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Despite that colorectal and liver cancer are among themost prevalent tumours in

the world, the identification of non-invasive biomarkers to aid on their diagnose

and subsequent prognosis is a current unmet need that would diminish both their

incidence and mortality rates. In this context, conventional flow cytometry has

been widely used in the screening of biomarkers with clinical utility in other

malignant processes like leukaemia or lymphoma. Therefore, in this review, we

will focus on how advanced cytometry panels covering over 40 parameters can

be applied on the study of the immune system from patients with colorectal and

hepatocellular carcinoma and how that can be used on the search of novel

biomarkers to aid or diagnose, prognosis, and even predict clinical response to

different treatments. In addition, these multiparametric and unbiased approaches

can also provide novel insights into the specific immunopathogenic mechanisms

governing these malignant diseases, hence potentially unravelling novel targets

to perform immunotherapy or identify novel mechanisms, rendering the

development of novel treatments. As a consequence, computational

cytometry approaches are an emerging methodology for the early detection

and predicting therapies for gastrointestinal cancers.
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GRAPHICAL ABSTRACT
1 Digestive tumours

Currently, and according to the International Agency for

Research on Cancer (1), the most prevalent cancers in the world

are lung, breast, colorectal, prostate, stomach, and liver cancers,

respectively. Although lung cancer is currently the one with the

highest mortality, tumours within the gastrointestinal tract

(colorectal, liver, and stomach) are the most prevalent ones when

considering overall incidence and mortality. Among them,

colorectal cancer (CRC) is actually the second global cause (1)

of cancer-related mortality. Most of the CRC cases are

adenocarcinoma, and 60%–65% of them are sporadic, 25% have a

CRC family case without any hereditary syndrome, and 5% of them

are caused by a cancer hereditary syndrome such as non-polyposis

colorectal cancer (or Lynch syndrome) and familial adenomatous

polyposis (FAP). Lynch syndrome is caused by mutations in

genes encoding mismatch DNA repairing proteins, while FAP is

due to mutations in the tumour suppressor gene APC. Moreover,

colorectal cancer can be subdivided based on microsatellite stability

(MSS) and microsatellite instability (MSI) due to this deficiency

of mismatch repairing proteins. MSI tumours have better prognosis,

as they can be easily treated with immunotherapy than MSS

tumours (2–4). While there are more several factors such as aging

or location (right side CRC has worse survival than the left side) (5)

underlying its development, the most relevant risk contributors

include modifiable elements such as obesity, sedentary lifestyle, low

fruit and vegetable intake, red meat consumption, and smoking

and alcoholic habits. Its frequency is higher in economically

developed countries, although it is also increasing in westernised

developing societies (6–8). Indeed, in 2022, colorectal cancer was

the most diagnosed tumour and the second leading cause of

cancer death in Europe (9). Its 5-year survival rate ranges

from 10% to 90% depending on the stage at diagnose with a

better prognosis if it is diagnosed at earlier stages. Screening
Frontiers in Oncology 02
methods include faecal occult blood test or double contrast

barium enema, which are subsequently followed (if positive) by a

colonoscopy (10).

Gastric cancer is the fifth most common tumour (1) in the

world, and, as CRC, most of them are adenocarcinoma (11). It is

usually classified as cardia gastric (upper stomach) and non-cardia

gastric cancer (mid and distal stomach) having both different risk

factors and epidemiological patterns (12). Of the gastric cancer

cases, 90% are due to environmental factors while the remaining

10% have a familiar component. Hereditary diffuse gastric cancer,

which has a worse survival than sporadic gastric tumours, is

commonly caused by germinal mutations in CDH1 gene, which

codes E-cadherin protein. Hereditary Peutz–Jeghers syndrome

predisposes to early-onset gastric cancer. Lynch syndrome also

increases the lifetime risk of developing it (13–17). Whereas non-

cardia gastric cancer is related to smoking and deficient diet, cardia

class correlates with obesity and gastroesophageal reflux disease

(18). Despite overall predisposing factors including dietary factors

(like high consumption of processed meats, smoked foods, and high

salt diets) (19), Helicobacter pylori infection is responsible for

almost 90% of distal gastric cancers. Indeed, the International

Agency for Research on Cancer labels this bacterium as a human

carcinogen due to its correlation with gastric cancer, as it provokes

gastritis, which can derive on stomach atrophy, metaplasia, and

dysplasia. Its 5-year survival rate for early stages is 75.4% (20), so

screening analysis, such as esophagogastroduodenoscopy, are

usually implemented.

