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Objectives: To assess the diagnostic accuracy of machine learning (ML)-based

radiomics for predicting isocitrate dehydrogenase (IDH) mutations in patients

with glioma.

Methods: A systematic search of PubMed, Web of Science, Embase, and the

Cochrane Library from inception to 1 September 2023, was conducted to collect

all articles investigating the diagnostic performance of ML for the prediction of

IDH mutations in gliomas. Two reviewers independently screened all papers for

eligibility. Methodological quality and risk of bias were assessed using the

METhodological RadiomICs Score and Quality Assessment of Diagnostic

Accuracy Studies-2, respectively. The pooled sensitivity, specificity, and 95%

confidence intervals were calculated, and the area under the receiver operating

characteristic curve (AUC) was obtained.

Results: In total, 14 original articles assessing 1740 patients with gliomas were

included. The AUC of ML for predicting IDH mutation was 0.90 (0.87–0.92). The

pooled sensitivity, specificity, and diagnostic odds ratio were 0.83 (0.71–0.90),

0.84 (0.74–0.90), and 25 (12,50) respectively. In subgroup analyses, modeling

methods, glioma grade, and the combination of magnetic resonance imaging

and clinical features affected the diagnostic performance in predicting IDH

mutations in gliomas.
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Conclusion: ML-based radiomics demonstrated excellent diagnostic

performance in predicting IDH mutations in gliomas. Factors influencing the

diagnosis included the modeling methods employed, glioma grade, and whether

the model incorporated clinical features.

Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/

#myprospero, PROSPERO registry (CRD 42023395444).
KEYWORDS

gl ioma, isocitrate dehydrogenase (IDH), MRI, machine learning, deep
learning, radiomics
Introduction

The 2016 World Health Organization (WHO) classification of

central nervous system tumors incorporated molecular markers (1).

The 2021 WHO classification emphasizes the role of molecular

markers in both the classification and grading of gliomas (2). The

primary markers for gliomas include isocitrate dehydrogenase

(IDH), classified as IDH-mutant, 1p/19q-non-codeleted

(IDHmut-Noncodel), and IDH wild-type (IDHwt). Patient

outcomes and therapeutic options in glioma vary across subtypes

(3, 4). Patients with an IDH-mutated glioma have a better prognosis

than those with an IDH wild-type tumor. Recent studies have

demonstrated that IDH may be a potential therapeutic target for

IDH-mutant gliomas (5). Therefore, preoperative prediction of

IDH mutation status is important for prognosis and therapeutic

decision-making. Although histopathology is the current diagnostic

gold standard, it has some limitations such as sampling errors,

complications, and invasiveness. Thus, noninvasive assessment of

IDH mutation status is an urgent requirement.

Radiomics can transform images into mineable data for

quantitative analysis through high-throughput extraction and

analysis, providing support for decision-making (6). Machine

learning and deep learning combined with radiomics have excellent

potential for preoperative diagnosis, staging, and therapeutic effect

evaluation of gliomas (7, 8), as well as for predicting IDH mutation

status. A previous systematic review (9) dealing with this subject was

published, but it was not quantitative enough to evaluate the

predictive performance. In addition, because radiomics research is

a complicated process that includes multiple stages, it is critical to

evaluate the quality of the method to ensure the reliability and

reproducibility of the model before use in clinical work.

The aim of this systematic review and meta-analysis was to

evaluate the accuracy of radiomics models in predicting the IDH

status of gliomas and to evaluate the methodological quality and

risk of bias in radiomics workflows.
02
Materials and methods

This meta-analysis was performed according to the Preferred

Reporting Items for Systematic Reviews and Meta-Analyses (10)

guidelines and registered to the PROSPERO registry (registration

number, CRD 42023395444).
Literature search and study selection

The PubMed, EMBASE, Cochrane Library, and Web of

Science databases were searched up to 1 September 2023 by

two reviewers, C.X.L and Z.J. To identify the relevant

articles, only English articles were considered. The following

keywords were used to identify relevant studies: (“Glioma” OR

“Gliomas”) AND (“Isocitrate Dehydrogenase” OR “ IDH”) AND

(“MRI” OR “magnetic resonance imaging”) AND (“machine

learning” OR “radiomics” OR “deep learning” OR “Artificial

Intelligence”) The details of search strategies are provided in the

Supplementary Materials.

