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Repeatability, reproducibility,
and the effects of radiotherapy
on radiomic features of lowfield
MR-LINAC images of
the prostate
Parker Anderson, Nesrin Dogan, John Chetley Ford,
Kyle Padgett, Garrett Simpson, Radka Stoyanova,
Matthew Charles Abramowitz, Alan Dal Pra
and Rodrigo Delgadillo*

Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, United States
Definitive radiotherapy (RT) has been shown to be a successful method of treating

prostate cancer (PCa) patients. Through radiomics, a quantitative analysis ofmedical

images, it is possible to adapt treatment early on, which may prevent or mitigate

future adverse events. During RT of PCa, low-field magnetic resonance (MR)

images, taken with a LINAC onboard imaging system in a process known as

magnetic resonance-guided radiotherapy (MRgRT), are used to improve

treatment accuracy via superior setup compared to x-ray methods. This work

investigated baseline repeatability of radiomic features (RFs) by comparing planning

MR images (pMR) with first-fraction setup images (FX1) takenwith onboardMRI. The

changes in RFs following RT were also looked at with the use of last-fraction setup

images (FX5). Earlier research has investigated the use of planning images from

cone beamCT (CBCT), but to our knowledge no research has previously shown the

relationship with onboard MRI. The correlation between FX1 images and 3T

diagnostic MR (dT2) images was also studied. Forty-three first and second order

radiomic features extracted from these images were compared by calculating Lin’s

concordance correlation coefficient (with Benjamini-Hochberg correction for

multiple comparisons) between the modalities. FX1 and pMR images were

correlated (p<0.05) for all but one RF. 12 RFs correlated between pMR and dT2

images. Therewas a noticeable change in correlation values for RFswhen looking at

FX1 and FX5 images, with only 15 correlating significantly. The change in correlation

values between pMR and FX5 images was comparable to that between FX1 and FX5

images, with 33 features having a CCC value deviation of less than 0.1. These results

demonstrate that RF features are repeatable across different images of the same

modality without treatment intervention. This study has also shown a noticeable,

reproducible change in RFs as RT goes on. Reproducibility of RFs between different

modalities was not strong. This study demonstrated that we can reliably use

onboard MRI to observe day-to-day feature changes as a result of RT.
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1 Introduction

Prostate cancer (PCa) is the most common malignancy among

men and the second-leading cause of cancer-related mortality in the

United States (US) (1). With 3.1 million PCa survivors in the US,

acute and late side effects of PCa treatment impact a sizable

proportion of US men (2, 3). Definitive radiotherapy (RT), a

primary intervention for intermediate and high-risk PCa, aims to

limit treatment-related side effects and preserve patient quality of

life while delivering curative dose to the prostate (4–7). Magnetic

resonance-guided RT (MRgRT) with onboard MRI can improve

treatment outcomes via enhanced visualization of the prostate,

allowing for reduction of planning target volume (PTV) margins

and increased sparing of adjacent organs at risk (OAR) (8).

However, despite the many modern innovations in RT techniques

and technologies, PCa treatment outcomes can still entail adverse

effects and incomplete treatment of the target volume.

Radiomics, a field of study involving the extraction of

quantitative characteristics from medical imaging, has been

previously integrated into models predicting outcomes of PCa

treatment (9–15), often successfully. Delta-radiomics takes this

field of study a step further; radiomic analysis is applied at

multiple points throughout treatment to identify tumor changes,

often specifically due to RT intervention (16). There is increasing

evidence in support of using delta-radiomic features extracted from

MR imaging as non-invasive biomarkers to predict PCa treatment

outcomes. A recent study has shown RFs extracted on a low-field

magnet to be repeatable in both a phantom and between patient

scans taken shortly after one another on the same day (17), but to

our knowledge no one has analyzed the repeatability of RFs from

scan-to-scan in actual patients over a longer period of time. Longer

time between scans can result in increased variability in patient

anatomy, which may have an effect on RFs. If the features do not

correlate between images taken on the same modality at various

times, then it is unclear if delta-radiomic analysis is valid in future

studies. Some studies have shown that RFs can be dependent on the

pulse sequences (18) and acquisition and reconstruction methods

(19) used to acquire them, demonstrating that they are somewhat

dependent on imaging modality.

Previous studies in this area have compared the use of cone-

beam CT (CBCT) and MRI (13), but none have investigated the

correlation of radiomic features (RFs) between planning MR (pMR)

images and the daily setup MR images taken prior to treatment

(FX1). We also wanted to see how RFs were affected as treatment

progressed by comparing FX1 and pMR images with those taken

prior to the last fraction of treatment (FX5). In this study, we

hypothesized that there would be strong repeatability between

features of the same imaging modality, specifically between pMR

and FX1 images since they are images taken of the same target

volume on the same machine, both prior to RT intervention. We

predicted that there would be some noticeable change in RF

correlation between FX1 and FX5 images, as the prostate volume

has been almost completely treated in the time between when these

two images were taken. It was postulated that this observed change
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could be reproducible, so the relationship between pMR and FX5

images was also investigated. We also hypothesized that there

would be reasonable correlation between pMR and 3T diagnostic

MR (dT2) images, however not as strong as between pMR and FX1.