Last, but not the least, liver cancer remains the sixth most

common tumour (1) worldwide. As opposed to both colorectal and

gastric cancer, this one is a remarkable heterogeneous disease that

has been redefined over time. However, hepatocellular carcinoma is

its most frequent histological manifestation appearing in

approximately 90% of the cases (21). Risk factors include alcohol

abuse, diabetes, exposure to aflatoxin, and genetic predisposition.
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Nevertheless, almost 80% (22) of hepatocellular carcinoma are

associated with hepatitis B/C virus infection. In addition, high-

risk groups include patients with non-alcoholic fatty liver and

cirrhosis. The Barcelona Clinic for Liver Cancer (BCLC) classifies

hepatocellular carcinoma status and determine treatments options

based on it (from 0 to D). Another common indicator is the MELD

model (Model for End-stage Liver Disease), which examines the

bilirubin, creatinine, and International Normalised Ratio (INR)

from each patient to predict the 3-month mortality with a

statistical confidence of 80%, in order to prioritise those patients

who need an earlier transplant (23). Although early stages of

hepatocellular carcinoma are treatable, only 20% of diagnosed

patients survive more than 1 year. Liquid biopsies such as cell-

free DNA or a-fetoprotein are being studied as potential early

detection biomarkers, but further research is required (22, 24, 25).

Given therefore the aggressive nature of digestive tumours,

there is no doubt that early diagnosis is still the best weapon to

fight them. In this regard, the identification of novel biomarkers can

provide novel tools not only to aid on their diagnosis and predict

their subsequent prognosis (26–30) but also unveil novel targets to

perform immune therapy. However, although this has been partially

achieved in the gastric one given the role that H. pylori infection

elicits on its trigger, such goal remains elusive for both CRC and

liver cancer.

Regarding hepatocellular carcinoma (HCC), alpha-fetoprotein

(AFP) is widely used combined with abdominal ultrasound in order

to determine HCC illness. However, it is also true that targeted

therapies are essential for the treatment of hepatocellular carcinoma

(HCC), yet tackling this type of cancer is challenging owing to its

molecular heterogeneity. Some predictive biomarkers based on gene

polymorphisms (like VEGFD), serum protein levels, or clinical

predictors such as hypertension can be used to identify

responders to sorafenib or levantinib, both of which serve as first-

line systemic therapies (31). However, it is obvious that more

studies are needed to obtain new biomarkers with utility in the

clinical practice.

Related to CRC, clinicians focus on DNA signatures to design

treatment options. As previously stated, high MSI is the phenotype

of 15% colorectal tumours. These tumours typically do not

metastasise and show poor response to chemotherapy. Despite

this, they have a better clinical course than MSS tumours because

of the higher production of neoantigens, making them more

susceptible to treatment with immunotherapy (32). Other

therapeutic strategies focus on the MAPK pathway status. RAS,

which controls cells proliferation, is often mutated in CRC (33), and

monoclonal antibodies (mAbs) anti-EFGR as cetuximab are

typically used to stop the abnormal signalling. Other mAbs like

encorafenib targets KRAF, which is usually mutated in CRC, and it

is used when anti-EFGR are not effective, as it is downstream in the

MAPK pathway (32). Focusing on liquid biopsies, several serum

proteins such as carcinoembryonic antigen (CEA) are found in

CRC. However, they do not correlate significantly with prognosis or

survival rates. New approaches also investigate circulating tumour

cells and circulating tumour DNA in the blood. In contrast with

CEA and other serum proteins, these markers correlate with

treatment response and survival rates, making them desirable
Frontiers in Oncology 03
biomarkers to study in depth before starting a therapeutic option

(32, 34, 35).

