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Background: Breast cancer (BC) exhibits a high incidence rate, imposing a

substantial burden on healthcare systems. Novel drug targets are urgently

needed for BC. Mendelian randomization (MR) has gained widespread

application for identifying fresh therapeutic targets. Our endeavor was to

pinpoint circulatory proteins causally linked to BC risk and proffer potential

treatment targets for BC.

Methods: Through amalgamating protein quantitative trait loci from 2,004

circulating proteins and comprehensive genome-wide association study data from

the Breast Cancer Association Consortium, we conducted MR analyses. Employing

Steiger filtering, bidirectional MR, Bayesian colocalization, phenotype scanning, and

replication analyses, we further solidified MR study outcomes. Additionally, protein-

protein interaction (PPI) network was harnessed to unveil latent associations

between proteins and prevailing breast cancer medications. The phenome-wide

MR (Phe-MR) was employed to assess potential side effects and indications for the

druggable proteins of BC. Finally, we further affirmed the drugability of potential drug

targets through mRNA expression analysis and molecular docking.

Results: Through comprehensive analysis, we identified five potential drug targets,

comprising four (TLR1, A4GALT, SNUPN, and CTSF) for BC and one (TLR1) for

BC_estrogen receptor positive. None of these five potential drug targets displayed

reverse causation. Bayesian colocalization suggested that these five latent drug targets

shared variability with breast cancer. All drug targets were replicated within the

deCODE cohort. TLR1 exhibited PPI with current breast cancer therapeutic targets.

Furthermore, Phe-MR unveiled certain adverse effects solely for TLR1 and SNUPN.

Conclusion: Our study uncovers five prospective drug targets for BC and its

subtypes, warranting further clinical exploration.
KEYWORDS

breast cancer, drug targets, Mendelian randomization, single-nucleotide polymorphism,
genetic approaches
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1 Introduction

Breast cancer (BC) is the most common malignant tumor of

women in clinical practice and seriously endangers women’s

physical and mental health. In the year 2020, there were a

staggering 2.26 million new cases of BC worldwide, with its

incidence having surpassed that of lung cancer to become the

global leader (1). With a deepening understanding of BC

treatment, a new era of comprehensive treatment has emerged

(2). Pharmacological therapy is an indispensable component of the

comprehensive treatment approach for BC patients, but it brings

about a series of challenges (3). Firstly, the existing medications

come with significant side effects (i.e., gastrointestinal reactions,

bone marrow suppression, and myocardial structural damage).

Secondly, many patients show no response to pharmacological

treatment (i.e., treatment-resistant). As such, novel and effective

drug therapy targets for BC are still needed.

Proteins play a pivotal role in the pathogenesis and progression

of diseases, with circulating proteins often serving as viable targets

for pharmacological interventions due to their amenability to direct

manipulation. In preceding research, several circulating proteins

linked to BC have been documented, including cellular

communication network factor 1 (CCN1) (4), serum secreted

clusterin (sCLU) (5), and insulin-like growth factor 1 (IGF1) (6).

However, most of these studies are observational and yield results

that are susceptible to the possibility of confounding or reverse

causation bias.

Randomized controlled trials (RCTs) serve as the gold standard

for establishing the relationship between drugs (protein targets) and

BC. However, the implementation of RCTs is challenged by

significant financial and time costs. Mendelian Randomization

(MR) is an epidemiological approach that employs genetic

variation as a proxy for exposure to predict causal relationships

with outcomes (7, 8). Owing to the random allocation of genetic

variations during conception, MR is largely impervious to the

influence of confounders and reverse causality. The efficacious

application of drug-targeted MR analyses has extended to various

disorders, such as multiple sclerosis (9), type 1 diabetes (10), and

COVID-19 (11). However, there have been limited studies utilizing

the drug target MR approach to identify potential targets for BC up

to the present.