Recent delta-radiomic efforts involving the prostate have

proven to be especially useful in obtaining predictive data for PCa

treatment outcomes (20). Unlike the traditional diagnostic MRI

imaging, onboard MR images are obtained with low-field MRI that

is onboard an MR-LINAC system (such as ViewRay, Mountain

View, CA, and Elekta Unity MR-Linac, Elekta AB, Stockholm,

Sweden). These images are used to ensure quality of daily

treatment and can be used to observe day-to-day changes in RFs.

The purpose of this study was to determine the correlation of

prostate RFs between FX1 and pMR images, FX1 and FX5 images,

pMR and FX5 images, and FX1 and dT2 images. Determining the

correlations between RFs of each of these modalities may allow us to

have a better understanding of radiomic data acquisition of MR for

PCa and characterize the efficacy of future MR-LINAC delta-

radiomic studies.
2 Methods

2.1 Patient population

Twenty patients enrolled in institutional review board (IRB)-

approved treatment protocols for PCa were selected for this study.

The ethical approval for this study was obtained from the University

of Miami Institutional Review Board (IRB). Data from each patient

was selected and analyzed retrospectively, and all methods and

analysis done in this study were conducted under proper guidelines

and regulations.

All patients were being treated for malignant neoplasm of the

prostate with varying dose schemes, all with curative intention. Four

patients were treated in forty fractions at 2 Gy per fraction, totaling

to 80 Gy. The sixteen other patients were treated in five fractions at

8 Gy per fraction, totaling 40 Gy. Every patient was treated on an

MR-LINAC (ViewRay, Mountain View, CA) that is equipped with

an onboard MRI guidance system.
2.2 MR-LINAC

The MR-LINAC that was used possesses a 6MV beam and is a

machine through which real-time MR images of the patient can be

taken during the treatment process with use of a 0.35T magnet

(ViewRay, Mountain View, CA). The implementation of this

machine may be beneficial in delta-radiomic studies due to the

daily images taken as treatment progresses. During treatment, the

pulse sequence this device uses is a balanced steady-state free

precession sequence, which is a type of balanced sequence

yielding a hybrid T2/T1 contrast, slightly weighted toward T2

(21). Because of this, images taken on the MR-LINAC are

compared to diagnostic T2 images in this study.
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2.3 Imaging

FX1 images were used as the baseline for each comparison. FX1

can be defined as the image used for setup prior to the first fraction

of RT, taken on the 0.35T MR-LINAC. FX5 is the setup image taken

prior to the administration of the last fraction of treatment. pMR

images were also taken on the MR-LINAC prior to treatment, and

were the original images used for treatment planning. FX1 images

were also compared to dT2 images, which are those used for

original diagnosis of disease and were taken on 3-Tesla diagnostic

scanners (see Table 1) utilizing various T2 protocols.

Patient cohorts of each comparison were different in order to

increase the robustness of our analysis. All 20 patients were

included in the comparison between FX1 and pMR. Fourteen out

of the twenty patients were included in the comparison between

FX1 and dT2, since not all patients had their diagnostic imaging

acquired on the same type of machine. We narrowed the cohort of

this comparison to only include patients imaged on Siemens brand

scanners, as there is less variability in acquisition parameters (pulse

sequence, TE, TR, etc.) within this group than when including the

other machines. Sixteen patients were included in the comparisons

with FX5 images, all of which had fractionation schemes of 40 Gy in

five fractions. We wanted to ensure that the amount of RT

intervention between FX5 and the other scans remained the same

for each patient in this comparison, so the four patients that were

not included were those that had fractionation schemes of 80 Gy in

40 fractions.
2.4 Contouring

The prostate served as the region of interest (ROI) for the RF

extraction. The contouring of each image was performed by a team

of researchers with expertise in PCa and delineation, consisting of

radiation oncologists and physicists. First, prostate contours from

pMR images were transferred to other studied images (dT2, FX1,

FX5) using a rigid registration with the assistance of a radiation

oncology imaging software (MIM, ver. 6.8.1, MIM Software Inc.,

Cleveland, OH). Then, corrections were made to each transferred
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contour to ensure that ROI volume was as similar as possible for

each image and anatomically correct.
2.5 Description of radiomic features

Forty-three RFs were extracted from prostate contours on

diagnostic T2 and pMR images. These specific forty-three were

used as they are from the most commonly studied RF classes. RFs

from these classes have demonstrated predictive relationships with

useful prostate cancer metrics, such as aggressiveness (15),

progression (20), and identification and segmentation of disease

(22). Though more RFs appear in other works, it has been

documented that many RFs are intercorrelated and thus not

specifically unique from one another (22–24). Therefore, this

study focused on the most typically studied RFs. Prostate volume

was also included as a descriptor to serve as a control and to ensure

that regions investigated were constant across modalities. RFs were

calculated using the MATLAB (MATLAB, ver. R2022a, Math-

Works Inc., Natick, MA) “Radiomics” package developed by

Vallieres, et al. in combination with in-house code to extract 3D

bitmaps of the ROI using the DICOM structure files from the MRI

DICOM files (25). RFs from five classes were extracted: first-order

statistical features (Global), Gray-Level Co-Occurrence Matrices

(GLCM), Neighborhood Gray-Tone Difference Matrix (NGTDM),

Gray-Level Run Length Matrices (GLRLM), and Gray-Level Size

Zone Matrices (GLSZM). These features comply with the Image

Biomarker Standardization Initiative (IBSI). For IBSI codes of

features mentioned, refer to Table 2.