The included articles fulfilled all the following criteria: 1)

pa t i en t s w i th pa tho log i c a l l y confi rmed g l i oma ; 2 )

histopathological examination with the IDH mutation as a

reference standard; 3) sufficient data for the reconstruction of 2×2

tables in terms of the diagnostic performance of MR-based

radiomics in predicting the IDH of glioma; and 4) original

research articles. The exclusion criteria were as follows: 1) each

study had at least 10 patients; 2) reviews, case reports, letters, and

editorials; 3) studies not focusing on the diagnostic performance of

MR-based radiomics in predicting IDH mutations; and 4)

insufficient data for the reconstruction of 2×2 table studies with

overlapping cohorts. Two authors, C. X.L and Z.J, independently

evaluated the eligibility of the included articles, and any

disagreements were resolved via discussion with a third author

(W.S.W, with 10 years of experience in neuroimaging).
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Quality assessment and data extraction

The included articles’ methodological quality and the risk of

bias at the study level were assessed using the Quality Assessment

Tool for Diagnostic Accuracy Studies (QUADAS)-2 (11) and

METhodological RadiomICs Score (12), respectively. The

QUADAS-2 tool included four parts: (a) patient selection, (b)

index test, (c) reference standard, and (d) flow and timing. The

METhodological RadiomICs Score (METRICS tool included 30

items within 9 categories for evaluating the quality of the radiomics

workflow. Two reviewers, C.X.L and G.L.B, assessed the quality of

the articles separately and resolved any disagreements through

discussion with a third author (W.S.W).

The following data were extracted from the included articles: 1)

study characteristics (authors, year of publication, country of origin,

study design (prospective vs. retrospective)); 2) patient and clinical

characteristics (number of patients, age, WHO grade, reference

standard); 3) technical characteristics of magnetic resonance

imaging (MRI) (magnetic field strength (T), scanner, scan

sequence) and machine learning details (classifier, method of

segmentation, VOI or ROI, and external or internal validation).
Statistical analysis

This meta-analysis was performed using Stata 16 Review

Manager 5.3 software and Meta-disc 1.4. Pooled sensitivity,

specificity, diagnostic odds ratio (DOR), positive likelihood ratio

(PLR), and negative likelihood ratio (NLR) with 95% confidence

intervals (CIs) were calculated using bivariate random effects, and a

summary receiver operating characteristic (SROC) curve and area

under the curve (AUC) were generated to illustrate the

diagnostic performance.

The heterogeneity of the included studies was calculated using

the Q-test (p value ≤ 0.05) and I2 statistic (>50%) (13). A Spearman

coefficient >0.6 indicated the threshold effect (14). Subgroup

analysis was performed to further investigate the potential cause

of heterogeneity, and the following four covariates were included: 1)

machine learning (ML) vs. deep learning (DL), 2) only radiomics vs.

combination of radiomics and clinical information, 3) low-grade

glioma (LGG) vs. high-grade glioma (HGG), and 4) external

validation vs. internal validation.
Results

Characteristics of included studies

The flowchart of the literature search and selection process is

displayed in Figure 1, which yielded 161 studies from PubMed, 279

from Embase, four from the Cochrane Library, and 198 from the

Web of Science. After removing 253 duplicate articles, the

remaining 389 articles were screened for their title and abstract.

The full text of 66 eligible articles was reviewed, and 14 articles (15–

28) were included in this meta-analysis.
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The characteristics of the included studies are shown in Tables 1

and 2. One study was prospective, and the remaining studies were

retrospective. Eight (15–17, 20–22, 26, 27) of the 14 studies used 3-

TMRI, four (18, 23, 25, 28) used 1.5-T or 3-TMR, and two (19, 24)

used 1.5T. Among these, 14 included studies, 12 (16–23, 25–28)