In this study, we conducted MR by integrating large-scale BC

genome-wide association studies (GWAS) results with cis-protein

quantitative trait loci (cis-pQTL) of 2,004 plasma proteins, aiming

at identifying plasma proteins that can serve as potential therapeutic

targets for BC. To ensure the stability of causal relationships, we

conducted a series of sensitivity analyses, including reverse causality

detection, pleiotropy test, and Bayesian co-localization analysis. For

significant MR results, we utilized cis-pQTL data from the deCODE

cohort for replication to validate the preliminary results. In

subsequent analyses, we performed protein-protein interaction

(PPI) and Gene Ontology (GO) enrichment analyses on

suggestive causal proteins (p < 0.05), and visualized a PPI

network diagram between prioritized proteins and established BC
Frontiers in Oncology 02
drug targets. Then, we conducted a phenome-wide MR (Phe-MR)

against 525 disease phenotypes to explore side effects. Finally, we

further affirmed the drugability of potential drug targets through

mRNA expression analysis and molecular docking. The study

design is shown in Figure 1.
2 Materials and methods

All data used in this study were derived from publicly available

GWAS statistics and did not require new ethical approval.
2.1 Data source

2.1.1 Plasma protein quantitative trait loci
For the primary analysis, the plasma pQTL data were from a

recent study by Zhang et al. (12). In summary, Zhang et al.

ascertained 2,004 proteins displaying connections with common

variants in cis-regions within a populace of 7,213 individuals of

European American heritage.

For the replication analysis, we utilized pQTL data in the

deCODE cohort by Ferkingstad et al. (13). In this study,

Ferkingstad et al. performed GWAS analysis for plasma protein

levels (35,559 Icelanders, 4,907 proteins) and found a total of 18,084

associations between sequence variations and plasma protein levels.

2.1.2 Data sources of breast cancer GWAS
We collected genetic association summary statistics for BC risk

from the Breast Cancer Association Consortium (BCAC), a meta-

analysis of 67 studies including 122,977 cases (thereof 69,501 estrogen

receptor (ER)-positive and 21,468 ER-negative), and 105,974 controls

for breast cancer (14). Briefly, using the reference panel from the 1000

Genomes Project (phase 3) and adjusting for genetic principal

components and country-specific factors, the study evaluated the

correlation between breast cancer susceptibility and 11.8 million

single-nucleotide polymorphisms (SNPs).
2.2 Instrumental variable selection

The SNPs of plasma protein for the primary analysis were filtered

according to the following procedures: (i) A genome-wide threshold of

significance (p < 5E-08) was adopted. (ii) Based on European ancestry

reference data from the 1000 Genomes Project, we employed the

PLINK algorithm to clump and discard SNPs (with an r2 threshold of

0.001 and a window size of 10000 kB). (iii) Genetic variables with F-

statistic <10 were excluded to avoid weak instrumental variable bias

(15). (iv) The pQTLs can be divided into cis-acting and trans-acting.

Cis-pQTLs exert direct regulation on protein expression at the

transcriptional tier, whereas trans-pQTLs govern protein expression

via intermediate mechanisms and are susceptible to potential

horizontal pleiotropic effects (16). Therefore, only cis-pQTLs were

included in our study (Supplementary Table S1).
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In the replication analysis, we employed both the same-variant

strategy and the significant-variant strategy to further validate our

findings. The same-variant strategy utilized SNPs identical to those

employed in the primary analysis, whereas the significant-variant

strategy featured SNPs exhibiting genome-wide significance in the

deCODE cohort (Supplementary Table S2).
2.3 Statistical analysis

2.3.1 Mendelian randomization analysis
To ascertain the causal effects of circulating proteins on BC,

two-sample MR analyses were conducted using plasma protein as

the exposure and BC as the outcome. In instances of a single

available pQTL, we used the Wald ratio method to compute the MR

estimates. When two or more instruments were available, the

inverse variance-weighted (MR-IVW) approach was employed.
Frontiers in Oncology 03
Bonferroni corrections were applied to reduce the false

discovery rate. In the primary analysis, given that MR analysis

was exclusively conducted for 2004 plasma proteins, the threshold

for multiple correction in MR analysis result was set at P < 2.495E-

05 (0.05/2004). In the replication analyses, significant thresholds of

0.0045 (0.05/11), 0.025(0.05/2), and 0.0167 (0.05/3) were used for

BC_ overall, BC_ER(+), and BC_ER(-).

Causal estimates were presented as odds ratios (ORs) with 95%

confidence intervals (CIs) for risk of BC per standard deviation (SD)

increase in plasma protein levels. Statistical analyses were

performed using the TwoSampleMR package in R 3.4.2.