IBSI defines image processing as including procedures such as

interpolation, range-re-segmentation, quantization, and image

filtering (26). Quantization algorithm can be defined as how

intensities of an image are quantized into 64 discrete bins.

Previous work by Delgadillo et al. (27) demonstrated that image

processing with use of the Lloyd-Max quantization algorithm with

Collewet normalization (Llo-1) led to the best balance of

repeatability and reproducibility in extracted RFs, so this is the

processing that was used prior to extraction. Collewet

normalization is a normalization where the gray levels of the ROI

are normalized from the range of [µR−3sR, µR +3sR] where µR was

the mean and sR was the standard deviation of the ROI gray levels

(28). Lloyd-Max quantization allows for minimization of

quantization error based on the way it assigns bins (29).

Other researchers have shown that some RFs may highly

correlate with volume, thus making them dependent on the

volume of the ROI and possibly leading to confounding data in

our analysis (30, 31). To account for this, volume normalization

(VN) was performed on RFs with known methods, including

NGTDM Busyness, NGTDM Coarseness (30), NGTDM Strength,

LSZM GLN, GLRLM GLN, and GLRLM RLN (31). GLSZM ZSN

was normalized by dividing by the number of pixels using a similar

logic as GLRLM RLN. Analysis was performed on these RFs after

normalization of volume to reduce their values’ dependence on

prostate volume, ensuring a robust comparison. For some other RFs

that appear to be volume dependent, no known VN was found in

the literature.
TABLE 1 Machinery used to produce dT2 images used in this study.

Manufacturer Model Number of patients

GE Medical Systems DISCOVERY MR750 4

GE Medical Systems OPTIMA MR360 1

Philips Medical Systems Achieva 1

Siemens Avanto 2

Siemens MAGNETOM Vida 2

Siemens Skyra 3

Siemens TrioTim 3

Siemens Verio 4
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2.6 Data analysis

The main aim of our analysis was to see how well RFs correlated

between different images of the same patient treated on the MR-

LINAC. To do this, Lin’s concordance correlation coefficient (CCC)

was calculated in MATLAB between FX1 images and the other

imaging modalities. CCC was used as we wanted to assess the

deviation from perfect agreement between the different sets of

images, i.e. measure how well our test (FX1) and retest (pMR)

images correlated (32). CCC has been used as a standard of

comparison for several previous radiomics reproducibility studies

(27, 33). These calculations allow us to measure the strength in

relationship between features across fractions and see how they

deviate from a fixed reference point, i.e. FX1 images. For visual

representation of the workflow of this analysis, refer to Figure 1.

Statistical significance of these correlations was determined by

calculating p-values via Student’s t-test. Benjamini-Hochberg

correction was also applied to this correlation’s p-value, which

decreases the likelihood of false discovery of significance. A

precedence for using the Benjamini-Hochberg for multiple

comparison was found in a lung-based radiomics paper by Fave

et al., 2016 (30). This allowed for the reduction of false positive

correlations and accounts for multiple comparisons. This process

was repeated between FX1 and pMR images, FX1 and FX5 images,

pMR and FX5 images, and FX1 and dT2 images.
3 Results

Forty-two of the forty-three RFs examined significantly

correlated (p<0.05) between FX1 and pMR images. 15 RFs
TABLE 2 List of RFs used for study.

Feature Class [IBSI code] Features [IBSI code]

Gray-Level Co-Occurrence
Matrices (GLCM)

Contrast [ACUI]

[LFYI] Correlation [NI2N]

Dissimilarity [8S9J]

Energy [8ZQL]

Entropy [TU9B]

Homogeneity [IB1Z]

Sum Average [ZGXS]

Variance [UR99]

Gray-level Run Length Matrices
(GLRLM) [TP0I]

Gray-level Non-Uniformity
(GLN) [R5YN]

Gray-level Variance (GLV) [8CE5]

High Gray-level Run Emphasis
(HGRE) [G3QZ]

Low Gray-level Run Emphasis
(LGRE) [V3SW]

Long Run Emphasis (LRE) [W4KF]

Long Run High Gray-level Emphasis
(LRHGE) [3KUM]

Long Run Low Gray-level Emphasis
(LRLGE) [IVPO]

Run-Length Non-Uniformity
(RLN) [W92Y]

Run Length Variance (RLV) [SXLW]

Run Percentage (RP) [9ZK5]

Short Run Emphasis (SRE) [220V]

Short Run High Gray-level Emphasis
(SRHGE) [GD3A]

