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Objective: This study aims to develop an artificial intelligence model utilizing

clinical blood markers, ultrasound data, and breast biopsy pathological

information to predict the distant metastasis in breast cancer patients.

Methods: Data from two medical centers were utilized, Clinical blood markers,

ultrasound data, and breast biopsy pathological information were separately

extracted and selected. Feature dimensionality reduction was performed using

Spearman correlation and LASSO regression. Predictive models were

constructed using LR and LightGBM machine learning algorithms and validated

on internal and external validation sets. Feature correlation analysis was

conducted for both models.

Results: The LR model achieved AUC values of 0.892, 0.816, and 0.817 for the

training, internal validation, and external validation cohorts, respectively. The

LightGBM model achieved AUC values of 0.971, 0.861, and 0.890 for the same

cohorts, respectively. Clinical decision curve analysis showed a superior net

benefit of the LightGBMmodel over the LRmodel in predicting distant metastasis

in breast cancer. Key features identified included creatine kinase isoenzyme (CK-

MB) and alpha-hydroxybutyrate dehydrogenase.

Conclusion: This study developed an artificial intelligence model using clinical

blood markers, ultrasound data, and pathological information to identify distant

metastasis in breast cancer patients. The LightGBM model demonstrated

superior predictive accuracy and clinical applicability, suggesting it as a

promising tool for early diagnosis of distant metastasis in breast cancer.
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Background

Breast cancer is one of the most common malignancies affecting

women worldwide, posing a significant threat to women’s health. By

2020, breast cancer had become one of the most frequently

diagnosed cancers globally (1). While ranking fourth in terms of

mortality, it showed the most significant increase in new death cases

(1). In China alone, there are over 410,000 new cases of breast

cancer annually, with over 110,000 associated deaths (2). The

majority of deaths result from cancer metastasis, with

approximately 20–30% of breast cancer patients likely to

experience this occurrence (3).

Distant metastasis is a common form of recurrence and a

lifelong risk for breast cancer patients (4). The sites of breast

cancer metastasis are closely linked to patient survival, with the

most common sites being bones, lungs, and liver (3, 5). Distant

metastasis significantly diminishes the quality of life for breast

cancer patients and can lead to mortality (4, 6).

Before the pathological confirmation of breast cancer metastasis

through biopsy, MRI and CT scans are usually conducted to provide

relevant indications (7, 8). When results from these imaging studies

are inconclusive, diagnostic information may be provided by

functional imaging modalities such as positron emission

tomography, dynamic contrast-enhanced magnetic resonance

imaging, or diffusion-weighted magnetic resonance imaging (9).

The decision to conduct a series of imaging examinations for breast

cancer patients entirely depends on the clinical suspicion of the

physician, and even in cases of suboptimal results, expensive

functional imaging studies may be required. For patients in some

developing countries, the cost of multiple imaging examinations can

be relatively high, resulting in a significant economic burden.

Additionally, imaging examinations have certain limitations in

certain situations (7).

To address these challenges, some studies have begun to explore

the use of artificial intelligence (AI) technology to assist in

predicting breast cancer metastasis (10–15). This AI-based

approach holds promise for providing faster and more accurate

diagnoses, while potentially reducing the need for expensive

imaging studies, thereby alleviating the economic burden on

patients. The current research primarily focuses on predicting the

risk of breast cancer metastasis in the future (1 year, 3 years, or 5

years) (10, 12, 13, 15–18), while there is relatively less emphasis on

diagnostic predictions for distant metastasis of breast cancer (11, 14,

19–21). In the study by Huang et al., the SEER database was used to

predict bone metastasis in invasive ductal carcinoma; however, their

study did not mention a validation set (11). Ma et al. developed a

fusion model integrating clinical-pathological data with MRI

features, which also showed promising performance (14).

Similarly, Li et al. (19) also utilized MRI features and clinical

pathological characteristics to establish a predictive model, but

they did not mention the machine learning algorithms used, nor

did they validate the model with external data. Additionally, Zhao

et al. (20) used the SEER database and four machine learning

algorithms, including Extreme Gradient Boosting (XGBoost),

k-Nearest Neighbors (KNN), Decision Tree (DT), and Support
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Vector Machine (SVM) to predict the risk of distant metastasis in

breast cancer, with XGBoost performing the best. Furthermore,

Burak Yagin et al. (21) used genomic data from 98 breast cancer

cases and several algorithms including Light Gradient Boosting

Machine (LightGBM), Categorical Boosting (CatBoost), Extreme

Gradient Boosting (XGBoost), Gradient Boosted Trees (GBT), and

Adaptive Boosting (AdaBoost) to build a model for predicting

distant metastasis in breast cancer, with LightGBM being the best

performer. The above studies suggest that using AI to evaluate

breast cancer metastasis before conducting relatively expensive

whole-body imaging studies may help eliminate unnecessary

imaging examinations.