2.3.2 Sensitivity analyses
Initially, we used Steiger filtering to determine the robustness of

the directionality of causality (17). Next, we further performed a

bidirectional MR to assess whether there is a reverse causality

between plasma protein and BC (18). (Supplementary Tables S3-
FIGURE 1

Study design of Mendelian Randomization study to reveal potential drug targets for breast cancer.
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S5). Using the same criteria used to screen for pQTL, we extracted

instrumental variables from BC GWAS. As Zhang et al.’s study

lacked summary statistics for proteins, we obtained the outcome

data from the deCODE cohort.

To avoid the impact of pleiotropy, we conducted a search in the

phenoscanner database (http://www.phenoscanner.medschl.

cam.ac.uk) for all phenotypes associated with the selected

instrumental variables. We excluded SNPs (P < 5E -08) linked to

BC and any known risk factors of BC.

To further investigate causality of observed MR associations, we

performed colocalization analysis between prioritized proteins and

BC. This colocalization analysis can determine the probability that

the protein level and the risk of BC are affected by the same genetic

variants. The analyses were performed using the coloc R package

with default parameters, deriving the posterior probabilities of 5

hypotheses (H0-H4) under the Bayesian framework (19). Proteins

with high-support evidence of colocalization (PH4> 0.7) were

considered as effective drug targets (20).

2.3.3 Protein-protein network
To assess the functional associations and biological processes

among MR drug targets, we conducted a PPI analysis and GO

enrichment among those proteins with a significance level of p <

0.05. Furthermore, to investigate the relationship between prioritized

proteins and known breast cancer drug targets (acquired through

literature review (21–24) and DrugBank database (25) search), we

performed a PPI analysis between the prioritized proteins and the

established breast cancer drug targets. PPI and GO enrichment

analyses were constructed by the Search Tool for the Retrieval of

Interacting Genes (STRING) database version 12.0 (26) (https://

string-db.org/). The visualization of the PPI network was carried

out using the Cytoscape platform (https://cytoscape.org/).

2.3.4 Phenome-wide MR analysis
To further explore the potential side effects and more extensive

indications of the prioritized proteins screened out in the preliminary

analysis, we performed Phe-MR. Specifically, we initially

incorporated 525 GWASs from IEU Open GWAS that were

conducted within the UK Biobank and defined by ICD-10

diagnostic codes for disease traits (Supplementary Table S6).

Subsequently, we employed the BC-associated proteins as the

exposure and conducted MR analysis with these 525 disease traits

as outcomes. If the protein’s effect direction on a particular disease is

consistent with its effect direction on BC, it can be inferred that the

targeted protein used for treating BC may also confer potential “

benefit “ for that disease. Conversely, if the directions are inconsistent,

it indicates the presence of potential adverse effects. The significance

level of Phe-MR results was set at P < 9.524E-05 (0.05/525).
2.4 mRNA expression analysis of the
identified drug targets in different tissues

We performed mRNA expression analysis of the identified drug

targets using The Human Protein Atlas database (27). The mRNA

expression data is derived from deep sequencing of RNA (RNA-
Frontiers in Oncology 04
seq) from 40 different normal tissue types, more details about

human protein atlas are available in the original publication and

the website (proteinatlas.org).
2.5 Candidate drug prediction and
molecular docking

To assess the drugability of potential drug targets, our study

utilized the Drug Signature Database (DSigDB) to predict candidate

drugs, and further conducted molecular docking with candidate

drugs as ligands and potential drug targets as receptors. DSigDB

encompasses 22,527 gene sets and 17,389 distinct compounds,

enabling the pairing of clinical drugs with target genes. We

uploaded the genes of potential drug targets to DSigDB for

candidate drug predictions and obtained the structural data of

drugs and proteins from the PubChem Compound Database and

the Protein Data Bank, respectively. Subsequently, molecular

docking was employed to evaluate the binding affinities and

interaction patterns between candidate drugs and targets at the

atomic level. Initially, we removed water molecules from ligands

and receptors, and introduced polar hydrogen atoms. Afterward,

allowing unrestricted molecular movement, appropriately sized

pockets were created to envelop all proteins’ structural domains.