Short Run Low Gray-level Emphasis
(SRLGE) [HTZT]

Gray-level Zone Size Matrices
(GLZSM) [9SAK]

Gray-level Non-Uniformity
(GLN) [JNSA]

Gray-level Variance (GLV) [BYLV]

High Gray-level Zone Emphasis
(HGZE) [5GN9]

Low Gray-level Zone Emphasis
(LGZE) [XMSY]

Large Zone Emphasis (LZE) [48P8]

Large Zones High Gray-level
Emphasis (LZHGE) [J17V]

Large Zones Low Gray-level
Emphasis (LZLGE) [YH51]

Short Zone Emphasis (SZE) [5QRC]

Short Zones High Gray-level
Emphasis (SZHGE) [HW1V]

(Continued)
TABLE 2 Continued

Feature Class [IBSI code] Features [IBSI code]

Short Zones Low Gray-level
Emphasis (SZLGE) [5RAI]

Zone Percentage (ZP) [P30P]

Zone Size Non-Uniformity
(ZSN) [4JP3]

Zone Size Variance (ZSV) [3NSA]

Neighborhood Gray-Tone Difference
Matrix (NGTDM) [IPET]

Busyness (BUSY) [NQ30]

Coarseness (COAR)*

Complexity (CPLX) [HDEZ]

Contrast (CONT) [65HE]

Strength (STRG)*

Intensity-based Statistics
(Global) [UHIW]

Kurtosis [IPH6]

Skewness [KE2A]

Variance [ECT3]
RFs denoted with (*) are calculated as defined by Amadasun and King (36).
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correlated between FX1 and FX5 images. 12 RFs correlated between

FX1 and dT2 images. 11 RFs correlated between pMR and FX5

images. Specific CCC values for each feature examined are shown in

Figures 2–4.

By looking at plotted values of RFs between modalities, it is

evident that there is a much stronger correlation between pMR and

FX1 images. A clear positive correlation can be seen between these

modalities, with 17 RFs exhibiting a CCC value greater than 0.80.

This is likely due to the fact that these two images are taken on the

same machine with the same magnet strength.

The changes in RFs between FX1 and FX5 images were very

comparable to the changes between pMR and FX5 images. 33 RFs

had a variability of less than ≤0.1 in their CCC values between these

two comparisons. Refer to Figure 5 for a complete comparison.

Imaging characteristics were calculated for images of each

modality that were investigated, such as FOV, pixel spacing, and
Frontiers in Oncology 05
image size. These values were the same between pMR, FX1, and FX5

images, as the pMR images are used as reference for setup images.

Refer to Table 3 for a complete overview of these statistics.
4 Discussion

Our original hypotheses were supported by the results found in

this study. RFs extracted from pMR images correlated very well with

FX1 images, with all but one significantly correlating. Given that

FX1 and pMR images are taken on the same machine, it is logical

that images of the same target volume are similar in radiomic data.

Although this may seem obvious, this analysis has demonstrated

that RF data between images of the same subject taken days apart

are still repeatable despite known variability in MR imaging. Since

FX1 and pMR are both taken prior to treatment, there should not be
FIGURE 2

Average CCC values between FX1 and pMR images (n=20 patients) are plotted for each studied RF (classes separated by vertical line).
FIGURE 1

Schematic picture of overall workflow of this study.
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much change in data between the two images. This study confirms

this theory. In future analysis, we can now postulate that if there is

some noticeable deviation between RF data on imaging from

different fractions of treatment, it is likely due to RT intervention.

Only twelve RFs significantly correlated between pMR and

dT2 images. Even though these images are of the same target

volume and are both taken pre-treatment, the different imaging

modalities result in too large of a difference for RFs to be

consistently reproducible. The difference in magnet strength

used to take each image is drastic, therefore leading to

heightened differences in image quality and thus differences in

the radiomic data acquired.

Fifteen RFs correlated significantly between FX1 and FX5

images, with none of these having a CCC value greater than 0.70.
Frontiers in Oncology 06
Interestingly, only two RFs significantly correlated for both the FX5

and dT2 comparisons (GLCM SumAverage and GLSZMGLN). The

only difference between FX1 and FX5 images is that they were taken

before and after RT, respectively. As previously mentioned, our

analysis of FX1 and pMR images shows that there should be

correlation between RFs extracted from the same modality.

However, since FX1 and FX5 data do not correlate well, we can

deduce that most of the difference in RF values is because of the RT

that took place between the acquisition of each image. In contrast,

the RFs that correlate significantly between FX1 and FX5 are likely

not useful for delta-radiomic analysis since they appear to not be

affected by RT. Although it is unclear what this change in values

means physically, our analysis gives hope for further investigation

into this topic.
FIGURE 3

Average CCC values between FX1 and FX5 images (n=16 patients) are plotted for each studied RF (classes separated by vertical line).
FIGURE 4

Average CCC values between FX1 and dT2 images (n=14 patients) are plotted for each studied RF (classes separated by vertical line).
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Results of our comparison between pMR and FX5 images were

very similar to those between FX1 and FX5, with eleven RFs

correlating significantly. The change in RFs for each of these

comparisons was very comparable, with 33 features having their

CCC values deviate by less than 0.1. This is an exciting result, as it

shows that the change in RFs due to RT intervention is moderately

reproducible. This makes sense logically, as pMR and FX1 are

images that are both acquired pre-treatment. When comparing each

of them to the same post-treatment scan, we would assume that the

changes of each would also be very comparable. This is a promising

realization for future study, as we can now reliably say that there is a

measurable, reproducible signal found in RFs that is caused directly

by treatment.