In this study, we established AI models to identify breast cancer

metastasis by integrating clinical blood markers, ultrasound data, and

breast biopsy pathology. The algorithms used include not only the

well-performing XGBoost and LightGBM from previous research but

also AdaBoost and Logistic Regression (LR). This method not only

improves the affordability and accessibility of diagnosis but also offers

new avenues and possibilities for the early diagnosis of breast cancer

metastasis. With ongoing technological advancements and deeper

research, the application of AI in predicting breast cancer metastasis

holds promise as a significant future development direction.
Materials and methods

Patient population

This retrospective study included data from two medical centers,

approved by the institutional review boards of both centers. Inclusion

criteria were as follows: (1) definitive diagnosis of de novo primary

breast cancer with or without distant metastasis; (2) completion of

ultrasound examination, clinical blood marker testing, and breast

biopsy pathology examination before treatment (radiotherapy or

chemotherapy) or surgical resection; (3) no history of hypertension,

diabetes, or hyperlipidemia; (4) no history of abnormalities in liver,

kidney, or cardiovascular function blood markers; (5) no history of

other diseases. Exclusion criteria were as follows: (1) distant

metastasis occurred after treatment (surgical resection or

chemotherapy); (2) ultrasound examination not performed due to

unavoidable reasons (such as breast surface dressing coverage);

(3) ultrasound examination did not provide the maximum

diameter of the lesion; (4) clinical blood markers did not include

tumor markers (AFP, CEA, CA125, CA153, and CA199), liver

function tests, kidney function tests, lipid profile, or cardiovascular

function markers; (5) the biopsy pathology examination did not

provide immunohistochemical results for ER, PR, HER2, or Ki67.

The breast cancer cases involved in the study were from two research

centers, one comprising 342 patients randomly divided into training

(274 patients) and test (68 patients) cohorts at an 8:2 ratio, and the

other center’s 75 patients served as an external testing set (test1

cohort). Given that breast cancer distant metastasis in this study

mainly occurs in the bones, lungs, and liver, with detailed local

distributions outlined in Table 1. The workflow of the study’s model

is illustrated in Figure 1.
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TABLE 1 Clinical blood markers, pathological, and ultrasound characteristics in the training, test, and test1 cohorts.

Characteristics Training cohort
(n = 274)

Test cohort
(n = 68)

Test1 cohort
(n = 75)

P value

Age (years), mean ± SD 49.54 ± 9.96 48.91 ± 11.75 50.72 ± 10.69 0.563

Weight (kg), mean ± SD 57.44 ± 8.16 57.34 ± 9.07 56.61 ± 8.94 0.753

Maximum tumor diameter by ultrasound (cm),
median (IQR)

3.70 (2.80, 5.00) 3.60 (2.45, 4.87) 2.60 (2.00, 4.50) <0.001

CEA (ng/ml), median (IQR) 2.25 (1.34, 4.63) 2.62 (1.62, 5.19) 2.58 (1.48, 5.06) 0.296

AFP (ng/ml), median (IQR) 2.51 (1.80, 4.38) 2.52 (1.91, 3.41) 2.41 (1.79, 3.40) 0.728

CA125 (U/ml), median (IQR) 16.20 (10.84, 28.25) 15.70 (10.60, 22.58) 16.35 (10.18, 30.00) 0.858

CA153 (U/ml), median (IQR) 16.00 (9.75, 30.30) 15.15 (11.08, 31.15) 18.35 (9.18, 46.15) 0.833

CA199 (U/ml), median (IQR) 8.80 (3.75, 20.35) 9.75 (3.95, 19.75) 9.56 (3.09, 20.69) 0.686

TBIL (m mol/L), median (IQR) 11.60 (8.95, 14.70) 11.00 (9.70, 13.00) 12.10 (10.10, 16.58) 0.172

DBIL (m mol/L), median (IQR) 3.50 (2.80, 4.90) 3.65 (2.90, 4.38) 3.15 (2.30, 4.43) 0.106

IBIL (m mol/L), median (IQR) 7.70 (6.10, 9.95) 7.50 (6.40, 8.93) 9.25 (7.20, 12.90) 0.004

TP (g/L), median (IQR) 69.70 (65.35, 74.00) 69.55 (66.85, 72.30) 71.30 (67.45, 75.78) 0.079

ALB (g/L), median (IQR) 40.00 (37.40, 43.05) 40.05 (38.20, 41.78) 39.25 (36.60, 41.38) 0.108