used radiomics combined with ML, while two (15, 24) used DL

assessment. The most commonly used ML classifiers were SVM and

RFC. In addition, five (15, 16, 23, 24, 26) of the 14 studies employed

external validation, three (17, 25, 28) had no validation set, and the

remaining six studies (18–21, 25, 27) used internal validation. In

terms of glioma grade, three studies (15, 16, 18) were low-grade

gliomas, and three studies (19, 20, 25) were high-grade gliomas,

whereas the remaining studies included both low- and high-grade

gliomas. For the ML analysis, eleven (15–23, 25, 26, 28) studies

included only radiomics information, and three (22, 24, 27) used

radiomics and clinical information.
Quality assessment

The risk of bias and applicability assessment of the included

studies, performed using the QUADAS-2 tool, are shown in

Figure 2. In terms of the patient selection, two (17, 28) studies

were deemed to have a low risk of bias, six (15, 18, 23, 25–27)

exhibited a high risk of bias owing to unclear information regarding

the time range and consecution of patients, and six (16, 19–22, 24)

were considered to have an unclear risk because of uncertainties in

the consecution of patients. Regarding the index test, 13 studies had

an unclear risk of bias owing to ambiguity regarding the use of a

threshold. All the studies indicated a low risk of bias in the reference

standards. Regarding flow and timing, 13 studies had an unclear

risk of bias because there was no mention of the time interval

between imaging and molecular testing.

The mean METRICS score of the included studies was 60.3%

(range, 50%-75%), the quality of six (15–17, 22, 25, 28) studies was

moderate (40≤score<60%),and eight studies (17–21, 23, 24, 26)

were good (60≤score<80%). The highest score of 75% was obtained
FIGURE 1

Flow chart of study selection.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1409760
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Chen et al. 10.3389/fonc.2024.1409760
TABLE 1 Basic characteristics and details of the 14 included studies (1).

Study Country
Study
design

No.
of patients

Mean age
MRI
field
intensity

Vendor
Scanner

Sequences

Li 2017 (15) China Retrospective 151 40.7 ± 10.8 3T Siemens Trio T1CE,T2 flair

Yu 2016 (16) China Retrospective 110
40.3 ±
11.3 (years)

3T Siemens Trio T2 flair

Bisdas 2018 (17) UK Prospective 37 63.2 ± 7.6 3T Siemens Skyra T1,T1CE T2 flair,DKI

Zhang 2018 (18) China Retrospective 103 43.5 ± 12.9 1.5T(37),3T(66) NA T1,T2, T1CE T2 flair

Deniz Alis 2019 (19) Turkey Retrospective 142 40.87 ± 12.25 1.5T Siemens Avanto T1CE,T2 flair,DWI

Niu 2020 (20) China Retrospective 182 44 ± 11 3T GE SIGNA T1CE

Cao 2020 (21) China Retrospective 102 44.6 ± 14.9 3T GE SIGNA
T1,T2, T1CE T2
flair,DWI

Huang 2021 (22) China Retrospective 59 46 ± 15 3T
Siemens
MAGNETOM

T1,T2, T1CE T2 flair

Manikis 2021 (23) Greece Retrospective 160 58.4 ± 15.9 1.5T,3T
GE,
Siemens,Philip

T1,T2, T1CE T2 flair,
DCE-MR

Hraps ̧a 2022 (24) Romania Retrospective 21 48.6 ± 15.6 1.5T
GE,
Siemens,
TOSHIBA

T2, T1CE T2 flair

Kandalgaonkar
2022 (25)

United States Retrospective 100 52 1.5T,3T GE,Philip T2, T1CE

Wang 2022 (26) China Retrospective 140 40 3T Siemens
T1,T2,T1CE,T2
FLAIR, DWI

Wang, J 2022 (27) China Retrospective 100 48 ± 13 3T GE
T1,T2, T1CE T2 flair,
DWI,DCE-MR

CaroleH 2020 (28) UK Retrospective 333 NA 1.5T,3T GE, Siemens DSC-MR
F
rontiers in Oncology
 04
NA, not available.
TABLE 2 Basic characteristics and details of the 14 included studies (2).