The process was visualized through AutodockVina 1.2.2.
3 Results

3.1 Screening the proteome for breast
cancer causal proteins

Genetic instruments of plasma proteins for MR discovery

analysis are shown in Supplementary Table S1. The MR analysis

yielded 11 BC_overall-related proteins, 2 BC_ER(+)-related

proteins, and 3 BC_ER(-)-related proteins respectively at a

Bonferroni corrected threshold (P < 2.495E-05)(Table 1,

Figures 2A–C). To be specific, increased Lactosylceramide 4-

alpha-galactosyltransferase (A4GALT) (OR = 0.93; 95% CI, 0.90–

0.96; P = 3.97E-06), Protein DJ-1 (PARK7) (OR = 0.95; 95% CI,

0.93–0.97; P = 4.69E-06), Snurportin-1 (SNUPN) (OR = 0.91; 95%

CI, 0.88–0.95; P = 5.78E-06), and Glutaryl-CoA dehydrogenase,

mitochondrial (GCDH) (OR = 0.84; 95% CI, 0.78–0.91; P = 1.28E-

05) decreased the risk of BC_overall, whereas elevated Toll-like

receptor 1 (TLR1) (OR = 1.18; 95% CI, 1.13–1.24; P = 2.83E-12),

Programmed cell death protein 6 (PDCD6) (OR = 1.34; 95% CI,

1.20–1.50; P = 2.03E-07), 2’-deoxynucleoside 5’-phosphate N-

hydrolase 1 (RCL) (OR = 1.21; 95% CI, 1.12–1.30; P = 4.46E-07),

Cathepsin F (CTSF) (OR = 1.11; 95% CI, 1.06–1.17; P = 1.03E-05),

Semaphorin-4A (SEMA4A) (OR = 1.11; 95% CI, 1.06–1.17; P =

1.37E-05), Layilin (LAYN) (OR = 1.11; 95% CI, 1.06–1.17; P =

1.70E-05), and Hyaluronan and proteoglycan link protein 4

(HAPLN4) (OR = 1.14; 95% CI, 1.07–1.20; P = 2.14E-05)

increased the risk of BC_overall. Rab GDP dissociation inhibitor

beta (GDI2) (OR = 0.92; 95% CI, 0.90–0.96; P = 2.24E-06) was

associated with a lower risk of BC_ER(+), while TLR1 (OR = 1.19;
frontiersin.org
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95% CI, 1.12–1.25; P = 2.65E-09) was associated with a higher risk

of BC_ER(+). Higher genetically predicted levels of Hepatocyte

growth factor-like protein (MST1) (OR = 1.06; 95% CI, 1.04–1.09; P

= 3.98E-07), Glutathione peroxidase 1 (GPX1) (OR = 1.45; 95% CI,

1.25–1.69; P = 1.09E-06), and KDEL motif-containing protein 2

(KDELC2) (OR = 1.15; 95% CI, 1.08–1.22; P = 2.60E-06) were all

associated with higher risk of BC_ER(-) (Figures 2D, E).
3.2 Sensitivity analysis for breast cancer
causal proteins

3.2.1 Reverse causality detection
Steiger filtering analysis substantiated the accurate causal

direction from protein levels to the development of BC for the 15

proteins prioritized in this study. Meanwhile, Bidirectional MR

analysis did not reveal any causal effect of BC on the 15 prioritized

proteins (Table 1, Supplementary Figure S1).Phenome-wide

MR analysis.

A total of 525 diseases were included in the Phenome-wide

MR analysis (Supplementary Table S10 and Figure 3). Under

Bonferroni correction (P < 0.05/525 = 9.5 × 10-5), an increase in

CCM levels was associated with a reduced risk of colorectal

malignancy, while BTN3A3 exhibited associations with multiple

diseases, including hyperplasia of prostate, unspecified hematuria,

inguinal hernia, and hypothyroidism(Supplementary Tables S11-

21). Analysis of the other nine plasma proteins did not reveal

significant side effects.
3.2.2 Phenotype scanning
Phenoscanner revealed some associations between SNP and

other diseases or proteins. Specifically, we observed associations of

genetic instruments for TLR1 and PARK7 with certain allergic

diseases such as allergic asthma, allergic rhinitis, and eczema.