GLO (g/L), median (IQR) 29.30 (26.65, 31.95) 29.85 (26.65, 31.68) 33.25 (28.73, 36.10) <0.001

A_G (Ratio), median (IQR) 1.37 (1.23, 1.53) 1.38 (1.21, 1.58) 1.20 (1.00, 1.40) <0.001

GGT (U/L), median (IQR) 19.00 (16.00, 27.00) 17.50 (14.00, 26.00) 21.50 (13.00, 32.25) 0.438

TBA (m mol/L), median (IQR) 3.90 (2.20, 6.65) 2.70 (1.80, 4.35) 4.75 (2.98, 7.60) <0.001

PA (mg/L), median (IQR) 232.90 (201.20, 271.80) 236.00 (203.90, 262.88) 245.30 (201.95, 272.18) 0.885

AST (U/L), median (IQR) 25.00 (20.00, 31.00) 26.00 (20.00, 30.50) 23.50 (18.00, 32.25) 0.474

ALT (U/L), median (IQR) 15.00 (11.00, 22.00) 14.50 (11.00, 22.50) 14.50 (12.00, 19.25) 0.794

AST_ALT (Ratio), median (IQR) 1.62 (1.23, 2.01) 1.55 (1.23, 2.29) 1.65 (1.28, 2.15) 0.904

ALP (U/L), median (IQR) 68.00 (51.00, 86.00) 65.00 (50.25, 88.75) 77.50 (52.00, 96.25) 0.467

CHE (U/L), mean ± SD 8725.57 ± 2262.12 8507.16 ± 2116.71 8422.32 ± 2072.70 0.503

UREA (mmol/L), median (IQR) 4.50 (3.70, 5,50) 4.40 (3.83, 5.00) 4.42 (3.57, 5.24) 0.793

CREA (m mol/L), median (IQR) 60.00 (53.00, 67.00) 58.00 (52.25, 67.00) 59.00 (51.00, 68.00) 0.960

UA (m mol/L), median (IQR) 310.00 (252.00, 358.00) 290.50 (240.75, 363.25) 294.00 (253.25, 360.75) 0.688

HCO3 (mmol/L), median (IQR) 26.00 (24.00, 27.00) 26.00 (24.00, 28.00) 25.25 (22.98, 26.58) 0.042

Ccr (ml/min), mean ± SD 94.31 ± 24.98 96.97 ± 25.42 98.24 ± 21.09 0.403

CYSC (mg/L), median (IQR) 0.82 (0.71, 0.95) 0.80 (0.69, 0.90) 0.78 (0.69, 0.91) 0.209

K (mmol/L), median (IQR) 4.00 (3.70, 4.20) 3.90 (3.70, 4.18) 3.96 (3.73, 4.18) 0.422

Na (mmol/L), median (IQR) 141.00 (139.00, 142.00) 141.00 (140.00, 143.00) 139.85 (137.86, 141.00) <0.001

Cl (mmol/L), median (IQR) 102.00 (101.00, 104.00) 103.00 (101.00, 104.00) 105.50 (104.08, 107.23) <0.001

Ca (mmol/L), median (IQR) 2.29 (2.20, 2.38) 2.28 (2.20, 2.35) 2.29 (2.22, 2.36) 0.765

Mg (mmol/L), median (IQR) 1.00 (0.91,1.08) 1.03 (0.94, 1.09) 0.87 (0.82, 0.91) <0.001

PHO (mmol/L), median (IQR) 1.08 (1.00, 1.20) 1.08 (1.00, 1.17) 1.12 (1.05, 1.21) 0.219

CK (U/L), median (IQR) 71.00 (58.00, 94.00) 74.00 (61.00, 97.00) 71.00 (52.00, 95.00) 0.457

(Continued)
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TABLE 1 Continued

Characteristics Training cohort
(n = 274)

Test cohort
(n = 68)

Test1 cohort
(n = 75)

P value

CK_MB (U/L), median (IQR) 11.00 (8.00, 16.00) 12.00 (8.25, 14.00) 14.00 (11.00, 19.00) 0.001

LDH (U/L), median (IQR) 178.00 (153.50, 210.00) 174.00 (153.00, 203.00) 163.00 (141.50, 207.50) 0.226

HBDB (U/L), median (IQR) 134.00 (117.00, 159.00) 130.50 (114.50, 155.75) 123.00 (103.50, 145.50) 0.023

CHO (mmol/L), median (IQR) 4.97 (4.38, 5.79) 4.80 (4.38, 5.58) 4.98 (4.44, 5.87) 0.604

TG (mmol/L), median (IQR) 1.08 (0.77, 1.60) 1.11 (0.86, 1.70) 1.24 (0.81, 1.74) 0.398