Building from the current needs, this manuscript will therefore

focus on the utility that flow cytometry elicits on the search of novel

biomarkers with aid on the clinical practise of digestive tumours.
2 Conventional and mass cytometry

Conventional flow cytometry (CFC) is a fluorescence-based

technique, which allows the immunotyping of immune cells at

single-cell resolution, which has been used in the clinical setting for

over 50 years (36). In addition, it is currently used for B- and T-cell

leukaemia and lymphoma immunophenotyping, helping to identify

their optimal treatment. However, given that CFC is based on the use

of fluorochrome-labelled specific antibodies, the maximum number

offluorochromes—and therefore markers—which can be analysed by

classical CFC, is restricted to the number of available channels in the

equipment. Therefore, conventional cytometers in the clinical setting

do not usually provide more than 8 or 10 channels, hence limiting the

number of parameters that can be analysed. Although that has been

recently overridden by the development of novel equipment, which

display up to 20 channels and, therefore, can identify up to 20

markers at the same time (37), the development of CFC panels using

more than 15 markers simultaneously requires advanced skills to

compensate the fluorescence among the different markers. In

addition, fluorochromes with a similar emission wavelength or

close emission peaks cannot be combined in the same panel, hence

limiting the capacity to perform complex panels.

In order to overcome these limitations, mass cytometry or

CyTOF (cytometry time-of-flight) allows the analysis of over 40

markers at the single-cell level. That can be achieved because, as

opposed to CFC, antibodies are tagged with heavy metals (like

stable lanthanide isotopes) instead of fluorochromes, so cells

are characterised based on atomic weight (38). Therefore,

mass cytometry has proven to be highly valuable in the deep

characterisation of immune cells (39) given its ability to identify

over 40 parameters within a single cell (40, 41), rendering it a

“pseudo-omic” technique (38), which has allowed the identification

of novel biomarkers (42–46).
3 Computational cytometry

The capacity, however, of developing complex panels with over

40 parameters in a single-cell comes with a cost. Although flow

cytometry data analyses are traditionally performed following a

hierarchical gating strategy of serial selections in two-dimensional

plots, this approach is time consuming, subjective, and can be also

influenced by the operator’s experience and biases. In addition, the

amount of obtained data with complex panels is exponentially

increased. Therefore, when addressing complex panels, it becomes

obvious that novel unbiased approaches are required in order to

address the whole variability (47, 48). Thus, computational

approaches based on unsupervised algorithms have emerged to

address such complexity (49).
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To that end, preliminary data cleaning (either with an

unsupervised cleaning algorithm or with manual removal) is

essential to remove outlier events due to abnormal flow behaviours

resulting from clogs and other common technical problems. Once

that has been performed, a subsequent unbiased exploratory

approach can be performed on the dataset in an efficient and

reproducible way. Dimensionality reduction algorithms, which are

commonly used to perform an unsupervised and exploratory

cytometry analysis, organise the data based on the protein

expression levels, projecting all the variables into two or three

dimensions. T-distributed Stochastic Neighbour Embedding (t-

SNE) focuses on the non-linear differences between cells in protein

marker expression to create a two-dimension map retaining the local

data structure. However, the global distances are not reliable, and the

number of cells that it can support is limited (50). Hence, it is

common to perform a randomised method of event downsizing to a

given dataset called “Downsampling” or “Subsampling”. Although

this entails the possibility of losing under-represented populations

along the way, it is possible to perform a subsequent unsupervised

analysis by directly addressing the previously identified populations

of interest, allowing the use of a larger number of events from these

populations, which would confer greater robustness to the results. In

addition, it is possible to implement the hierarchical analysis as a way

of validating the results obtained, thus avoiding the loss of

information that would involve doing the process in reverse

(50, 51). Hierarchical Stochastic Neighbour Embedding (H-SNE)

overcomes t-SNE because it allows to achieve dimension reduction

algorithm without subsampling, becoming a solid and powerful

single-cell analysis method (52). Given that t-SNE quadratically

scales its computation time in function of the number of cells

being analysed, another algorithm option is the Uniform Manifold

Approximation and Projection (UMAP), which has a faster

computation time than t-SNE, preserves better the global data

structure, and attaches additional data to an existing plot, reasons

why it has a powerful clinical monitoring impact (for instance,

comparing a treatment efficacy) (50). However, such approaches

have certain issues, such as the absence of a standardised and agreed-

upon pipeline protocol (due to his novelty) or the inability to

eliminate subjectivity in the analysis steps and the technical

limitations. Although computational cytometry approaches become

more widespread, they are a highly computationally demanding

method (50, 51).

