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CNS metastases
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A common feature of advanced solid tumors is their ability to metastasize and

colonize distant organs, including the Central Nervous System (CNS), which

encompasses brain and leptomeningeal metastases (LM). While cerebrospinal

fluid cytopathological analysis remains a gold standard diagnostic tool, it only

provides limited insights into the biology of tumor cells; thus, it is urgent to

develop minimally invasive biomarkers that enable a comprehensive quantitative

and molecular characterization of disseminated cells, therapy response

assessment, and disease monitoring. Liquid biopsy methods have been swiftly

developed for some readily accessible bodily fluids such as plasma and urine;

circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) from these

sources have been rapidly implemented into clinical trial design, disease

monitoring, and treatment assignment across different tumor types. However,

the filter imposed by the brain blood barrier (BBB) hampers the release of tumor-

derived cells and molecules from CNS metastases. Crucially, cerebrospinal fluid

(CSF) liquid biopsymethods offer a unique and unparallel source to develop liquid

biopsy methodologies in patients with CNS-disseminated disease, including the

characterization of CTCs and ctDNA arising specifically from brain and

leptomeningeal metastasis. These technologies have enabled a deeper

understanding of tumor cell and molecular dynamics, including the

reconstruction of clonal evolution in the brain microenvironment through

longitudinal sapling. Here, we discuss the current challenges and opportunities

that CSF liquid biopsy methods face for the implementation of these approaches

into clinical settings.
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Introduction

Central Nervous System (CNS) metastases, encompassing brain

metastases (BrM) and leptomeningeal metastases (LM), represent

some of the most serious and common neurological complications

of solid tumors. Among all tumor types, breast, lung cancers and

melanoma, have the highest likelihood of developing CNS

metastases (1–3). across CNS malignancies, the incidence of CNS

metastases is 3-10 times higher than the incidence of primary brain

tumors (4). More than 25% of patients with stage IV lung cancer

may have BrM initially and up to 54% of these patients will

subsequently develop BM following the primary tumor diagnosis

(5–7). In breast cancer 5-20% of patients and in melanoma 7-16% of

patients, developed BrM (8–11). Another devastating neurologic

complication is LM whose incidence is challenging to determine at

earlier stages based on current diagnostic criteria (12). LM can

occur as a standalone disease without BrM, be present at the time of

BrM diagnosis in up to 30% of patients or develop much later in

patients with BrM (13) (Figure 1). The timing of LM diagnosis

holds specific prognostic significance related to its detection (14).

Diagnostic methods for CNS metastases include neuroimaging,

brain tissue diagnosis if surgical resection is feasible and

cerebrospinal fluid (CSF) studies for LM diagnosis. However,

resection of CNS metastases can be challenging to perform due to

the eloquent location of these tumors and may not be indicated

when multiple metastases are present. Interestingly, a recent study of

resected BrM suggested that sequencing of primary tumors alone

might miss molecular aberrations present in 53% of CNSmetastases,

and various drug resistance mutations could be identified in CSF in

about 50% of patients with CNS relapse during various kinase

inhibitor therapy. This indicates that a primary tumor biopsy

alone might not be sufficient to achieve optimal molecular

guidance to treat CNS metastases in advance tumors (15, 16). As

systemic therapies improve, patients with cancer have longer

survival prospects and higher chances of developing CNS

metastases as tumors acquire treatment resistance and relapse/
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recur over time. Our understanding of the molecular landscape of

CNS metastases remains limited at the time of BrM and LM

diagnosis, throughout the disease course, and during treatment.

Hence, there is a substantial clinical need to discover cerebrospinal

fluid (CSF) biomarkers for the diagnosis, prognosis and assessment

for treatment response in patients with CNS metastases.
Leptomeningeal metastasis

LM is one of the underdiagnosed complications of cancer despite

now being a treatable disease (12, 17–21). Establishing the diagnosis

of LM based on standard cerebrospinal fluid (CSF) cytologic analysis

or MRI findings is often difficult, particularly at the early stages of

leptomeningeal dissemination when treatment interventions could be

more effective in limiting spread and triggering additional symptoms.

Brain and spine MRIs have the advantage of being non-invasive, but

their findings may be nonspecific and equivocal for LM (22). CSF

cytology examination is a “gold standard” minimally invasive

diagnostic test that provides confirmation of LM but has low

diagnostic sensitivity, often requiring multiple lumbar punctures to

establish a diagnosis of LM (23–25). The interpretation of CSF

cytology results in a dichotomous qualitative variable, positive or

negative for malignant cells, and can be challenging if reported as

suspicious or atypical. The current EANO/ESMO LM group

consensus interprets those results as equivocal (26) and thus,

negative results could be false negative as a result of low disease

burden in the CNS compartment.