The only feature that did not significantly correlate between

pMR and FX1 images was GLSZM Small Zone Low Gray-Level

Emphasis (SZLGE). To understand why this feature did not

correlate, it was found that this feature emphasized image data

that includes small areas of low gray-level pixels. The most logical

physical feature of an image that this RF could correspond to would

merely be noise. Noise is variable across images taken even on the

same machine, so there is an understandable random distribution of

noise across different images. Therefore, it makes sense that this

feature does not significantly correlate across modalities.

Previous studies have shown the predictive power of extracting

RFs through low-Tesla MRI regarding pancreatic cancer (34, 35).

Other studies have shown the use of these methods in the treatment
Frontiers in Oncology 07
of lung cancer (36) and other soft tissue sarcomas (37). There has

been little research on the relationship with prostate cancers, which

this study aimed to assist in. One study has previously shown that

there are significant differences between RFs extracted from

different areas of the prostate, but none have shown the

relationship between those extracted on different strength

magnets. This study demonstrated the value in investigating this

relationship, as there are significant and relevant differences

between different machines. We have also shown that RFs are

repeatable between images taken across a period of days to weeks,

while previous studies have only demonstrated repeatability in

patient scans separated by a few minutes.

The findings of this study support and verify other research

investigating the robustness and repeatability of MR-based

radiomic research methods. Several studies have shown

comparable results on the repeatability of RFs extracted on low-

Tesla machines, but only with the use of phantom measurements

(38). This study improves upon the finding of these investigations

by demonstrating comparable results in real prostate cancer

patients. One study investigated repeatability of features in

glioblastoma patients (38), but this study was the first to strictly

use prostate cancer patients.

The main takeaways from these results are those relating to the

repeatability and reproducibility of RF data. Results show that

radiomic data is highly repeatable, meaning that we can obtain

data over several instances using the same machine and obtain
TABLE 3 Statistics for imaging characteristics of each modality investigated (average ± standard deviation).

Modality Number of patients Image Size (pixels) Pixel Spacing (mm) Slice Thickness (mm) FOV (mm)

dT2 14 421.71 ± 99.30 x 378.29 ± 96.16 0.78 ± 0.33 2.86 ± 0.40 309 ± 78.44

pMR 20 314.3 ± 30.23 x 293.5 ± 15.45 1.5 ± 0.00 1.58 ± 0.33 470.75 ± 44.89

FX1 20 314.3 ± 30.23 x 293.5 ± 15.45 1.5 ± 0.00 1.58 ± 0.33 470.75 ± 44.89

FX5 16 314.3 ± 30.23 x 293.5 ± 15.45 1.5 ± 0.00 1.58 ± 0.33 470.75 ± 44.89
FIGURE 5

RF correlations between FX1 and FX5 images plotted against those between pMR and FX5 images. RF classes separated by vertical lines.
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comparable results. Conversely, it was shown that RF data is not

very reproducible, meaning that acquisition of radiomic data on

different machines or modalities may not provide helpful insight.

Therefore, it is logical that data acquisition in future longitudinal

radiomics studies be done on the same modality (onboard CBCT or

low-Tesla MRI).

Perhaps the most clinically relevant result in this study was

when comparing the change between FX1 and FX5 and the change

between pMR and FX5. Our results showed that RT directly

resulted in large changes in RF data on the same imaging

modality, and that this change is reproducible. The field of delta-

radiomics aims to quantitatively predict outcomes of treatment

based off changes in RF data extracted over the progression of RT.

The results of this study are a proof of concept for the quality of

imaging radiomics to be used in delta-radiomic studies,

demonstrating validity in this sort of analysis.

Small sample size is a limitation to this study. It is likely that

more correlations between modalities would be significant with the

addition of extra patients. This study also only examined these

correlations on a single machine, future confirmations of the trends

shown on other onboard MRI or CT machines could prove to be

great support to these results. Our comparison between FX1 and

dT2 could also prove to be more robust in future study be only

including patients that were imaged on the exact same diagnostic

scanner. Even though we narrowed the cohort of this comparison to

only include patients on the same brand of scanner, it is still

questionable as to whether or not our poor reproducibility was a

result of including slightly different machinery. Future radiomics

studies comprising of diagnostic MRI and on-board MRI from

MRI-LINAC would benefit from keeping variability in

machines low.
5 Conclusions

This study demonstrated that radiomic features can be reliably

repeatable on the same imaging machine integrated with a MR-

LINAC. RFs were also shown to be not very reproducible between

different types of machinery. However, we did show that there is

significant, reproducible change in RF data as treatment progresses

as a direct result of irradiation. With the possibility of improved

cancer treatment through radiomic analysis, these results provide

promising proof of concept that we may continue to pursue

research in this field.
Data availability statement

The datasets generated and/or analyzed during the current

study are not publicly available due to still being collected as part

of an ongoing clinical trial. Requests to access the datasets should be

directed to rdelgadillo@med.miami.edu.
Frontiers in Oncology 08
Ethics statement

The studies involving humans were approved by University of

Miami Institutional Review Board. The studies were conducted in

accordance with the local legislation and institutional requirements.