In spite of that, results obtained by computational cytometry

approaches are data-driven and operator-independent, hence

increasing their reproducibility, comparability, and accuracy,

which, altogether, allow the identification of novel cell subsets

related to a specific condition that otherwise may have gone

unnoticed (50, 51) so they can be further analysed (and isolated)

following directed hierarchical gating approaches.
4 Mass cytometry and
colorectal cancer

Mass cytometry and computational cytometry have been used

in several studies involving mouse models to better understand
Frontiers in Oncology 04
patient’s cancer and improve their therapeutic options. For

instance, although PD-1/PD-L1 is a promising immunotherapy

based on the inhibition of these immune checkpoints, not all

patients derive benefit from this treatment; hence, it may need to

be enhanced by other immune checkpoint blockade (ICB). Beyrend

et al. (53) generated a CRCmouse model treated with PBS or PD-L1

therapy, and their tumour-infiltrating lymphocytes (TILs) were

analysed by computational and mass cytometry. They found that

the PD-L1 group showed a distinct T-cell subset expressing LAG-3

(inhibitory molecule) and ICOS (activating molecule). These

findings suggest that enhancing antitumour immunity could be

achieved by targeting LAG-3 or ICOS. Moreover, Krieg et al. (54)

found that the complement component 3a receptor (C3aR) was

downregulated in patients with CRC independently of their MSS

or MSI status. Despite the role of the C3a–C3aR interaction

in maintaining homeostasis and creating a tumour-free

microenvironment, their CRC model lacking C3aR demonstrated

that their protumourogenic faecal microbiota induced a significant

immune infiltrate, which could be targeted with ICB. In addition,

macrophages in CRC, known as tumour-associated macrophages

(TAMs), can develop a proinflammatory (M1) or anti-

inflammatory (M2) phenotype, leading this last one to T-cell

exhaus t ion and poor prognos i s (55) . MS4A4A is a

transmembrane protein related to these events, and it serves as a

biomarker for the M2 phenotype (56); however, the role in CRC of

TAMs and MS4A4A remains unclear. Using murine models, Li

et al. (57) showed that MS4A4A induces polarisation towards the

M2 phenotype, leading to T-cell exhaustion and a poor prognosis.

Blocking MS4A4A with anti-MS4A4A detained CRC progression

and enhanced the efficacy of anti-PD-1 therapy.

On this wise, Tang et al. (58) found that colon cancer mice

injected with IFN-g and anti-PD-1 had reduced tumour growth and

less amount of M2 macrophages; however, they also observed an

upregulation of LAG-3 in response to anti-PD-1 therapy.

Oncolytic virus therapy is a kind of nanomaterial used to treat

cancer. Zhang et al. (59) designed a protein nanocage with the

structure of hepatitis B virus and CpG motifs, which are

immunostimulatory. Using a CRC murine model, they found by

mass cytometry that after being exposed to the nanocages, the

tumour microenvironment was modified having a higher

expression of CD8 (cytotoxic) T cells and decreasing the T-cell

exhaustion. The treatment led to enhanced antitumour immunity.

Specifically focused in the human setting, the application of

novel and complex multiparametric panels in the CRC setting by

CyTOF has proved that there is a huge immune diversity between

different patients and within each individual, not only between the

blood and the intestinal immune infiltrate but also between the

affected and non-affected tissue (60). In addition, certain circulating

immune cells such as monocytes and NK cells subsets are altered

during perioperative period (61), confirming that CRC requires a

personalised approach.