HDL_C (mmol/L), median (IQR) 1.34 (1.15, 1.58) 1.25 (1.12, 1.46) 1.36 (1.18, 1.51) 0.159

LDL_C (mmol/L), median (IQR) 2.94 (2.47, 3.58) 2.91 (2.38, 3.42) 3.02 (2.51, 3.81) 0.522

APO_A1 (g/L), median (IQR) 1.31 (1.16, 1.46) 1.24 (1.15, 1.40) 1.30 (1.18, 1.46) 0.409

APO_B (g/L), median (IQR) 0.92 (0.77, 1.10) 0.92 (0.80, 1.13) 0.88 (0.73, 1.06) 0.159

A1_B1 (Ratio), median (IQR) 1.42 (1.18, 1.71) 1.38 (1.17, 1.57) 1.50 (1.20, 1.80) 0.324

Lpa (mg/L), median (IQR) 188.00 (98.50, 395.50) 139.50 (90.25, 300.00) 166.00 (118.25, 355.75) 0.447

Pathological diagnosis*, n (%) 0.872

Infiltrating duct carcinoma, NOS 258(94.16) 65(95.59) 72(97.30)

Infiltrating lobular carcinoma, NOS 7(2.55) 3(4.41) 1 (1.35)

Invasive papillary carcinoma 1(0.36) 0(0.00) 0(0.00)

Invasive micropapillary
carcinoma

4(1.46) 0(0.00) 0(0.00)

Mucinous adenocarcinoma 3(1.09) 0(0.00) 1(1.35)

Metaplastic carcinoma 1(0.36) 0(0.00) 0(0.00)

Distant metastasis*, n (%) 0.803

None metastasis 150(54.74) 37(54.41) 41(55.41)

Bone metastasis 65(23.72) 21(30.88) 17(22.97)

Lung metastasis 35(12.77) 6(8.82) 8(10.81)

Liver metastasis 24(8.76) 4(5.88) 8(10.81)

Lymph node metastasis*, n (%) 0.350

Absent 114(41.61) 24(35.29) 35(47.30)

Present 160(58.39) 44(64.71) 39(52.70)

ER (Positive ratio), n (%) 0.403

≤ 0.5 134(48.91) 39(57.35) 35(47.30)

>0.5 140(51.09) 29(42.65) 39(52.70)

PR (Positive ratio), n (%) 0.300

≤ 0.1 146(53.28) 40(58.82) 34(45.95)

>0.1 128(46.72) 28(41.18) 40(54.05)

HER2(IHC), n (%) 0.119

0 72(26.28) 14(20.59) 25(33.78)

1+ 30(10.95) 9(13.24) 15(20.27)

2+ 79(28.83) 19(27.94) 13(17.57)

(Continued)
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Feature extraction and selection

Features extracted from clinical blood markers included tumor

markers (carcinoembryonic antigen, alpha-fetoprotein, CA125,

CA153, and CA199), liver function indicators (total bilirubin,

direct bilirubin, indirect bilirubin, total protein, albumin, globulin,

albumin-globulin ratio, g-glutamyl transferase, pre-albumin,

aspartate transaminase (AST), alanine transaminase (ALT), AST/

ALT ratio, alkaline phosphatase, cholinesterase, and total bile

acids), kidney function indicators (urea, creatinine, uric acid,

blood bicarbonate concentration, endogenous creatinine clearance

rate, Cysteine Protease Inhibitor C, potassium ion, sodium ion,

chloride ion (Cl), calcium ion, Magnesium ion (Mg), and inorganic

phosphorus), lipid profile [total cholesterol, triglycerides, high-

density lipoprotein cholesterol, low-density lipoprotein

cholesterol, apolipoprotein A1, apolipoprotein B, A1/B ratio, and

lipoprotein (a)], and cardiovascular function indicators [creatine

kinase, creatine kinase isoenzyme (CK-MB), lactate dehydrogenase,
Frontiers in Oncology 05
and alpha-hydroxybutyrate dehydrogenase (a-HBDH)]. Features

from ultrasound data included the maximum diameter of breast

cancer lesions. Pathological data included immunohistochemical

results for ER, PR, HER2, and Ki67.