Recent development of new technologies and studies showing

the feasibility to identifying tumor- derived cell-free circulating

tumor DNA (ctDNA) in CSF and capturing and quantifying CSF

circulating tumor cells (CTC) using rare cell capture technologies.

This provides a unique opportunity to improve LM diagnosis and to

characterize the molecular landscape of the CNS metastases, with

the hope that “liquid biopsy” of CSF will be diagnostic, prognostic

and therapeutic biomarkers (Figure 2).
FIGURE 1

Distribution of patients (N = 101) with newly diagnosed leptomeningeal metastasis based on isolated leptomeningeal metastasis versus
leptomeningeal metastasis and brain metastases (A) including time of brain metastases diagnosis (B) Adapted from Diaz’s paper “Quantitative
assessment of circulating tumor cells in cerebrospinal fluid as a clinical tool to predict survival in leptomeningeal metastases” at Journal of Neuro-
Oncology {Diaz, 2022 #256}.
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Quantitative assessment of disease burden
in CSF: CSF CTC analysis by rare cell
capture technologies

The validated CellSearch system (Menarini Silicon BioSystems),

utilizing an immunomagnetic CTC selection method based on an

rare cell capture technology (RCCT) and anti-epithelial cell adhesion

molecule (EPCAM) antibody-conjugated ferroparticles, is an FDA-

approved methodology for enumerating CTC from blood in patients

with breast, prostate and colon cancers (27–31). The CellSearch

system has been deployed to evaluate CSF-CTCs in patients with

LM and has demonstrated potential as a diagnostic marker (Figure 3).

A recent prospective study enrolled 95 patients with solid tumors (36

patients with breast cancer, 31 with lung cancer, 28 patients with

other solid tumors) presenting with neurologic symptoms suspicious

for LM or with MRI findings suspicious for LM, and referred them

for clinical CSF examination (32). All patients underwent MRI of the

brain and/or spine, and CSF cytopathology. Additionally, 3 ml of CSF

from the same lumbar puncture were submitted for CSF-CTC

analysis. Based on ROC analysis, presence of ≥ 3 CSF-CTC/per 3

ml was defined as the optimal cut-off for diagnosis of LM achieving a

sensitivity of 93%, specificity 95%, positive predictive value 90%,

negative predictive value 97%. Other studies reported similar findings

of sensitivity above 80% and specificity above 95% (33–38).

Additionally, several retrospective studies have demonstrated that

LM patients with higher CSF-CTC counts at the time of diagnosis

would have worse survival rate compared to those with lower counts,

indicating a prognostic role for CSF-CTCs (39, 40).
The role of CSF CTC analysis in
response assessment

Advances in CSF biomarkers analysis allowed to further

incorporate the CSF-CTC analysis as an exploratory endpoint in

multiple IRB -approved clinical trials (19, 41, 42). For instance, in a

phase I/II trial of intrathecal trastuzumab for LM in human epidermal

growth factor receptor 2 positive (HER2+) breast carcinoma (42)
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aimed at characterizing changes in CSF CTCs over time as a potential

biomarker of treatment response. Of the 15 patients, 9 had greater than

1 cycle of treatment and were evaluated: a decrease in CSF-CTC count

with treatment, and a later increase in CTCs predating radiographic

LM progression, were seen in several patients, which led to hypothesis

that CSF-CTC analysis may serve as a platform to assess quantitative

treatment response and should be further investigated.

The largest prospectively collected case series of 58 patients (41)

treated with proton cranio-spinal irradiation (pCSI) reported statistical

significance association (HR: 1.05 per 10 cells (95%CI: 1.01–1.10, P =

.01) of pre-pCSI CSF-CTCs with CNS progression free survival (PFS)

but not associated with overall survival. Moreover, in 31/58 patients

with both a pre- and post-pCSI, no increase in CSF-CTCs was

observed immediately post-pCSI. It is probably too early to conclude

whether CSF-CTC results should influence the decision to discontinue

treatment as the relationship between number of CSF-CTCs and

radiographic disease CNS burden needs to be investigated further.