Genetic instruments for PARK7, GPX1, and MST1 were linked to

various digestive system disorders including sclerosing cholangitis

and inflammatory bowel disease. This might suggest shared

etiology between BC and the mentioned diseases. Importantly,

we found MST1 and GPX1 to be associated with multiple proteins,

hence excluding them from potential drug targets (Table 1,

Supplementary Table S7).
3.2.3 Bayesian co-localization analysis
To delve deeper into the causality of the detected MR

associations, we performed colocalization analyses of prioritized

protein with BC and its subtype outcomes. To be specific,

BC_overall had high support for colocalization with 4 proteins

including TLR1 (PPH4 = 0.977), A4GALT (PPH4 = 0.960), SNUPN

(PPH4 = 0.729), and CTSF (PPH4 = 0.916). For BC_ER(+), we

found both TLR1 (PPH4 = 0.977) and GDI2 (PPH4 = 0.789) with

strong supporting colocalization evidence. For BC_ER(-), only

MST1 (PPH4 = 0.958) passed the test. Summarily, six potentially

druggable proteins with evidence of a causative genetic variant

between the pQTL and BC risk were identified from colocalization

analyses (Table 1, Figure 2D, Supplementary Figures S2-S16).
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TABLE 1 Continued

Phenotype
scanning

Bayesian
colocalization

PPH4

Replication
analysis

(significant)

Replication
analysis
(same)

Evidence of
potential

drug target

Passed 0.916(YES) 7.53E-06 Passed 1.03E-05 Passed YES

Passed Lack of data NO

Passed 0.116(NO) 2.21E-05 Passed 1.37E-05 Passed NO

Passed 0.512(NO) 1.70E-05 Passed 1.70E-05 Passed NO

Passed 2.120E-05(NO) 1.00E-05 Passed 2.14E-05 Passed NO

Passed 0.948(YES) 2.65E-09 Passed 2.65E-09 Passed YES

Passed 0.789(NO) Lack of data 2.24E-06 Passed NO

NO 0.958(YES) 1.23E-06 Passed 3.98E-07 Passed NO

NO 0.282(NO) Lack of data 1.09E-06 Passed NO

Passed 0.652(NO) 2.29E-06 Passed 2.60E-06 Passed NO

; PPH4, posterior probability of hypothesis 4; SNP, single-nucleotide polymorphism. In Steiger filtering, a P <0.05 suggests no
alleles during replication analysis, rendering the analysis unfeasible.
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Outcome Protein
UniProt

ID
SNP

MR
(Wald ratio) Steiger

filtering
(pval)

Bidirectional
MR

OR
(95%
CI)

pval
OR

(95% CI)
pva

0.91
(0.88,0.95)

5.78E-
06

1.01E-
71 Passed

0.994
(0.972,1.017)

0.606
Passe

CTSF Q9UBX1 rs1044522
1.11

(1.06,1.17)
1.03E-
05

4.81E-
47 Passed

1.008
(0.982,1.035)

0.548
Passe

GCDH Q92947 rs2238641
0.84

(0.78,0.91)
1.28E-
05

6.56E-
20 Passed

Lack of data

SEMA4A Q9H3S1 rs12401997
1.11

(1.06,1.17)
1.37E-
05

1.54E-
50 Passed

1.007
(0.982,1.034)

0.585
Passe

LAYN Q6UX15 rs4938792
1.11

(1.06,1.17)
1.70E-
05

3.26E-
44 Passed

1.014
(0.989,1.039)

0.268
Passe

HAPLN4 Q86UW8 rs55762233
1.14

(1.07,1.20)
2.14E-
05

9.37E-
30 Passed

1.011
(0.984,1.038)

0.438
Passe

BC_ER(+)

TLR1 Q15399 rs5743618
1.19

(1.12,1.25)
2.65E-
09

3.74E-
46 Passed

1.028
(0.983,1.075)

0.232
Passe

GDI2 P50395 rs55913768
0.92

(0.90,0.96)
2.24E-
06

2.89E-
150 Passed

1.006
(0.983,1.030)

0.583
Passe

BC_ER (-)

MST1 P26927 rs3197999
1.06

(1.04,1.09)
3.98E-
07

1.89E-
178 Passed

0.995
(0.970,1.021)

0.688
Passe

GPX1 P07203 rs9823546
1.45

(1.25,1.69)
1.09E-
06

1.87E-
14 Passed

0.996
(0.964,1.029)

0.801
Passe

KDELC2 Q7Z4H8 rs141379009
1.15

(1.08,1.22)
2.60E-
06

7.52E-
168 Passed

0.999
(0.927,1.075)

0.971
Passe

Odds ratios per SD increase in plasma protein levels as BC and its subtypes risk increased. CI, confidence level; MR, Mendelian randomization
reverse causality, while in bidirectional MR, a P >0.05 also suggests no reverse causality. *indicates the exclusion of SNPs with incompatible
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3.3 PPI network and GO
enrichment analysis