The extracted features underwent the following procedures:

first, standardization was performed using z-score normalization

(mean = 0, standard deviation = 1) to preprocess the data to

conform to a standard normal distribution. Next, Spearman rank

correlation coefficient was utilized for statistical analysis to measure

the correlation between two variables. When the Spearman

correlation coefficient between features was >0.9, one of the

highly correlated features was retained. This method employs a

“greedy approach”. It selects the most redundant feature at each

step to retain, aiming to minimize the correlation between features

and thus enhance the models’ generalization ability and

performance. Finally, LASSO regression with L1 regularization

was employed for feature dimensionality reduction. This method

selects highly correlated features and generates sparse models,
TABLE 1 Continued

Characteristics Training cohort
(n = 274)

Test cohort
(n = 68)

Test1 cohort
(n = 75)

P value

HER2(IHC), n (%) 0.119

3+ 93(33.94) 26(38.24) 21(28.38)

Ki67 (Positive ratio), n (%) 0.298

≤ 0.4 154(56.20) 39(57.35) 49(66.22)

>0.4 120(43.80) 29(42.65) 25(33.78)
SD, Standard deviation; AFP, Alpha-Fetoprotein; CEA, Carcinoembryonic Antigen; CA125, Carbohydrate Antigen125; CA153, Carbohydrate Antigen153; CA199, Carbohydrate Antigen 199;
TBIL, Total bilirubin; DBIL, Direct bilirubin; IBIL, Indirect bilirubin; TP, Total protein; ALB, Albumin; GLO, globulin; A_G (Ratio), Albumin-globulin ratio; GGT, g-glutamyl transferase; TBA,
Total bile acids; PA, Pre-albumin; AST, Aspartate aminotransferase; ALT, Alanine aminotransferase; AST_ALT (Ratio), Aspartate aminotransferase to alanine aminotransferase ratio; ALP,
Alkaline phosphatase; CHE, Cholinesterase; UREA, Urea; CREA, Creatinine; UA, Uric acid; HCO3, Blood bicarbonate concentration; Ccr, endogenous creatinine clearance rate; CYSC, Cysteine
Protease Inhibitor C; K, Potassium ion; Na, Sodium ion; Cl, chloride ion; Ca, Calcium ion; Mg, Magnesium ion; PHO, Inorganic phosphate; CK, Creatine kinase; CK_MB, Creatine kinase
isoenzyme; LDH, Lactate dehydrogenase; HBDB, a-hydroxybutyrate dehydrogenase; CHO, Total cholesterol; TG, Triglycerides; HDL_C, High-density lipoprotein cholesterol; LDL_C, Low-
density lipoprotein cholesterol; APO_A1, Apolipoprotein A1; APO_B, Apolipoprotein B; A1_B (Ratio), Apolipoprotein A1 to apolipoprotein B ratio; Lpa, lipoprotein (a).
*, indicates that this characteristic does not need to be included in model construction.
FIGURE 1

The workflow of LR and LightGBM models in this study.
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meaning only a few features significantly contribute to the

prediction results, thereby improving the interpretability and

generalization capability of the model.
Development and validation of models

LR, LightGBM, GBoost and AdaBoost machine learning

algorithms were employed in this study to construct models for

breast cancer with and without distant metastasis as binary outcome

variables. Model construction was performed based on 5-fold cross-

validation of the training set. After model construction, validation

was conducted on the internal and external testing sets.

Performance evaluation was conducted using metrics such as the

area under the receiver operating characteristic curve (AUC),

accuracy, sensitivity, specificity, positive predictive value (PPV),

and negative predictive value (NPV). Subsequently, clinical decision

curve analysis (DCA) was performed, reflecting the net benefit of

different threshold probabilities in the training and internal and

external validation sets to assess the clinical efficiency of the model.
Statistical analysis

The analysis of clinical baseline features was performed using

SPSS software (version 25.0, IBM). For the comparison of normally

distributed continuous variables with homogeneity of variance

(expressed as x ± s) across multiple groups, ANOVA was used.

For the comparison of non-normally distributed or heteroscedastic

continuous variables (expressed as median (IQR)) across multiple

groups, the Kruskal-Wallis H test was employed, while pairwise

comparisons were conducted using the Mann-Whitney U test. For

categorical variables (expressed as ratios), chi-square tests or

Fisher’s exact tests were used. A two-tailed p-value < 0.05

indicated statistical significance. Spearman rank correlation tests,

z-score normalization, LR model output (displaying feature

coefficients), LightGBM model feature importance output, and

LASSO regression analysis were performed using Python software

(version 3.7.17; http://www.python.org). ROC curves and clinical

decision curves were plotted accordingly. The evaluation of the

models involved AUC values, accuracy, sensitivity, specificity, PPV,

NPV, and DCA, which were implemented using Python software.
Results

Patient characteristics

This study involved 417 patients of breast cancer, all female,

from two research centers. One center contributed 274 patients to

the training cohort and 68 patients to the test cohort, while the

other center provided 75 patients for the Test1 cohort. Disparities

were observed among the creatine kinase isoenzyme, a-
hydroxybutyrate dehydrogenase, indirect bilirubin, globulin,

albumin-globulin ratio, blood bicarbonate concentration, total bile

acids, Na, Cl, Mg, and the maximum diameter of breast cancer
Frontiers in Oncology 06
lesions on ultrasound among the three cohorts (Table 1). Pairwise

comparisons revealed differences between the Training cohort and

the Test1 cohort for most markers, as well as between the Test

cohort and the Test1 cohort (Supplementary Table 1), suggesting

that the data indeed originated from two research centers, with the

Training cohort and Test cohort coming from the same center.