Currently the RCCT immunomagnetic platform for

enumerating CTC in CSF could be available in a few but not all

highly specialized cancer centers, complicating the widespread

implementation of this approach, and the validation of its clinical

utility across other institutions in the US and worldwide. Other

limitations of the CellSearch platform are that it only detects cells

from tumors of epithelial origin and have limited ability to provide

comprehensive genomic characteristics of the cells. Thus far

genomic sequencing of isolated CSF-CTCs has been achieved in

patients with LM from breast cancer expressing human epidermal

growth factor receptor 2 (HER2) and demonstrated similarities

between CSF-CTCs and tumor cells from primary site in addition to

several genetic alterations private to CSF-CTC (38, 42–44).
Clinical significance of CSF ctDNA as a
diagnostic, prognostic and treatment
response biomarkers

Detection of ctDNA in plasma has showed promising potential

as a source of “liquid biopsy” to reflect extracranial treatment
FIGURE 2

Schematic presentation of MRI of the spine with leptomeningeal metastasis and CSF collection followed by different CSF applications. Adapted from
{Pentsova, 2016 #170} {Lin, 2017 #220}.
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response and outcomes in a variety of cancers (45–47). However

recent studies have shown that plasma ctDNA may not accurately

reflect intracranial disease burden in patients with BM (48, 49). Less

than a decade ago several studies showed the feasibility of CSF

cfDNA sequencing (16, 48–50). Several retrospective studies have

demonstrated a positivity rate of CSF ctDNA consistently above

50% for patients with primary or metastatic brain tumors, including

detection of tumor-associated mutations in the CSF of 63% of

patients with brain metastases (16); in patients with glioma, CSF

ctDNA can be found at a much higher positivity rate than plasma

and correlates with prognosis (51, 52). CSF is relatively acellular and

has direct anatomical contact with BM, making it easier to detect

ctDNA in this fluid, potentially with a better correlation with

prognosis than plasma ctDNA. Since than many groups reported
Frontiers in Oncology 04
results which suggested that CSF sequencing may offer a window

into the identification of drug resistance mechanisms in patients

whose primary tumor responded to genotype-directed targeted

cancer therapy but then developed tumor progression in the CNS

(Table 1). Additional work is needed to understand to what extent

CSF cfDNA reflects the genetic alterations of the primary tumor

and/or CNS metastases as a small study showed that some paired

BM specimens had unique alterations in TP53 and KRAS, but there

were notably very few unique mutations in the CSF specimens (65).

Based on current data many questions need to be answered in a

clinical setting: how to use CSF ctDNA to monitoring genetic

evolution of the tumor in response to treatment, what the role of

clonal and subclonal mutation in the CSF is, and whether CSF

ctDNA presence or absence, or the percentage of variant allele
FIGURE 3

Library of CSF circulating tumor cells from patient with breast cancer and leptomeningeal metastases demonstrating 12 circulating tumor cells per 3
ml of CSF (each row represents one event or one CTC).
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frequency (VAL) in the sample are the marker of response and

correlation with survival and might thus be clinically useful as a

“surrogate” source of tumor-derived DNA.

Molecular profiling of CSF in patients with brain tumors to

identify potential micro RNAs (miR) associated to brain or

leptomeningeal dissemination is of great interest, as it could

provide a tool to predict and anticipate metastatic disease. Due to

technical limitations in discerning tumor and immune cell miR

profiles due to the rarity of CTCs, results are heterogeneous and
Frontiers in Oncology 05
require cautious interpretation. Despite heterogeneous findings,

some studies report associations of specific miRs found in the

CSF with the presence of brain tumors. An early study in patients

with primary and metastatic brain tumors found, using a candidate

approach, that miR10b, miR-21 and miR-200 were overexpressed in

samples from patients with primary and metastatic brain tumors

compared to controls{Teplyuk, 2012 #299}. Follow-up studies

conducting miR profiling found differential expression of miR-

30e, miR-140, let-7b, mR-10a and miR-21-3p in patients with brain

tumors in a cohort of 175 patients that included 13 patients with

metastasis; these miRs were validated in an external cohort of 105

patients {Kopkova, 2019 #298}. More recent approaches study miR

signatures, which could be more informative as they aggregate

global miR profile changes; in a cohort of 65 patients (including 11

patients with LM and 6 patients with BM), miR-335-5p and miR-

34b-3p were linked to brain metastasis{Im, 2021 #297}. Although

provocative, these studies are limited by the small number of

patients, and most of them are not tested in prospective settings;

besides these low numbers, these cohorts are heterogeneous as

metastases from different types of primary tumors are often

grouped to compensate the small cohort samples in granular

analyses. Thus, future studies in this line should focus on larger,

homogeneous cohorts and incorporate to the extent possible

prospective testing of miR profiles.