Mass cytometry has, for instance, proved that the pregnane X

receptor mediates the mechanisms of oxaliplatin therapy resistance

in tumour cells by eliminating the drug from the cells (62). In

addition, and following the first cycle of oxaliplatin chemotherapy,

patients reduce their total NK cell numbers due to a specific
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decrease in the CD56dimCD16− subset. In a similar manner, the

CD16+ NK fraction was also reduced due the presence of several

proinflammatory cytokines (IL-2, IL-15, and IL-18), which

ultimately leads to lose their cytotoxic activity (63). In addition,

Ting Zhang et al. (64) have shown that although EpCAM+CD4+ T-

cell subsets can infiltrate the tumour in a CCR5- and CCR6-

dependent manner, they nevertheless displayed an exhausted and

immunosuppressive phenotype, as they were both not only PD-1+

but also PD-L1+. Not surprisingly, and given its immune-

suppressive effect, such cell subset has become the target for

immune checkpoint blockade therapies. In addition, Yang Luo

et al. (65) found that high levels of circulating T-cell co-

expressing CD103+CD39+ predict clinical response to such

immune checkpoint inhibitors.

In line with the above, Tsunenori et al. (66) proved that IL-6

produced by stromal and tumour cells correlated with lower Treg

(CD4+FOXP3+) cells in the tumour microenvironment. In addition,

IL-6 serum levels positively correlated with enhanced levels of

myeloid-derived suppressor cells (MDSCs) and effector regulatory

T-cells (eTreg), two types of immunosuppressive cell subsets, while

high levels of IL-6 in the tumour microenvironment correlates with

immune evasion and a debilitated antitumour activity. In a similar

manner, eTreg (defined as BLIMP-1+FOXP3+) were increased in the

tumour infiltrate. These cells can be further divided into FOXP3lo

and FOXP3hi. In addition, higher levels of the first subset in the

tumour infiltrate correlate with good outcomes while the later

correlate with bad prognosis. Therefore, and given that eTreg cells

have been associated with both good and bad prognosis in CRC, it

seems obvious that further investigation is required in order to

specifically identify the specific subset, which can be used as a

therapeutic target (67).

Cytokeratin 20 (CK20) is a common biomarker used to

determine CRC tumour stage and histological grade. In addition,

its expression on tumour cells is related to poor prognosis, whereas

its absence indicates a less-invasive cancer (68). Despite that,

terminally differentiated epithelial cells have a lower proportion of

CK20 expression in CRC tissues referred to controls, while its

expression also differs, within CRC patients, based on the tumour

microsatellite stability. This reveals the necessity of fully

understanding the colorectal cancer status of the patients in each

of its different stages (69).

On the other hand, it is obvious that the gut microbiota can also

modulate the outcome of immune responses in CRC (70). Indeed,

mucosa-associated invariant T cells (MAIT) cells recognise bacterial

riboflavin antigens following presentation by the non-classic

histocompatibility complex MR1. Building from that, Shamin Li

et al. (71) found that tumour-infiltrating MAIT cells are CD39+

and display an increased expression of exhaustion markers PD-1+

and CTL4+ coupled with lower cytokine production. Together, these

suggest that chronic activation of MAIT cells induces the expression

of CD39 together with senescence markers leading to T-cell

exhaustion. In addition, Fusobacterium nucleatum induces CD39

expression onMAIT in a TCR-dependent manner, hence providing a

mechanism by which such bacteria are bad prognosis factors in CRC.

One of the most advantageous locations for identifying

biomarkers are liquid biopsies like peripheral blood where we
Frontiers in Oncology 05
have PBMCs. Kong et al. (72) studied the differences between

immune subsets during CRC development. Through mass

cytometry and computational analysis, they revealed that central

memory CD4+ T cells, switched B cells, CD16− NK cells,

monocytes, and basophils were increased in adenocarcinoma

compared with adenoma and healthy controls, while double-

negative T cells were decreased in adenoma and adenocarcinoma.

Moreover, effector CD4+ T cells and naive B cells were higher in

CRC patients with lymph node metastasis, while basophils and

unswitched B cells were lower.

Mass cytometry can also monitor the effects of a clinical trial in

the patient’s immune system. Monjazeb et al. (73) performed mass

cytometry to evaluate the immune impact on the patients of a phase

2 trial of combined anti-CTLA-4 and anti-PD-1 therapy. They

found that patient’s PBMCs had a lower amount of CD4+ and CD8+

T cells compared with patients treated with two different radiation

regimens (with generally no differences between them). This

included activation markers such as CXCR3 or ICOS.