We observed the complicated PPI networks of the suggestive

significant MR proteins for BC and its subtypes, all of which were

significantly enriched (p < 1.0E-16, p < 1.0E-16, and p = 1.76E-11)

(Supplementary Figures S17-S19). Meanwhile, PPI analysis showed

that APOE and STAT3 seem to play a pivotal role in all proteins and

are strongly associated with the development of breast cancer. GO

enrichment analysis revealed that the suggestive significant MR
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proteins for BC_overall, BC_ER (+), and BC_ER (-) were

significantly enriched in “sulfur compound metabolic process”, “

small molecule metabolic process” and “ response to chemical”,

respectively (Supplementary Tables S8-S10).

The PPI network unveiled connections involving five prioritized

proteins with the targets of seven existing medications for BC,

including 5 robust interactions (AKT1-TLR1, AKT1-PARK7,

AKT1-MST1, AR-PARK7, and MET-MST1) (Figure 3).

Specifically, TLR, PARK7, and MST1 are associated with serine/

threonine kinase 1 (AKT1), which serves as the target for ipatasertib
B

C D

E

A

FIGURE 2

MR and colocalization analysis results in the primary phase. Volcano plots of the MR results for 2004 plasma proteins on the risk of (A) BC_overall,
(B) BC_ER(+), and (C) BC_ER(-). (D) Pval and value of colocalization analysis for prioritized proteins. (E) Forest plot for the MR result between pQTL
and BC. Dashed horizontal black line corresponded to P = 2.495E-05 (0.05/2004). ln = natural logarithm.
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and capivasertib. Bicalutamide is an androgen receptor (AR)

inhibitor, and AR is related to PARK7. MST1 is linked to

Hepatocyte growth factor receptor (MET), which is the target of

Onartuzumab. The above correlation further strengthens the

possibility of our priority protein as a drug target.
3.4 Phe-MR analysis of the side effects of
breast cancer causal proteins

Phe-MR findings indicated that some proteins held potential as

favorable drug targets for alternate indications. For instance, while

genetically- proxied TLR1 elevation raises the risk of BC_overall

and BC_ER(+), it concurrently heightens the likelihood of non-

performance of surgery or procedure (negative treatment outcome).

Genetically determined SEMA4A elevation escalated the risk of

both BC_overall and diaphragmatic hernia. Elevated genetic levels

of plasma PDCD6 were linked to an elevated risk of BC_overall, as

well as some disorders of eyelid. When considering the mentioned

proteins as potential drug targets for breast cancer, they may also

exert beneficial effects on the corresponding diseases or traits

mentioned above. In contrast, gene-predicted TLR1 was linked to

arthrosis and chalazion, gene-predicted SNUPN was linked to

pneumonia, gene-predicted KDELC2 was linked to uterine

leiomyoma, and gene-predicted GCDH was linked to non-

insulin-dependent diabetes mellitus without complications, all of
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which were considered detrimental. These unfavorable effects need

to be taken into consideration when evaluating their potential as

preventive utility for BC (Figure 4, Supplementary Tables S11-S25).
3.5 External replication of breast cancer
causal proteins

We attempted to replicate the effect estimates for the prioritized

proteins using data from the deCODE cohort. In the significant-

variant strategy, PARK7 (P=0.017) failed to be successfully

replicated, and due to a lack of data, GCDH, GDI2, and GPX1

were also not replicated. In the same-variant strategy, RCL and

GCDH were not successfully replicated due to a lack of data and the

presence of incompatible alleles (Supplementary Figure S20).
3.6 mRNA expression of the identified drug
targets in breast tissue

We searched for identified drug targets in The Human Protein

Atlas database and observed that the mRNA expression levels of

these identified drug targets rank among the top tissues in breast

tissue compared to other tissues throughout the body. This further

corroborates the pharmacological potential of the identified targets

(Supplementary Figures S21-S24).
FIGURE 3

Interaction between current BC medications targets and prioritized proteins.
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3.7 Candidate drug prediction and
Molecular docking

Based on adjusted p-values and searches in DSigDB, we

identified a total of 10 available compounds (Supplementary

Table S26). Due to the lack of protein structure data, we were

unable to complete the molecular docking for A4GALT with

chlorophyllin. However, it is noteworthy that SNUPN exhibited

remarkably stable binding with candidate drugs, suggesting robust

affinity and providing compelling evidence for its druggability

(Figure 5, Supplementary Table S27).
4 Discussion

Despite the steady progress in breast cancer treatment

approaches, breast cancer therapy still faces numerous challenges.