The participants provided their written informed consent to

participate in this study.
Author contributions

PA: Data curation, Formal analysis, Investigation, Methodology,

Software, Supervision, Writing – original draft, Writing – review &

editing. ND: Project administration, Resources, Writing – original

draft, Writing – review & editing. JF: Formal analysis, Project

administration, Writing – original draft, Writing – review & editing.

KP: Data curation, Project administration, Resources, Writing –

original draft, Writing – review & editing. GS: Writing – review &

editing, Methodology, Formal analysis. RS: Conceptualization,

Methodology, Writing – original draft, Writing – review & editing.

MA: Writing – original draft, Writing – review & editing. AD: Writing

– original draft, Writing – review & editing. RD: Conceptualization,

Data curation, Formal analysis, Investigation, Methodology, Project

administration, Resources, Software, Supervision, Writing – original

draft, Writing – review & editing.
Funding

The author(s) declare that no financial support was received for

the research, authorship, and/or publication of this article.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

The author(s) declared that they were an editorial board

member of Frontiers, at the time of submission. This had no

impact on the peer review process and the final decision.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1408752
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Anderson et al. 10.3389/fonc.2024.1408752
References
1. Potosky AL, Davis WW, Hoffman RM, Stanford JL, Stephenson RA, Penson DF,
et al. Five-year outcomes after prostatectomy or radiotherapy for prostate cancer: the
prostate cancer outcomes study. J Natl Cancer Inst. (2004) 96:1358–67. doi: 10.1093/
jnci/djh259

2. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J
Clin. (2021) 71:7–33. doi: 10.3322/caac.21654

3. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global
cancer statistics 2020: GLOBOCAN estimates of incidence andmortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. (2021) 71:209–49. doi: 10.3322/caac.21660

4. Iorio GC, Spieler BO, Ricardi U, Pra Dal A. The impact of pelvic nodal
radiotherapy on hematologic toxicity: A systematic review with focus on leukopenia,
lymphopenia and future perspectives in prostate cancer treatment. Crit Rev Oncol
Hematol. (2021) 168:103497. doi: 10.1016/j.critrevonc.2021.103497

5. Schaeffer E, Srinivas S, Antonarakis ES, Armstrong AJ, Bekelman JE, Cheng H,
et al. NCCN guidelines insights: prostate cancer, version 1.2021. J Natl Compr Canc
Netw. (2021) 19:134–43. doi: 10.6004/jnccn.2021.0008

6. Zaorsky NG, Harrison AS, Trabulsi EJ, Gomella LG, Showalter TN, Hurwitz MD,
et al. Evolution of advanced technologies in prostate cancer radiotherapy. Nat Rev Urol.
(2013) 10:565–79. doi: 10.1038/nrurol.2013.185

7. Zaorsky NG, Showalter TN, Ezzell GA, Nguyen PL, Assimos DG, D'Amico AV,
et al. ACR Appropriateness Criteria for external beam radiation therapy treatment
planning for clinically localized prostate cancer, part II of II. Adv Radiat Oncol. (2017)
2:437–54. doi: 10.1016/j.adro.2017.03.003

8. Dang A, Kupelian PA, Cao M, Agazaryan N, Kishan AU. Image-guided radiotherapy
for prostate cancer. Transl Androl Urol. (2018) 7:308–20. doi: 10.21037/tau.2017.12.37

9. Chang YC, Ackerstaff E, Tschudi Y, Jimenez B, Foltz W, Fisher C, et al.
Delineation of tumor habitats based on dynamic contrast enhanced MRI. Sci Rep.
(2017) 7:9746. doi: 10.1038/s41598-017-09932-5

10. Delgadillo R, Ford JC, Abramowitz MC, Pra Dal A, Pollack A, Stoyanova R. The
role of radiomics in prostate cancer radiotherapy. Strahlenther Onkol. (2020) 196:900–
12. doi: 10.1007/s00066-020-01679-9

11. Peng Y, Jiang Y, Yang C, Brown JB, Antic T, Sethi I, et al. Quantitative analysis of
multiparametric prostate MR images: differentiation between prostate cancer and
normal tissue and correlation with Gleason score–a computer-aided diagnosis
development study. Radiology. (2013) 267:787–96. doi: 10.1148/radiol.13121454

12. Shiradkar R, Podder TK, Algohary A, Viswanath S, Ellis RJ, Madabhushi A.
Radiomics based targeted radiotherapy planning (Rad-TRaP): a computational
framework for prostate cancer treatment planning with MRI. Radiat Oncol. (2016)
11:148. doi: 10.1186/s13014-016-0718-3