Study
WHO
Grade

reference
standard

Machine
learning
classifier

Validation Segmentation
Region/volume
of interest

Li 2017 (15) grade 2 Sanger sequencing CNN External validation Automatic VOI

Yu 2016 (16) grade 2 Sanger sequencing SVM and AdaBoost External validation Automatic VOI

Bisdas 2018 (17) grade 2,3 Sanger sequencing SVM No validation Manual VOI

Zhang 2018 (18) grade 2,3 NA SVM Internal validation Manual VOI

Deniz Alis
2019 (19)

grade 3,4 Histopathological RFC Internal validation Manual VOI

Niu 2020 (20) grade 3,4 Immunohistochemistry biclassification mode Internal validation Manual ROI

Cao 2020 (21) grade 2,3 Histopathological RFC Internal validation Manual VOI

Huang 2021 (22) grade 2,3 DNAsingle-step assay
Multivariate
logistic regression

No validation Manual VOI

Manikis
2021 (23)

grade 2,3,4 histologically
SVM,RF,KNN,
LR,AdaBoost

External validation Automatic VOI

Hraps ̧a 2022 (24) grade 2,3,4
MLPA-Multiplex PCR)
or
immunohistochemistry

CNN External validation Automatic VOI

(Continued)
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TABLE 2 Continued

Study
WHO
Grade

reference
standard

Machine
learning
classifier

Validation Segmentation
Region/volume
of interest

Kandalgaonkar
2022 (25)

grade 4
Immunohistochemistry,
Sanger sequencing

SVM,10-fold
cross-validation

No validation Manual ROI

Wang 2022 (26) grade 2,3,4 Histologically ANN External validation
Segmentation
and manual

ROI

Wang, J
2022 (27)

NA
IDH1 R132H
mutation-
specific antibody

Liner SVM Internal validation Automatic ROI

CaroleH
2020 (28)

grade 2,3,4 Histopathology
Random-
forest algorithm

No validation Manual VOI
F
rontiers in Oncolo
gy
 05
NA, not available.
FIGURE 2

Summary of the risk of bias and applicability assessments: the authors’ judgements for each domain of each included study were reviewed. The
proportion of included studies that indicated low, unclear, or high risk and applicability concerns are shown in green, yellow, and red, respectively.
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in one study (26) and the lowest score of 50% was observed in two

studies (22, 25), primarily attributed to a lack of a validation cohort.

The item of “Model availability” was assigned zero points as none of

the included studies addressed it. Only one study (24) publicly

shared the code. A detailed description of the METRICS scores is

provided in Table 3.
Data analysis

Summaries of the ML models predicting IDH mutations in

patients with glioma were analyzed using the random-effects

method because of significant statistical heterogeneity (I2 = 92%).

For all 14 studies, the pooled sensitivity, specificity, PLR, NLR, and

DOR were 0.83 (0.71,0.90), 0.84 (0.74, 0.90), 5.0 (3.2, 7.8), 0.21

(0.12, 0.35), and 25 (12,50), respectively. The overall pooled AUC

was 0.90 (0.87, 0.92), indicating a high diagnostic performance.

Forest plots for sensitivity and specificity are illustrated in Figure 3,

and the SROC curve is presented in Figure 4.

Cochran’s Q test showed significant heterogeneity (Q=25.320,

p=0.00) across the studies, with a Higgins’s I2 statistic of 79% for

sensitivity and 74.1% for specificity. The Spearman correlation

coefficient between the sensitivity and false-positive rate was 0.525

(p=0.054), which indicated no threshold effect among the

included studies.
Subgroup analysis

Subgroup analysis was performed by comparing studies with

different variables. Supplementary Table 4 shows the results of the

subgroup analysis. Studies using DL had a higher specificity and a

lower sensitivity (0.91 [0.76, 0.98], 0.77 [0.55, 0.92]) than those

using ML (0.78 [0.72, 0.83], 0.86 [0.82, 0.90]). Compared with the

studies that only used radiomics features, studies combining the use

of radiomics and clinical information showed higher sensitivity and

lower specificity (0.89 [0.72, 0.98] vs 0.73 [0.68, 0.78], 0.79 [0.66,

0.88] vs. 0.83 [0.79, 0.86]). In addition, the sensitivity of diagnosing

LGG was higher (0.93 [0.85, 0.98]) than that of diagnosing HGG

(0.71 [0.58, 0.83]), but the specificity of diagnosing LGG was lower

than that of diagnosing HGG (0.71 [0.48, 0.89] vs. 0.91 [0.85, 0.95]).