Patient ultrasound, pathological, and clinical blood marker

characteristics are summarized in Table 1.
Feature selection

The feature data were normalized and one of the features with a

Spearman correlation coefficient > 0.9 was retained. Dimensionality

reduction was conducted by eliminating features with zero

coefficients through LASSO regression. The optimal l value

(0.0193) was determined based on the minimum Mean Squared

Error (Figure 2A), and a Lasso regression model was fitted using the

optimal l value (Figure 2B). After feature dimensionality reduction,

27 features were finally selected (Figure 2C). Each of these features

was then used independently as input for subsequent

model building.
Construction and validation of LR and
LightGBM models

The selected features were used to construct LR, LightGBM,

GBoost, and AdaBoost models, with performance parameters shown

in Table 2. The AUC values for the LR and LightGBM models in

external validation were relatively high, with the ROC curve results

displayed in Figures 3A and B, respectively. The ROC for the LR

model in the training, test, and Test1 cohorts was 0.892 (95% CI

0.853–0.931), 0.816 (95% CI 0.715–0.917), and 0.817 (95% CI 0.722–

0.913), respectively. For the LightGBM model, the ROC was 0.971

(95% CI 0.955–0.987), 0.861 (95% CI 0.775–0.948), and 0.890 (95%

CI 0.818–0.962) in the training, test, and Test1 cohorts, respectively.

Other performance parameters are presented in Table 2. The DCA

curves for both models in the training, test, and Test1 cohorts are

displayed in Supplementary Figure 1 and Figures 4A, B. The results

indicate that the LightGBM model exhibited significantly higher net

benefits at various threshold probabilities in all cohorts compared to

the LR model, suggesting superior performance in identifying breast

cancer with distant metastasis.
Model feature analysis

To identify key features contributing to the prediction of distant

metastasis in LR and LightGBM models, feature analysis was

conducted. The results are shown in Figures 5A, B. In the LR

model, the top 5 features with relatively significant impact on the

outcome were a-HBDH, Ki67, ALP, maximum diameter of lesions

on ultrasound, and CEA. In the LightGBMmodel, the top 5 features

with relatively significant contributions were CK-MB, CA153, a-
HBDH, apolipoprotein B, and CEA.
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B CA

FIGURE 2

Illustrating the feature selection process using the least absolute shrinkage and selection operator (LASSO) regression model involves several crucial
steps. (A) The horizontal axis represents different l values, while the vertical axis represents the corresponding average mean squared error (MSE).
Through 10-fold cross-validation, we calculated the average MSE for each l value. Then, we identified the l value corresponding to the minimum
MSE, marked by a vertical dashed line on the chart. The optimal l value is 0.0193; (B) The horizontal axis represents different l values, indicating
varying regularization strengths. A higher l value indicates stronger regularization. The vertical axis represents the coefficients of each feature. When
l is small, regularization is weak, and the model may include more features, with many feature coefficients being non-zero. As l increases,
regularization strength increases, causing many feature coefficients to gradually shrink or even become zero. This is because LASSO regression
tends to shrink unimportant feature coefficients to zero to simplify the model. Each curve represents the trajectory of a feature coefficient as l
changes. As l increases, feature coefficients gradually decrease to zero. Features that decrease to zero earliest are typically those with smaller
impacts on the target variable (metastatic breast cancer). Features that still maintain non-zero coefficients at the optimal l value (indicated by the
dashed line) are usually those with larger impacts on the target variable. (C) This figure displays the features selected by Lasso regression, with the
vertical axis showing the final selected features and their corresponding coefficient values (as indicated by the horizontal axis).
TABLE 2 Performance of models for predicting discrimination between breast cancer with distant metastasis and breast cancer without distant
metastasis in training, test, and test1 cohorts.