13. Stoyanova R, Takhar M, Tschudi Y, Ford JC, Solorzano G, Erho N, et al. Prostate
cancer radiomics and the promise of radiogenomics. Transl Cancer Res. (2016) 5:432–
47. doi: 10.21037/tcr.2016.06.20

14. Tanadini-Lang S, Bogowicz M, Veit-Haibach P, Huellner M, Pauli C, Shukla V,
et al. Exploratory radiomics in computed tomography perfusion of prostate cancer.
Anticancer Res. (2018) 38:685–90. doi: 10.21873/anticanres.12273

15. Vignati A, Mazzetti S, Giannini V, Russo F, Bollito E, Porpiglia F, et al. Texture
features on T2-weighted magnetic resonance imaging: new potential biomarkers for
prostate cancer aggressiveness. Phys Med Biol. (2015) 60:2685–701. doi: 10.1088/0031-
9155/60/7/2685

16. Nardone V, Reginelli A, Grassi R, Boldrini L, Vacca G, D'Ippolito E, et al. Delta radiomics:
a systematic review. Radiol Med. (2021) 126:1571–83. doi: 10.1007/s11547-021-01436-7

17. Simpson G, Ford JC, Llorente R, Portelance L, Yang F, Mellon EA, et al. Impact
of quantization algorithm and number of gray level intensities on variability and
repeatability of low field strength magnetic resonance image-based radiomics texture
features. Phys Med. (2020) 80:209–20. doi: 10.1016/j.ejmp.2020.10.029

18. Ford J, Dogan N, Young L, Yang F. Quantitative radiomics: impact of pulse
sequence parameter selection on MRI-based textural features of the brain. Contrast
Media Mol Imaging 2018. (2018) p:1729071. doi: 10.1155/2018/1729071

19. Yang F, Dogan N, Stoyanova R, Ford JC. Evaluation of radiomic texture feature
error due to MRI acquisition and reconstruction: A simulation study utilizing ground
truth. Phys Med. (2018) 50:26–36. doi: 10.1016/j.ejmp.2018.05.017
Frontiers in Oncology 09
20. Sushentsev N, Rundo L, Blyuss O, Nazarenko T, Suvorov A, Gnanapragasam VJ,
et al. Comparative performance of MRI-derived PRECISE scores and delta-radiomics
models for the prediction of prostate cancer progression in patients on active
surveillance. Eur Radiol. (2022) 32:680–9. doi: 10.1007/s00330-021-08151-x

21. Bieri O, Scheffler K. Fundamentals of balanced steady state free precession MRI. J
Magn Reson Imaging. (2013) 38:2–11. doi: 10.1002/jmri.24163

22. Yang F, Ford JC, Dogan N, Padgett KR, Breto AL, Abramowitz MC, et al.
Magnetic resonance imaging (MRI)-based radiomics for prostate cancer radiotherapy.
Transl Androl Urol. (2018) 7:445–58. doi: 10.21037/tau.2018.06.05

23. Traverso A, Kazmierski M, Zhovannik I, Welch M, Wee L, Jaffray D, et al.
Machine learning helps identifying volume-confounding effects in radiomics. Phys
Med. (2020) 71:24–30. doi: 10.1016/j.ejmp.2020.02.010

24. Traverso A, Wee L, Dekker A, Gillies R. Repeatability and reproducibility of
radiomic features: A systematic review. Int J Radiat Oncol Biol Phys. (2018) 102:1143–
58. doi: 10.1016/j.ijrobp.2018.05.053

25. Vallieres M, Freeman CR, Skamene SR, El Naqa I. A radiomics model from joint
FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue
sarcomas of the extremities. Phys Med Biol. (2015) 60:5471–96. doi: 10.1088/0031-
9155/60/14/5471

26. Zwanenburg A, Vallieres M, Abdalah MA, Aerts H, Andrearczyk V, Apte A,
et al. The image biomarker standardization initiative: standardized quantitative
radiomics for high-throughput image-based phenotyping. Radiology. (2020)
295:328–38. doi: 10.1148/radiol.2020191145

27. Delgadillo R, Spieler BO, Ford JC, Kwon D, Yang F, Studenski M, et al.
Repeatability of CBCT radiomic features and their correlation with CT radiomic
features for prostate cancer. Med Phys. (2021) 48:2386–99. doi: 10.1002/mp.14787

28. Collewet G, Strzelecki M, Mariette F. Influence of MRI acquisition protocols and
image intensity normalization methods on texture classification. Magn Reson Imaging.
(2004) 22:81–91. doi: 10.1016/j.mri.2003.09.001

29. Lloyd S. Least squares quantization in PCM. IEEE Trans Inf Theory. (1982)
28:129–37. doi: 10.1109/TIT.1982.1056489

30. Fave X, Zhang L, Yang J, Mackin D, Balter P, Gomez D, et al. Impact of image
preprocessing on the volume dependence and prognostic potential of radiomics
features in non-small cell lung cancer. Trans Cancer Res. (2016) 5:349–63.
doi: 10.21037/tcr.2016.07.11

