor development (CCND1,

MYB, CDC25A,WEE1, CDK6, CCND3, CCNE1, FGF2, PTEN) and 6

of them are mainly associated with the cell cycle (CCND1, CDC25A,

WEE1, CDK6, CCND3, CCNE1).

Enrichment analysis of Gene Ontology (GO) categories and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathways for these

target genes also confirmed the association with tumor and cell cycle

(Figures 4B, C). Several tumor-related pathways were identified, such

as Proteoglycans in cancer, mTOR signaling pathway, FoxO signaling

pathway. Cell cycle-related pathways have also been identified, such as

Mitotic cell cycle phase transition, Regulation of cell cycle phase

transition, Cell cycle G1/S phase transition, G1/S transition of

mitotic cell cycle. In addition, several viral carcinogenesis-associated

pathways were significantly enriched (Viral carcinogenesis, Human

papillomavirus infection, Human T-cell leukemia virus 1 infection,

etc.), suggesting that plasma miRNAs may be closely associated with

oncogenic viral infection and viral carcinogenesis.

In conclusion, these results suggest that these 7 miRNAs

identified in this study can not only be used as molecular markers

for the adjuvant diagnosis of PTC, but also have the potential to be

used as therapeutic targets for tumor therapy because of their

functional relevance to the development of PTC.
3.4 Validation of miRNAs in independent
validation set by RT-qPCR

To validate the performance of the 7 selected miRNAs, RT-

qPCR was conducted using a new, independent Validation set
TABLE 3 Top down/up-regulated miRNAs of PTC group in CONTROL vs. PTC comparison.

Down-regulated Up-regulated

miRNAs Log2FC FDR miRNAs Log2FC FDR

hsa-miR-516b-5p -7.25 4.43E-03 hsa-miR-199b-5p 3.47 9.16E-03

hsa-miR-92b-3p -2.10 1.33E-02 hsa-miR-424-5p 3.39 9.63E-04

novel.247 -5.36 1.46E-02 hsa-miR-199a-5p 3.28 4.11E-03

novel.128 -5.14 1.53E-02 hsa-miR-411-5p 3.27 2.11E-02

hsa-miR-550a-3p -4.49 1.59E-02 hsa-miR-223-3p 3.25 1.26E-07

hsa-miR-517a-3p -6.08 1.83E-02 hsa-miR-145-5p 3.17 1.96E-03

hsa-miR-517b-3p -6.06 1.83E-02 hsa-miR-206 3.00 1.91E-03

novel.269 -6.81 1.93E-02 hsa-miR-3157-3p 2.58 4.04E-02

novel.111 -6.01 2.04E-02 hsa-miR-184 2.50 1.33E-02

novel.41 -6.01 2.04E-02 hsa-miR-152-3p 2.43 3.66E-03

hsa-miR-6734-5p -3.22 2.04E-02 hsa-miR-196a-5p 2.39 3.29E-02

hsa-miR-1247-5p -3.24 2.10E-02 hsa-miR-18a-3p 2.34 3.30E-03

hsa-miR-195-5p -2.84 2.34E-02 hsa-miR-301a-3p 2.02 1.13E-02
MiRNAs, micro RNAs; Log2FC, log base 2 of the fold change; FDR, false discovery rate (the adjusted P-value).
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comprising 15 CONTROL samples and 15 PTC samples (Table 1).

Among these, 3 out of the 7 miRNAs exhibited consistent

expression trends as observed in the NGS results (hsa-miR-301a-

3p, hsa-miR-195-5p, hsa-miR-517a-3p). Specifically, hsa-miR-301a-

3p showed up-regulation in the PTC group, whereas hsa-miR-195-

5p and hsa-miR-517a-3p were down-regulated in the PTC group.
Frontiers in Oncology 08
Moreover, statistical analysis indicated that two of these three

miRNAs, hsa-miR-301a-3p (P = 0.0226) and hsa-miR-195-5p (P =

0.0147), displayed statistically significant differences in expression

between the PTC and CONTROL groups (Figure 5A).