Yang et al. (74) decided to use mass cytometry among other

exploratory methods to study primary liver cancers and liver

metastases from other cancers including CRC. They found that

hepatic metastatic CRC had higher levels of CD4+ Treg, LAG-

3+CD4+ T-cells, CD27+PD-1+CD8+ T-cells, and lower levels of

CD57+PD-1+CD8+ T cells than non-hepatic metastatic CRC.

Circulating levels of this immune subsets have therefore the

potential to be considered as novel biomarkers to predict patients

with a higher probability of subsequently developing metastases.
5 Mass cytometry and liver cancer

Mass cytometry has also been implemented in the context of

liver cancer and its main variant, hepatocellular carcinoma (HCC).

The full comprehension of HCC illness becomes complicated due to

its heterogeneity. In addition, although there is a wide range of

different treatments based on tumour stage, they however do not

always translate into clinical remission (75); it appears mandatory

to explore new targets and therapeutic options (21). Moreover, mass

cytometry approaches can be also applied as diagnostic tools.

Hence, a complex panel applied on blood samples can identify

several immune disturbances, which can be used to allow an early

detection of different solid tumours including HCC (56).

Animal models of HCC are often used to study this condition

through mass cytometry. In the search of new proposing target

markers for therapies, research in mice revealed that GDF15 protein

induces enhancement of Treg through CD48 (76), and this leads to

immunosuppression in HCC; blockade of this protein could

potentially be translated to human therapies. When studying

effectiveness of treatments, it was found that SUMOylation levels

are higher in HCC liver than in normal liver tissues. Subsequently, it

was proved that inhibition of this process enhances antitumour

activity and could be a therapeutic option (77). In another study

using mice, it was found that “M2-like” tumour-associated

macrophages are more prevalent in a specific type of mouse

model resistant to anti-anti-PD-1 therapy (78). However, the

conclusion highlights the wide diversity in the immune tumour
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microenvironments among preclinical models, in addition to the

intrinsic heterogeneity of HCC in humans. It seems imperative to

expand studies in mouse models to obtain translational results for

humans. Therefore, in this review, we will focus on human studies.

Focused on the human setting, potential new therapeutic

strategies could benefit from mass cytometry studies regarding

HCC cells mechanisms. For example, it has been revealed that

tumour cells and their intrinsic activation of b-catenin pathway

results in the recruitment of MDSC and the formation of immune

“desert” phenotype, which could be a potential treatment strategy

option (79). However, immune system description regarding HCC

involves not only novel immunotherapy targets but also prognosis

and evolution biomarkers and cell subsets. Undeniably, the role of

NK cells remain fundamental for immunity and especially in cancer

(80). Indeed, CD56+ and CD56dim NK cells may be useful as

immunotherapies targets for HCC patients, as they have

impairment phenotypes in hepatocarcinoma affected from

different aetiologies, especially in non-alcoholic fatty liver disease

(NAFLD) patients (21, 81).

In HCC, it is also possible to explore the patient’s immunity

depending on the stage or type of development that they have

achieved. Although patients with HCC who successfully had a

transplant are scarce, they display a unique immune fingerprint,

since mass cytometry approaches have shown that such differential

immune profile can be used to stratify and predict patients with risk

of recurrence, which can be very helpful when designing patient

treatment (82).

Also building from mass cytometry results, it has been proven

that the CD161+/CD161− ratio within peripheral CD8+PD-1+ T

cells predicts subsequent disease outcome with better prognosis

with higher ratios (83). Specifically focused on the tissue (affected,

non-affected, and border area), although PD-1 expression does not

predict the outcome of the patients, it is actually the balance

between tissue resident memory and PD-1+ exhausted T cells that

is relevant for such outcome, since a high tissue resident memory/

exhausted T-cell ratio in tumour microenvironment determines

positive patient prognosis (84, 85). Better prognosis conditions are

expected from HCC patients who have a non-terminally exhausted

phenotype in tumour-resident memory T cells, which are specific to

HBV response (86), and also for those patients with enriched

CD4+CD8+ T cells, especially if they are expressing PD-1 and

located in leading-edge regions (87).