Therefore, the development of new drugs for breast cancer is

urgently needed. In this study, based on a large-scale pQTL

dataset, we identified 15 prioritized proteins that may influence

BC outcomes [11 for BC_overall, 3 for BC_ER(+), and 2 for BC_ER

(-)], 12 of which were also found in a repeated study. To mitigate

reverse causality, horizontal pleiotropy, or genetic confounding due

to linkage disequilibrium (LD), we conducted a series of sensitivity
Frontiers in Oncology 09
analyses to strengthen our conclusions. Reverse causality detection

was performed using Steiger filtering and Bidirectional MR analysis.

Encouragingly, we did not identify any proteins with reverse causal

effects on BC. Next, phenoscanner was used to detect horizontal

pleiotropy. The genetic instruments of MST1 and GPX1 appear to

be associated with a variety of proteins, suggesting that MST1 and

GPX1 might function as hub proteins regulating multiple pathways.

Therefore, we temporarily excluded MST1 and GPX1 from the list

of candidate drug targets due to their complex biological functions.

Phenoscanner also revealed associations between SNP and several

allergic diseases and digestive system disorders. Finally, Bayesian

colocalization was employed to assess whether the MR findings

were impacted by linkage disequilibrium. Out of the 16 potential

targets, 7 (43.75%) potential targets passed the colocalization test

with 0.7 as the critical threshold for posterior probability. All in all,

through pleiotropy scanning, reverse causality detection,

colocalization analysis, and replication analysis, we further

identified five potential drug targets: TLR1, A4GALT, SNUPN,

and CTSF for BC_overall and TLR1 for BC_ER(+). Utilizing a

multifaceted approach, including GO enrichment analysis, PPI

analysis, molecular docking simulations, and mRNA expression

analysis, we have extended the confirmation of the pharmacological

viability of the predicted target proteins. Last but not least, the Phe-

MR indicated a few potential safety concerns.
B

A

FIGURE 4

Phe-MR analysis results. (A) Manhattan plot. (B) Forest plot. Dashed horizontal black line corresponded to P = 9.524E-05 (0.05/525). A dot
represents a disease trait, and different colors represent the MR result of different proteins.
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TLR1 is a member of the Toll-like receptors (TLRs) family,

expressed on the surface of immune cells. TLRs are integral

components of the innate immune system, crucial for protecting

the host against bacterial and viral infections. Emerging evidence

indicates that the TLRs/NF-kB signaling cascade assumes a

substantial role in the etiology and recidivism of BC (28). Upon

engagement with either endogenous or exogenous ligands, TLRs

stimulate intracellular signaling pathways, culminating in the

release of diverse cytokines, including tumor necrosis factor-alpha

and interleukin-1, which orchestrate chronic inflammatory

responses. This activation cascade in turn triggers NF-kB
signaling, potentiating tumor cell proliferation. Moreover,

González-Reyes et al., through immunohistochemistry, protein

blotting, and real-time PCR analysis, identified a significant

increase in the mRNA levels of TLR3, TLR4, and TLR9 in

recurrent breast cancer samples (29). These findings align with

our discoveries, underscoring the potential promise of TLR1

antagonists in BC treatment. However, the potential latent off-

target effects, such as inadvertent immunosuppression, cast

uncertainty on the feasibility of small molecule TLR1 antagonists.

As evident in our phe-MR study, adverse effects like arthrosis and

chalazion could be mediated by immune suppression. Furthermore,

our PPI analysis has unveiled an intricate interplay between TLR1

and CXCR4, as well as AKT1. Notably, CXCR4 has been identified

as the therapeutic target of Balixafortide, whereas AKT1 as the

therapeutic target of Capivasertib and Ipatasertib, all of which have

been subjected to rigorous scrutiny in phase III clinical trials for

breast cancer. This compelling convergence of evidence amplifies

the hypothesis that TLR1 stands as a promising novel therapeutic

avenue for BC intervention.
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Snurportin 1, also known as SNUPN, is a protein involved in

the transport of small nuclear ribonucleoproteins between the

cytoplasm and the nucleus of a cell. Historically, research on

SNUPN has been limited, although there is a more extensive

study of a protein that collaborates with SNUPN, known as

exportin 1 (XPO1). SNUPN and XPO1 mutually recognize each

other, forming a nuclear pore complex or a cargo together, leading

to abnormal cellular localization of oncogenes, tumor suppressor

genes, and signaling pathway mediators. This disruption of cellular

homeostasis contributes to the initiation and progression of

tumorigenesis, particularly in the context of leukemia (30). A

recent proteome association study has further confirmed the

association between SNUPN and breast cancer, which was in

consistent with our finding (31).