Paralleling the advances in plasma and other non-CNS bodily

fluids, considerable progress has been achieved after almost a

decade of CSF-based liquid biopsy: from its conceptual inception

and feasibility to its clinical validation, including the potential to

influence clinical trial design, several roadblocks have been cleared

out regarding the utility of CSF liquid biopsy for CNS disease. There

are a few additional questions that must be answered to better

understand the prognostic implications of detectable CTCs and

ctDNA in CSF, the role of the molecular profile of CSF cfDNA from

patients with CNS metastases and its correlation with the molecular

profile of blood cfDNA/primary tumors or other sites of metastases

to identify mutations or clonal populations that may predispose to

CNS metastases. Most prominently, randomized prospective

studies are sorely needed to provide sufficient evidence of

feasibility in clinical pipelines, and a thorough benchmarking of

molecular profiling methods (including cell detection and capture

methods) has to be conducted to circumvent technical limitations of

these approaches.
Discussion

The advent of increasingly effective diagnostic procedure and

treatments across cancer types has resulted in overall improved

clinical outcomes for primary tumors, but CNS metastases are still a

common feature for most advanced solid tumors, for which scanty

treatment options are currently available. The treatments for CNS

metastases often are assigned based on the molecular profiles of the

primary tumor, and monitoring tumor responses remains a

challenge beyond imaging, given that repeated biopsy is not

always feasible or safe for these patients. This particularity of
TABLE 1 Studies analyzing CSF ctDNA in patients with solid tumors with
and without brain and leptomeningeal metastases (Updated: July 2024).

Authors N Cancer Type CSF ctDNA
Sequencing
Analysis

Pentsova E
et al (16)

53 ST with +/-CNS
mets,
PBT

NGS

Cheok SK
et al (53)

14 ST with CNS mets Error-suppressed
deep sequencing

Huang R
et al (54)

35 ST with CNS mets ddPCR

Ma C et al (55) 21 ST with CNS mets NGS

Bale TA et al (56) 137pts
148samples

ST with CNS mets,
PBT

NGS

Shen F et al (57) 77 ST with CNS
mets: LM

NGS

Wang Y et al (58) 131 ST with CNS
mets: LM

NGS

White MD
et al (59)

22 ST with CNS
mets: LM

WES

Wijetunga NA
et al (60)

64pts
78samples

ST with CNS
mets: LM

NGS

Choi W et al (61) 11 ST with LM ddPCR and NGS

Pan et al (48) 8 ST with LM and
CNS mets,
PBT

Amplicon-based
cancer
gene panel
sequencing,
Digital
PCR&targeted
amplicon sequencing

Shah M et al (62) 38 ST with LM and
CNS mets, PBT

NGS

Zhao Yue
et al (63)

35 ST with LM,
CNS lymphoma

NGS

De Mattos-Arruda
L et al (49)

12 ST with LM, PBT NGS

Fitzpatrik A
et al (64)

24 ST: Breast/LM NGS

Skakodub A
et al (65)

13 ST: NSCLC LM +/- NGS
Mets, Metastasis; LM, Leptomeningeal metastasis; ST, Solid tumors; PBT, Primary brain
tumor; ddPCR, droplet digital polymerase chain reaction; NGS, Next-generation sequencing;
WES, Whole-exome sequencing; CNS, Central Nervous System.
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CNS metastasis severely limits the development of experimental

approaches, for which response assessments are challenging.

Besides, patients with CNS metastases are often excluded from

trials because of severe neurological deficits.

In contrast to most other solid tumors, traditional liquid biopsy

approaches using plasma have been largely ineffective for CNS-

disseminated disease, due to the limited release of cellular and

molecular tumor components across the brain-blood barrier

towards the main circulatory system. Thus, CSF-based liquid

biopsies have profoundly revolutionized the ways in which we

can access to these types of clinically relevant information in a

minimally invasive manner.

The development of CSF biomarkers may allow us to diagnose

CNS metastases earlier and find why CNS disease does not respond

to treatment at the time of recurrence, thus increasing the chance

patients can participate in clinical trials.

As these methods continue to develop with increasing

resolution, sensitivity, and specificity, data integration with

orthogonal methods (such as electronic health records, advanced

imaging, patient-reported outcomes, and computational methods)

will increase the robustness of CSF liquid biopsy as a useful

biomarker that provide unique clinical and molecular information.
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