Model Cohort AUC
(95% CI)

Accuracy Sensitivity Specificity PPV NPV Precision Recall F1 Threshold

LR Training 0.892 (0.853
- 0.931)

0.828 0.806 0.847 0.813 0.841 0.813 0.806 0.810 0.412

Test 0.816 (0.715
- 0.917)

0.735 0.903 0.595 0.651 0.880 0.651 0.903 0.757 0.184

Test1 0.817 (0.853
- 0.931)

0.743 0.697 0.780 0.719 0.762 0.719 0.697 0.708 0.512

LightGBM Training 0.971 (0.956
- 0.987)

0.909 0.927 0.893 0.878 0.937 0.878 0.927 0.902 0.440

Test 0.861 (0.775
- 0.948)

0.765 0.968 0.595 0.667 0.957 0.667 0.968 0.789 0.366

Test1 0.890 (0.818
- 0.962)

0.811 0.758 0.854 0.806 0.814 0.806 0.758 0.781 0.553

XGBoost Training 1.000 (1.000
- 1.000)

0.996 0.992 1.000 1.000 0.993 1.000 0.992 0.996 0.628

Test 0.846 (0.749
- 0.942)

0.794 0.677 0.892 0.840 0.767 0.840 0.677 0.750 0.579

Test1 0.776 (0.668
- 0.885)

0.730 0.818 0.659 0.659 0.818 0.659 0.818 0.730 0.624

AdaBoost Training 0.914 (0.883
- 0.944)

0.818 0.758 0.867 0.825 0.812 0.825 0.758 0.790 0.501

Test 0.828 (0.727
- 0.929)

0.765 0.839 0.703 0.703 0.839 0.703 0.839 0.765 0.452

Test1 0.759 (0.647
- 0.872)

0.703 0.636 0.756 0.677 0.721 0.677 0.636 0.656 0.538
F
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Discussion

In this study, we employed LR and LightGBM algorithms to

construct predictive models for identifying breast cancer with distant

metastasis based on clinical blood markers, ultrasound examination,

and breast biopsy pathology features. The LightGBM model

demonstrated superior net benefits and predictive performance

compared to the LR model, as evidenced by its higher AUC values

in both internal and external testing datasets. These findings suggest

that our models can effectively identify breast cancer patients with

distant metastasis, providing clinicians with a more efficient method

for early detection and intervention. This could lead to personalized

treatment plans that improve patient outcomes and quality of life.

Previous studies have typically focused on assessing future

metastasis risk to predict breast cancer distant metastasis.
Frontiers in Oncology 08
For instance, Delpech et al. and Xu et al. developed nomograms to

predict bone metastasis, with C-indices ranging from 0.69 to 0.73 and

0.705 to 0.714, respectively (10, 12). Zhang et al. used MRI and

ultrasound features to develop a prognostic nomogram, achieving C-

indices of 0.882 and 0.812 (15). Wang et al. utilized gene expression

profiles for a nomogram predicting lung metastasis risk, with C-indices

of 0.862 and 0.772 (13). Additionally, Shidi Miao et al. constructed a

nomogram model using CT image features of muscles and

clinicopathological features, achieving C-indices of 0.983 and 0.948

in the training and test cohorts, respectively, although it was not

externally validated (18). Besides these nomogrammodels, Li et al. used

the SEER database (2010–2019) and the XGBoost algorithm to

construct a model predicting survival rates in breast cancer patients

with brain metastasis (AUC around 0.8), with external validation using

their center’s data (AUC around 0.7) (16).
BA

FIGURE 3

The evaluation of the Receiver Operating Characteristic curves for both the Logistic Regression (A) and LightGBM (B) models was conducted across
three different datasets: the training cohort, the test cohort, and an additional independent test cohort (test1). This comprehensive evaluation allows
for a thorough comparison of model performance and generalizability.
BA

FIGURE 4

Clinical decision curves analysis (DCA) for the LR and LightGBM models constructed in the test (A), and test1 (B) cohorts were demonstrated. Treat-All:
Treating all cases as if they have metastatic breast cancer, regardless of whether the model predicts metastatic or non-metastatic stages; Treat-None:
Treating all cases as if they do not have metastatic breast cancer, regardless of whether the model predicts metastatic or non-metastatic stages; Net
benefit: Evaluate the practical utility of a model at different decision thresholds. A higher net benefit indicates that the model’s predictions have greater
value for clinical decision-making at that threshold. Through DCA, net benefit helps determine whether the model outperforms the simple “Treat-All” or
“Treat-None” strategies at different thresholds. If the model’s net benefit at a given threshold exceeds that of the “Treat-All” and “Treat-None” strategies,
it suggests that using the model’s predictions is more beneficial than either extreme strategy at that threshold.
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However, fewer studies have focused on diagnostic prediction

models for patients with existing distant metastasis. Li et al. used

radiomic features from magnetic resonance imaging (MRI) alone or

combined with clinicopathological features for prediction,

achieving AUC values of 0.744 and 0.763, respectively (19);

however, the study did not specify the machine learning

algorithms used. Huang et al. predicted bone metastasis in

invasive ductal carcinoma using the SEER database, achieving an

AUC of 0.907 (11). Ma et al. developed a fusion model combining

clinicopathological and MRI features, achieving AUC values of

0.870 and 0.822, respectively (14). Besides the aforementioned

nomogram models, other algorithms have shown performance in

predicting breast cancer. For example, Zhao et al. used four

machine learning algorithms to predict the risk of breast cancer

distant metastasis, with XGBoost performing best (AUC of 0.907 in

the training set and 0.754 in the validation set) (20). Burak Yagin

et al. constructed a model predicting breast cancer distant

metastasis using the genomic data of 98 breast cancer cases, with

the LightGBM model performing best (21).