To further evaluate the diagnostic performance of hsa-miR-301a-

3p and hsa-miR-195-5p in diagnosing PTC, ROC analysis was
B C

D

A

E

FIGURE 3

Diagnostic accuracy of the 7 miRNAs panel. (A, B) Principal component analysis (A) and clustering analysis (B) of 7 miRNAs identified by Random
Forest algorithm. (C) Receiver operating characteristic analysis and area under curve of the 7-miRNAs Random Forest classifier in distinguishing PTC
from CONTROL patients. (D) Expression level of 7 identified miRNAs in Discovery set. (E) Receiver operating characteristic analysis and area under
curve of the 7 miRNAs when used to distinguish PTC from CONTROL patients alone.
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B CA

FIGURE 4

Function of the panel of 7 miRNAs. (A) Interaction network between 7 selected miRNAs and their target genes. (B, C) Enrichment analysis of Gene
Ontology (GO) categories (B) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways (C) for target genes of 7 selected miRNAs.
BA

FIGURE 5

RT-qPCR of 7 selected miRNAs in Validation set. (A) Relative expression levels in RT-qPCR of 7 selected miRNAs in the Validation set of the CONTROL
and PTC group. (B) Receiver operator curves of hsa-miR-301a-3p and hsa-miR-195-5p in validation set for diagnosis of PTC from CONTROL group. The
symbol ‘*’ means p<0.05, i.e. the difference is statistically significant. The symbol ‘ns’ means P>0.05, which means that the difference cannot be proved
to be statistically significant.
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performed. ROC analysis showed that the twomiRNAs had a potential

ability to discriminate PTC from CONTROL with AUCs of 0.7467 and

0.7333 (Figure 5B).
4 Discussion

Thyroid nodule is a common thyroid disease in the population,

some of which may be malignant. Although FNA combined with

cytopathology is the gold standard method for diagnosis of malignant

thyroid nodules, there are still some tested thyroid nodules remain

indeterminate, which brings biomarkers as an adjunctive diagnostic

method (33). In this study, a panel of seven plasma miRNAs

identified by the Random Forest algorithm was found to have

potential for the diagnosis of papillary thyroid carcinoma. In the

initial discovery set, this study analyzed the plasma miRNA

expression profiles of healthy controls, patients with benign thyroid

nodules and patients with PTC. Interestingly, we observed a

consistent plasma miRNA expression profile between samples from

the healthy and benign groups. To enhance the analysis of miRNA

differential expression in the PTC group, we amalgamated the healthy

and benign groups into a single CONTROL group. Our analysis

revealed significant differences in the plasma miRNA expression

profile of the PTC group compared to the CONTROL group. An

initial RF classifier including all identified differential miRNAs was

then constructed, and after debugging, a 7-miRNAs classifier with

high diagnostic performance was finally constructed. This RF

classifier showed high performance in diagnosing PTC with an

AUC of 0.978. Further RT-qPCR was performed in an independent

validation set and identified 2 miRNAs with significant difference

(hsa-miR-301a-3p, hsa-miR-195-5p). Subsequent analysis enriched

and examined the functions of the target genes regulated by these 7

miRNAs, revealing their involvement in various tumor and cell cycle-

related pathways. Thus, these miRNAs not only serve as promising

non-invasive biomarkers for diagnosing PTC patients but also

present potential as therapeutic targets.

In recent years, with the development of sequencing technology

and the emerging advantages of miRNAs as non-invasive diagnostic

biomarkers, several studies have focused on circulating miRNAs for

the diagnosis of PTC. A genome-wide study of plasma miRNAs

using RNA array found that miR-25-3p and miR-451a may be of

value in the diagnosis of PTC (34). A study of plasma miRNAs from

healthy individuals, benign thyroid nodules and patients with PTC

using the Exiqon panel found that a panel of 3 miRNAs consisting

of miR-346, miR-34a-5p and miR-10a-5p could be used for the

diagnosis of PTC (35). Many researchers have highlighted thatmiR-

146b may have potential for the diagnosis of PTC (36–38). On the

other hand, some researchers have investigated miRNAs in

exosomes. miR-16-2-3p and miR-223-5p are exosome miRNAs

that can be used to discriminate between PTC and benign thyroid

nodules, identified by studying isolated plasma exosomes using

RNA sequencing (RNA-seq) technology (39). A study including

both plasma and serum found that exosome miR-485-3p and miR-

4433a-5p could be used for PTC diagnosis, and miR-485-3p could

also be used to discriminate between high-risk and low-risk PTC

(13). Although there have been some studies focusing on circulating
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miRNAs, there are still large differences in the types of miRNAs

reported by different researchers, as well as relatively small sample

sizes and difficulties in validation, so further studies on the role of

plasma miRNAs in PTC screening are still needed.