31. Shafiq-Ul-Hassan M, Zhang GG, Latifi K, Ullah G, Hunt DC, Balagurunathan Y,
et al. Intrinsic dependencies of CT radiomic features on voxel size and number of gray
levels. Med Phys. (2017) 44:1050–62. doi: 10.1002/mp.12123

32. Lin LIK. A concordance correlation coefficient to evaluate reproducibility.
Biometrics. (1989) 45(1):255–68. doi: 10.2307/2532051

33. Fave X, Mackin D, Yang J, Zhang J, Fried D, Balter P, et al. Can radiomics
features be reproducibly measured from CBCT images for patients with non-small cell
lung cancer? Med Phys. (2015) 42:6784–97. doi: 10.1118/1.4934826

34. Simpson G, Spieler B, Dogan N, Portelance L, Mellon EA, Kwon D, et al.
Predictive value of 0.35 T magnetic resonance imaging radiomic features in stereotactic
ablative body radiotherapy of pancreatic cancer: A pilot study. Med Phys. (2020)
47:3682–90. doi: 10.1002/mp.14200

35. Tomaszewski MR, Latifi K, Boyer E, Palm RF, El Naqa I, Moros EG, et al. Delta
radiomics analysis of Magnetic Resonance guided radiotherapy imaging data can
enable treatment response prediction in pancreatic cancer. Radiat Oncol. (2021) 16:237.
doi: 10.1186/s13014-021-01957-5

36. Lacroix M, Frouin F, Dirand AS, Nioche C, Orlhac F, Bernaudin JF, et al.
Correction for magnetic field inhomogeneities and normalization of voxel values are
needed to better reveal the potential of MR radiomic features in lung cancer. Front Oncol.
(2020) 10:43. doi: 10.3389/fonc.2020.00043

37. Spraker MB, Wootton LS, Hippe DS, Ball KC, Peeken JC, Macomber MW, et al.
MRI radiomic features are independently associated with overall survival in soft tissue
sarcoma. Adv Radiat Oncol. (2019) 4:413–21. doi: 10.1016/j.adro.2019.02.003

38. Cattell R, Chen S, Huang C. Robustness of radiomic features in magnetic
resonance imaging: review and a phantom study. Vis Comput Ind BioMed Art.
(2019) 2:19. doi: 10.1186/s42492-019-0025-6
frontiersin.org

https://doi.org/10.1093/jnci/djh259
https://doi.org/10.1093/jnci/djh259
https://doi.org/10.3322/caac.21654
https://doi.org/10.3322/caac.21660
https://doi.org/10.1016/j.critrevonc.2021.103497
https://doi.org/10.6004/jnccn.2021.0008
https://doi.org/10.1038/nrurol.2013.185
https://doi.org/10.1016/j.adro.2017.03.003
https://doi.org/10.21037/tau.2017.12.37
https://doi.org/10.1038/s41598-017-09932-5
https://doi.org/10.1007/s00066-020-01679-9
https://doi.org/10.1148/radiol.13121454
https://doi.org/10.1186/s13014-016-0718-3
https://doi.org/10.21037/tcr.2016.06.20
https://doi.org/10.21873/anticanres.12273
https://doi.org/10.1088/0031-9155/60/7/2685
https://doi.org/10.1088/0031-9155/60/7/2685
https://doi.org/10.1007/s11547-021-01436-7
https://doi.org/10.1016/j.ejmp.2020.10.029
https://doi.org/10.1155/2018/1729071
https://doi.org/10.1016/j.ejmp.2018.05.017
https://doi.org/10.1007/s00330-021-08151-x
https://doi.org/10.1002/jmri.24163
https://doi.org/10.21037/tau.2018.06.05
https://doi.org/10.1016/j.ejmp.2020.02.010
https://doi.org/10.1016/j.ijrobp.2018.05.053
https://doi.org/10.1088/0031-9155/60/14/5471
https://doi.org/10.1088/0031-9155/60/14/5471
https://doi.org/10.1148/radiol.2020191145
https://doi.org/10.1002/mp.14787
https://doi.org/10.1016/j.mri.2003.09.001
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.21037/tcr.2016.07.11
https://doi.org/10.1002/mp.12123
https://doi.org/10.2307/2532051
https://doi.org/10.1118/1.4934826
https://doi.org/10.1002/mp.14200
https://doi.org/10.1186/s13014-021-01957-5
https://doi.org/10.3389/fonc.2020.00043
https://doi.org/10.1016/j.adro.2019.02.003
https://doi.org/10.1186/s42492-019-0025-6
https://doi.org/10.3389/fonc.2024.1408752
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	Repeatability, reproducibility, and the effects of radiotherapy on radiomic features of lowfield MR-LINAC images of the prostate
	1 Introduction
	2 Methods
	2.1 Patient population
	2.2 MR-LINAC
	2.3 Imaging
	2.4 Contouring
	2.5 Description of radiomic features
	2.6 Data analysis

	3 Results
	4 Discussion
	5 Conclusions
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