Studies that performed external validation showed lower sensitivity

and specificity than those that used internal validation (0.78 [0.70,

0 .85] vs . 0 .81 [0.74 , 0 .87] ; 0 .83 [0 .72,0 .91] vs . 0 .87

[0.82,0.91], respectively).
Discussion

This systematic review and meta-analysis evaluated the

diagnostic performance of radiomics in predicting IDH

mutations. The pooled sensitivity, specificity, and AUC were 83%

(95% CI, 0.71–0.90), 84% (95% CI, 0.74–0.90), and 0.90 (95% CI,

0.87–0.92), respectively. This indicates that radiomics combined

with ML and DL could be an effective and accurate diagnostic tool

for predicting IDH mutations in gliomas.
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Obviously, heterogeneity was noted in the specificity (I²=79.6%)

and sensitivity (I²=74.1%), Thus, we performed subgroup analysis

to explore the source of the heterogeneity which included the

modeling methods (ML vs. DL), glioma grade, whether the model

incorporated clinical features, and validation methods (external and

internal validation).The results of the present meta-analysis showed

that studies using ML had a better diagnostic performance than

those using DL. This could be attributed to the small sample sizes of

the included studies. DL is capable of training multi-layer deep

neural networks, which show significant potential in handling very

large datasets with thousands or even millions of instances;

however, in scenarios where the size of the dataset is small, DL

tends to exhibit lower performance compared to ML. Similar

findings have been previously reported for ML in other studies

(29, 30). However, only two studies included in our study used DL;

thus, future work should incorporate a greater number of studies

with sufficient datasets to explore its true diagnostic capabilities. A

previous study (31) demonstrated that the combined model of

magnetic resonance (MR) and clinical features with ML exhibits

better diagnostic performance than that using only MR features.

Clinical features such as age, sex, and exposure to ionizing radiation

were closely related to the pathological process of glioma (32, 33).

For example, age is a risk factor for the development of high-grade

glioma; young patients are more likely to suffer from IDH1-mutant

glioma, and their postoperative survival and clinical prognosis may
FIGURE 3

Coupled forest plots of the pooled sensitivity and specificity for the diagnostic performance of machine learning-based radiomics for the prediction
of IDH mutation glioma.
FIGURE 4

Hierarchical summary receiver operating characteristic (SROC) curve
of the diagnostic performance of machine learning-based radiomics
for the prediction of IDH mutation glioma.
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be more optimistic (20). Our findings are consistent with the

previous study; therefore, we recommend the combined use of

MR and clinical features with ML in future radiomics studies to

verify their true diagnostic capabilities in predicting IDH mutation

status in gliomas. The diagnostic performance in predicting the

IDH mutation of HGG was better than that of LGG in the present

study, which is consistent with that of a previous meta-analysis (31);

however, it is essential to note that more studies are required to

validate this conclusion, given the limited number of included

studies. Additionally, we found that studies using external

verification models had a diagnostic performance similar to that

of studies using internal verification models, demonstrating the

stability of the model. Internal validation tends to overestimate the

diagnostic value owing to the model’s lack of generalizability (34);

thus, external validation prediction models are required to reliably

estimate the diagnostic capabilities of other datasets.

METRICS is a new quality assessment tool which includes 30

items within 9 categories to evaluate the key steps in the radiomics

research workflow. It was developed by a large group of

international experts in the field recently and is easy to use,

specifically aimed at improving the methodological quality of

radiomics research. The METRICS score of the included studies

ranged from 50% to 75% and the mean score was 60.3%. The quality

of 6 studies was moderate (40≤score<60%) and 8 studies were good

(60≤score<80%). For the items with the highest weights, such as

high-quality reference standards with a clear definition and

eligibility criteria that describe a representative study population,

all the included studies received a full score. Only one study (24)

publicly shared the code and two studies (25, 26) publicly shared the

data, however, these two items which belong to the “open science”

category had the lowest weight. Although METRICS is a valuable

tool for evaluating the quality of radiomics research, it is not

without limitations. Further revision of METRICS may enhance

its comprehensiveness in assessing the quality of radiomics studies.

QUADAS-2 quality assessment revealed other issues in the

included studies that can be avoided in future investigations. For

example, the majority of the studies did not mention the

consecution of patients and the time interval between imaging

and molecular testing, which led to a high or unclear bias risk. In 13

studies, it remained unclear whether thresholds were pre-specified

or not, potentially resulting in an overestimation of the diagnostic

performance of the models.