For the plasma miRNAs identified in this study, there have been

previous studies suggesting possible roles in tumors. Many studies

have found that hsa-miR-195-5p is expressed at low levels in a

variety of tumor tissues, including lung cancer (40, 41) and breast

cancer (42). It has been shown that hsa-miR-195-5p can inhibit the

role of cell proliferation in thyroid tumors by inhibiting cyclin D1,

which is a potential therapeutic target for thyroid tumors (43). In

contrast, hsa-miR-301a-3p tends to be overexpressed in tumor

tissues and shows a role in promoting tumor growth (44, 45). In

clear cell renal cell carcinoma (ccRCC), hsa-miR-301a-3p is

associated with potential metastatic potential, and this study also

suggests that the function of plasma exosome miRNAs may be

related to tumor cycle, proliferation, etc. (46).

The diagnostic panel constructed in this study includes five other

miRNAs, which also play roles in the diagnosis or prognosis of

various cancers. hsa-miR-424-5p may play an important role in the

pathogenesis of thyroid cancer and cholangiocarcinoma (47, 48).

Additionally, hsa-miR-424-5p also holds potential as a diagnostic and

prognostic marker in gastric cancer, laryngeal squamous cell

carcinoma, colorectal cancer, and liver cancer (49–55). In breast

cancer, hsa-miR-424-5p, in combination with another miRNA, hsa-

miR-142-3p, can be used to inhibit tumor cell proliferation (56). hsa-

miR-18a-3p plays a central role as one of the hub miRNAs in the

ceRNA networks involved in hepatocellular carcinoma and adult T-

cell leukemia/lymphoma (57–59). Furthermore, exosomal hsa-miR-

18a-3p has the potential to serve as a biomarker to distinguish

between breast cancer and breast fibroadenoma (60). hsa-miR-152-

3p not only acts as an anti-tumor miRNA in thyroid cancer by

negatively regulating ERBB3 but is also significantly associated with

hypertension-related RCC (61–63). Additionally, hsa-miR-152-3p

may inhibit pathway activation by negatively regulating PIK3CA

expression, thereby suppressing cell proliferation and functioning as a

tumor suppressor in human breast cancer cells (64). hsa-miR-92b-3p

and its targets may promote PCA metastasis through platinum

resistance and the JAK-STAT signaling pathway (65). Furthermore,

hsa-miR-92b-3p is related to the overall survival of patients with liver

cancer (66). hsa-miR-517a-3p is associated with liver cancer and the

pathways involved in cancer and tumorigenesis (67).

In our study, the target genes of the panel of 7 miRNAs we

identified are primarily associated with tumor progression. These

genes include CCND1, MYB, CDC25A, WEE1, CDK6, CCND3,

CCNE1, FGF2, and PTEN, among others, with nine genes being

targeted by more than two miRNAs. Additionally, six of these genes

(CCND1, CDC25A, WEE1, CDK6, CCND3, CCNE1) have been

shown in multiple studies to be related to the cell cycle (68–73).

Besides its association with the cell cycle, WEE1 is also involved in

DNA repair in tumors (74, 75). Enrichment analysis of the target

genes identified several tumor-related pathways, including

Proteoglycans in cancer, the mTOR signaling pathway, and the

FoxO signaling pathway. Cell cycle-related pathways were also

identified, such as Mitotic cell cycle phase transition, Regulation

of cell cycle phase transition, Cell cycle G1/S phase transition, and
frontiersin.org

https://doi.org/10.3389/fonc.2024.1410110
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Cui et al. 10.3389/fonc.2024.1410110
G1/S transition of the mitotic cell cycle. Additionally, several

pathways associated with viral carcinogenesis were significantly

enriched, including Viral carcinogenesis, Human papillomavirus

infection, and Human T-cell leukemia virus 1 infection. These

findings suggest that plasma miRNAs may be closely associated

with oncogenic viral infection and viral carcinogenesis.

This study has several limitations that warrant consideration.

Firstly, the cohort primarily consisted of Chinese patients, limiting

generalizability to individuals of diverse ethnicities, lifestyles, and

clinical characteristics. This may affect the reproducibility of

findings when validating using external datasets. Secondly, the

sample size in this study remains relatively small, necessitating

inclusion of a larger number of samples in future studies to robustly

validate the diagnostic efficacy of the identified miRNA panel.

Lastly, while the target genes of the miRNAs have been predicted

and functionally enriched, their precise roles in tumor development

require further exploration and validation.
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