Cathepsin F is a member of the Cathepsin family, playing a

pivotal role in protein degradation and metabolic processes within

cells. Research indicates that Cathepsin F may be associated with

the development and progression of certain tumors, such as lung

cancer (32), thyroid cancer (33), and cervical cancer (34), although

there is a lack of studies investigating its relationship with breast

cancer. Other members of the cathepsin protease family have been

reported to have connections with breast cancer. For example,

Vashum Y et al. indicated that CTSK is specifically associated

with breast cancer bone metastasis by promoting adipocyte

differentiation (35). Additionally, Cathepsin D has been found to

be upregulated and secreted by breast cancer cells, promoting tumor

invasion and metastasis by degrading the extracellular matrix and

basement membrane in an acidic environment (36). Based on the

aforementioned studies, there is reason to believe that the Cathepsin

family plays a significant role in the occurrence and progression of
B C

D E F

A

FIGURE 5

Docking results of available proteins with small molecules. (A) SNUPN docking 5-Amino-2-methylphenol, (B) SNUPN docking Recinnamine, (C)
SNUPN docking Pinaflavol, (D) SNUPN docking reserpine, (E) SNUPN docked to 2,4-DIHYDROXYBENZOPHENONE, (F) SNUPN docked to
Methylbenzethonium chloride.
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breast cancer. Therefore, CTSF as a potential therapeutic target for

breast cancer is credible.

Lactosylceramide 4-alpha-galactosyltransferase, encoded by the

A4GALT gene in humans, participates in the pathway of

sphingolipid metabolism, specifically responsible for attaching a

galactose moiety to lactosylceramide molecules, thereby forming an

a-1,4-galactose linkage (37). Despite the limited extent of previous

investigation into 4AGALT, we postulate that the sphingolipid

metabolism mediated by 4AGALT could intricately modulate the

composition and structure of cell membranes, consequently

exerting influence over the tumor microenvironment. Both our

MR and co-localization analyses robustly affirm the association

between A4GALT and breast cancer. However, further research is

requisite to elucidate the underlying mechanistic basis of

this relationship.

This study possesses numerous merits. Primarily, it is widely

recognized that the drug development process inherently demands

substantial time, exorbitant costs, and encounters a notable risk of

failure. Employing drug targeting MR, through an analysis of vast-

scale biological data encompassing the genome and proteome,

pertinent plasma proteins associated with BC were identified,

thereby pinpointing potential drug targets and amplifying the

efficiency of drug development. Additionally, the MR method

obviates confounding and reverse causality inherent in

observational studies. Thirdly, complementary analyses such as

co-localization analysis, phe-MR, drug targets PPI analysis, and

replication analysis contribute to the comprehensiveness and

reliability of our research findings.

Still, this study is not without certain limitations. Firstly, our

analysis was exclusively focused on individuals of European

descent, posing challenges in extrapolating the findings to other

ancestral groups. Furthermore, while interventions targeting

circulating plasma proteins may exert systemic impacts, the

attainment of precise modulation within specific tissues remains

uncertain. Of paramount importance, it is noteworthy that MR

analysis does not entirely recapitulate clinical trials, as patient

responses to pharmaceutical interventions inherently manifest

diversity within clinical practice. Consequently, clinical trials are

warranted to meticulously evaluate the preliminary efficacy and

safety profile of these latent drug targets for BC intervention.

In conclusion, this study embraced a thorough genetic

methodology to evaluate the intricate interrelationship of plasma

proteins with BC and its subcategories. It is noteworthy to

emphasize that our study findings underscore the feasibility of

TLR1, A4GALT, SNUPN, and CTSF as viable therapeutic targets

for BC_overall or BC_ER(+) subtypes. Subsequent investigations

hold the promise of corroborating our observations and delving

into the underlying mechanisms that warrant exploration.
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