This study had several limitations. First, most of the included

studies had a retrospective design, and only one had a prospective

design; thus, selection bias was inevitable. Therefore, prospective

multicenter studies with larger scales are required to validate our

findings. Second, the sample size of the included studies was not

large enough for training and validation, which limited the

statistical power of the study and may affect the generalizability of

the results. Third, significant heterogeneity was observed, which is

observed in other meta-analyses of diagnostic accuracy using ML

based on radiomics. Finally, the mean METRICS score of the

included studies was 60.3%, indicating moderate overall quality.

Therefore, further high-quality radiomics studies are required to

verify our results. Despite these limitations, our review provided
Frontiers in Oncology 09
new insights into the accuracy of ML-based radiomics models for

predicting IDH mutations in gliomas.

In conclusion, ML-based radiomics demonstrated excellent

diagnostic performance for predicting IDH mutations in gliomas.

Nevertheless, owing to the limitations in the quality and quantity of

the included studies, caution should be exercised when applying the

results, and more standardized and prospective studies are

warranted to improve the application and reliability of radiomics.

Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding author.

Author contributions

XC: Conceptualization, Formal analysis, Investigation,

Methodology, Writing – original draft. JL: Conceptualization,

Methodology, Project administration, Supervision, Writing – review

& editing. SW: Investigation, Methodology, Writing – original draft.

JZ: Data curation, Methodology, Software, Writing – original draft.

LG: Methodology, Software, Validation, Writing – original draft.

Funding

The author(s) declare financial support was received for

the research, authorship, and/or publication of this article. This

work was supported by the Youth Science and Technology Fund

Program of Science and Technology Department of Gansu

Province (21JR11RA071).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fonc.2024.1409760/

full#supplementary-material
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fonc.2024.1409760/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2024.1409760/full#supplementary-material
https://doi.org/10.3389/fonc.2024.1409760
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Chen et al. 10.3389/fonc.2024.1409760
References
1. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D,
Cavenee WK, et al. The 2016 world health organization classification of tumors of
the central nervous system: a summary. Acta Neuropathol. (2016) 131:803–20.
doi: 10.1007/s00401-016-1545-1

2. Kurokawa R, Kurokawa M, Baba A, Ota Y, Pinarbasi E, Camelo-Piragua S, et al.
Major changes in 2021 world health organization classification of central nervous
system tumors. Radiographics. (2022) 42:1474–93. doi: 10.1148/rg.210236

3. Cancer Genome Atlas Research Network, Brat DJ, Verhaak RG, et al.
Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J
Med. (2015) 372:2481–98. doi: 10.1056/NEJMoa1402121

4. Kawaguchi T, Sonoda Y, Shibahara I, Saito I, Kanamori I, Kumabe I, et al. Impact
of gross total resection in patients with WHO grade III glioma harboring the IDH 1/2
mutation without the 1p/19q co-deletion. J Neurooncol. (2016) 129:505–14.
doi: 10.1007/s11060-016-2201-2

5. Pellegatta S, Valletta L, Corbetta C, Patanè M, Zucca I, Sirtori FR, et al. Effective
immunotargeting of the IDH1 mutation R132H in a murine model of intracranial
glioma. Acta Neuropathol Commun. (2015) 3:4. doi: 10.1186/s40478-014-0180-0

6. Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images are more than pictures, they
are data. Radiology. (2016) 278:563–77. doi: 10.1148/radiol.2015151169

7. BudaM, AlBadawy EA, Saha A, et al. Deep radiogenomics of lower-grade gliomas:
convolutional neural networks predict tumor genomic subtypes using MR images.
Radiol Artif Intell. (2020) 2:e180050. doi: 10.1148/ryai.2019180050

8. Matsui Y, Maruyama T, Nitta M, Saito T, Tsuzuki S, Tamura M, et al. Prediction
of lower-grade glioma molecular subtypes using deep learning. J Neurooncol. (2020)
146:321–7. doi: 10.1007/s11060-019-03376-9

9. Bhandari AP, Liong R, Koppen J, Murthy SV, Lasocki A. Noninvasive
determination of IDH and 1p19q status of lower-grade gliomas using MRI
radiomics: A systematic review. AJNR Am J Neuroradiol. (2021) 42:94–101.
doi: 10.3174/ajnr.A6875