This study is also based on XGBoost and LightGBM and uses

clinical blood markers indicative of cardiac, hepatic, and renal

function, combined with ultrasound and other clinicopathological

features, to construct models validated across different centers. In

our external data validation, the LightGBM model performed

better, achieving an AUC of 0.890.

CK-MB was identified as one of the most important features in

the LightGBM model prediction. As a creatine kinase isoenzyme,

CK-MB exists mainly in the myocardium and skeletal muscles (22).

Previous studies have found that the ratio of CK-MB to total CK is

significantly higher in advanced malignant tumor patients

compared to early-stage ones (23), suggesting an association

between CK-MB and cancer progression stages. Moreover, serum

CK-MB activity is significantly elevated in metastatic tumor

patients compared to those with primary tumors (22). Regarding
Frontiers in Oncology 09
the source of elevated serum CK-MB in malignant tumor patients,

studies have detected a higher proportion of CK-MB in tumor

tissues of lung cancer patients, implying that the increased plasma

CK-MB may originate from tumor tissues rather than myocardium

and skeletal muscles (24). In our study, CK-MB played a crucial role

as one of the key features in the model prediction, suggesting its

importance in predicting breast cancer with distant metastasis.

However, further research is needed to explore why CK-MB

elevation occurs in breast cancer with distant metastasis and

whether elevated CK-MB originates from tumors or other

sources. a-HBDH, as an LDH isoenzyme, is significantly elevated

in the serum of some malignant tumor patients and is associated

with the prognosis of malignant tumors (25–27). The combined

application of a-HBDH, CEA, and CA125 in the early diagnosis of

breast cancer has been found to be valuable (28). CA153 is a

common tumor marker with predictive ability for breast cancer

distant metastasis (29). In our study, CA153 was also one of the

important features in model construction.

This study has some limitations. Firstly, we only included

common types of distant metastases of breast cancer, such as bone,

liver, and lung metastases. This means that we did not consider other

types of distant metastases, such as brain metastases and post-

treatment breast cancer distant metastases. The prognosis of post-

treatment metastatic breast cancer may be worse because treatment

may lead to the reselection of tumor molecules, making them more

invasive (30). Secondly, although our data came from two different

medical centers, they were both located in the same region. Therefore,

our dataset may lack sufficient representativeness and requires

validation across broader geographic areas, even across multiple

centers internationally. Finally, due to potential differences among

different healthcare institutions or equipment, the performance of our

model may vary in different environments. Therefore, our model may

require more validation datasets to ensure its applicability and

reliability in different clinical settings.
BA

FIGURE 5

Illustrating the feature analysis aimed at identifying key features contributing to the prediction of distant metastasis, both LR (A) and LightGBM (B)
models are scrutinized. In panel (A), coefficients with corresponding p-values less than 0.05 will be marked with an asterisk (*) beside
the coefficients.
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In conclusion, this study successfully developed and validated

LR and LightGBMmachine learning models based on clinical blood

markers, ultrasound data, and biopsy pathology features to predict

distant metastasis in breast cancer patients. Particularly, the

LightGBM model exhibited higher accuracy and potential clinical

application value in predicting and identifying breast cancer with

distant metastasis. These tools are expected to elevate the level of

clinical decision-making and prognosis assessment, potentially

reducing the need for expensive or invasive imaging techniques.

This study highlights the prospects of using readily available clinical

blood markers and cost-effective ultrasound data for developing

artificial intelligence predictive tools.

In conclusion, our study successfully developed and validated

LR and LightGBM models using clinical blood markers, ultrasound

data, and biopsy pathology features to predict distant metastasis in

breast cancer patients. The LightGBM model, in particular,

demonstrated higher accuracy and potential clinical utility. These

models could enhance clinical decision-making and prognosis

assessment, reducing reliance on expensive or invasive imaging

techniques. Our findings underscore the potential of integrating

readily available clinical data and machine learning for early and

accurate prediction of breast cancer metastasis.
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SUPPLEMENTARY FIGURE 1

Clinical decision curves analysis (DCA) for the LR and LightGBM models
constructed in the training cohort were demonstrated.
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