10. McInnes MDF, Moher D, Thombs BD, McGrath TA, Bossuyt PM, Clifford T,
et al. Preferred reporting items for a systematic review and meta-analysis of diagnostic
test accuracy studies: The prisma-dta statement. Jama. (2018) 319:388–96.
doi: 10.1001/jama.2017.19163

11. Whiting PF, Rutjes AWS, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al.
Quadas-2: A revised tool for the quality assessment of diagnostic accuracy studies. Ann
Intern Med. (2011) 155:529–36. doi: 10.3760/cma.j.issn.0254-6450.2018.04.028

12. METhodological RadiomICs Score (METRICS): a quality scoring tool for
radiomics research endorsed by EuSoMII. Insights into Imaging. (2024) 15.
doi: 10.1186/s13244-023-01572-w

13. Higgins JPT, Thomas J, Chandler J, et al. Cochrane Handbook for Systematic
Reviews of Interventions, Version 6.2 (2021). Available online at: https://training.
cochrane.org/handbook/current/chapter-10#section-10-10-2 (Accessed 17 October
2021).

14. Deville WL, Buntinx F, Bouter LM, et al. Conducting systematic reviews of
diagnostic studies: didactic guidelines. BMC Med Res Methodol. (2002) 2:9.
doi: 10.1186/1471-2288-2-9

15. Li Z, Wang Y, Yu J, Guo Y, Cao W. Deep Learning based Radiomics (DLR) and
its usage in noninvasive IDH1 prediction for low grade glioma. Sci Rep. (2017) 7:5467.
doi: 10.1038/s41598-017-05848-2

16. Yu J, Shi Z, Lian Y, Li Z, Liu T, Gao Y, et al. Noninvasive IDH1 mutation
estimation based on a quantitative radiomics approach for grade II glioma. Eur Radiol.
(2017) 27:3509–22. doi: 10.1007/s00330-016-4653-3

17. Bisdas S, Shen H, Thust S, Katsaros V, Stranjalis G, Boskos C, et al. Texture
analysis- and support vector machine-assisted diffusional kurtosis imaging may allow
in vivo gliomas grading and IDH-mutation status prediction: a preliminary study. Sci
Rep. (2018) 8:6108. doi: 10.1038/s41598-018-24438-4

18. Zhang X, Tian Q, Wang L, Liu Y, Li B, Liang Z, et al. Radiomics strategy for
molecular subtype stratification of lower-grade glioma: detecting IDH and TP53
Frontiers in Oncology 10
mutations based on multimodal MRI. J Magn Reson Imag. (2018) 48:916–26.
doi: 10.1002/jmri.25960

19. Alis D, Bagcilar O, Senli YD, Yergin M, Isler C, Kocer N, et al. Machine learning-
based quantitative texture analysis of conventional MRI combined with ADC maps for
assessment of IDH1 mutation in high-grade gliomas. Jpn J Radiol. (2020) 38:135–43.
doi: 10.1007/s11604-019-00902-7

20. Niu L, Feng WH, Duan CF, Liu YC, Liu JH, Liu XJ, et al. The value of enhanced
MR radiomics in estimating the IDH1 genotype in high-grade gliomas. BioMed Res Int.
(2020) 2020:1–6. doi: 10.1155/2020/4630218

21. Cao M, Suo S, Zhang X, Wang X, Xu J, Yang W, et al. Qualitative and
quantitative MRI analysis in IDH1 genotype prediction of lower-grade gliomas: A
machine learning approach. BioMed Res Int. (2021) 2021:1235314. doi: 10.1155/2021/
1235314

22. Huang WY, Wen LH, Wu G, Hu MZ, Zhang CC, Chen F, et al. Comparison of
radiomics analyses based on different magnetic resonance imaging sequences in
grading and molecular genomic typing of glioma. J Comput Assist Tomogr. (2021)
45:110–20. doi: 10.1097/RCT.0000000000001114

23. Manikis GC, Ioannidis GS, Siakallis L, Nikiforaki K, Iv M, Vozlic D, et al.
Multicenter DSC-MRI-based radiomics predict IDH mutation in gliomas. Cancers
(Basel). (2021) 13:3965. doi: 10.3390/cancers13163965
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