When focusing on ongoing therapies, radiofrequency ablation is

the primary first-line treatment option for HCC patients who are

not eligible for surgery. Aiming to study its effects on tumour

immune response, a mass cytometry study revealed that decreased

levels of CD8+ effector and memory T cells, among others,

correlated with a worst immune response against tumour cells

(88). As for current therapy options, immune checkpoint

inhibitors (including PD-1/PD-L1) have reached long-term

response rates of 14%–20% in HCC patients. However, there is

no information about patients who would benefit from this

treatment due to its aetiology. In addition, CyTOF analyses

revealed that neither viral aetiology nor the current viral status in
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HCC patients were variables to consider when deciding to prescribe

PD-1 inhibitor therapy (89). On the other hand, the use of

threonine tyrosine kinase inhibitor changes the proportion of

circulating immune subsets before following treatment, with

bigger changes on patients with a better outcome (90). Another

scenario in which immune activation occurs, leading to a favourable

response in HCC patients, is Yttrium90-Radioembolisation

treatment (91). There are other types of uncommon treatments

under study, such as the use of compound 2,5-dimethylcelecoxib

(92), which has proven an increased infiltrate of NK cells within

HCC tumours, resulting in favourable prognosis and suggesting its

potential as a therapy target.

In summary, HCC pathology, heterogeneity, and treatment

response have been broadly studied by CyTOF. Some immune

cell subsets like CD56 NK cells or the CD161+/CD161− ratio within

CD8+PD-1+ T cells may indeed be useful to stratify patients

based on their aetiology and their subsequent outcome, while

other subsets can predict clinical response to immune

checkpoint inhibitors.
6 Future perspectives and remarks

Mass cytometry has undoubtedly shown a great potential in the

study of human gastrointestinal tumours. Nevertheless, it is also

true that although this approach overcomes most of the CFC

approaches, it also has some specific handicaps (41, 93).

The main one is the low acquisition rate, as it only allows to

acquire approximately 500 cells per second instead of more than

10,000 in CFC. In addition, it is an expensive technique, since the

costs of not only the equipment but also the special reagents and

labelling compounds are significantly higher than those in flow

cytometry. In a similar manner, cell vaporisation is an irreversible

process and restricts the potential for subsequent ad hoc sorting.

Likewise, due to lower cell recovery, there is a decrease in sensitivity

for detecting low abundance proteins. Last, but not the least, as with

a classical sorter, the equipment requires operation by a highly

trained person, hence limiting its widespread accessibility.

An alternative to overcome these limitations is spectral

cytometry, which combines the principal features of CyTOF while

abrogating its handicaps. Therefore, as opposed to the CFC, spectral

cytometry provides a measure of the entire fluorescence emission

spectrum. That way, classical issues associated with CFC

compensation and autofluorescence issues are reduced through a

concrete unmixing algorithm (94). In addition, as it uses

fluorochromes, reagents are usually cheaper, since it is not the

same ones used in CFC. Moreover, its acquisition speed is high (up

to 30,000 events per second) (95). Overall, these are even more

attractive features, especially considering that comparable results

can be expected from both procedures (96).

However, both spectral and mass cytometry data must offer

high-quality, reliable, and robust information to be considered

valid. Hence, a careful panel design and validation, titration, and

optimisation of antibodies and reference controls are required.
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Having said that, and given the properties of mass cytometry, it is

also true that the implementation of novel panels is usually faster in

that approach, since no unmixing controls are required to optimise

a panel. Either way, sample staining on both approaches should

always include normalisation control and correct equipment

handling (97). On the contrary, both mass and spectral cytometry

are capable of performing complex panels of up to 40 parameters

(47). As a consequence, all the known immune cell subsets can be

identified in a given sample by using these techniques. Hence, the

ability to obtain such a wide range of information from each

analysis provides a major reason to implement these approaches,

spectral or mass cytometry, in various types of studies, especially in

those aimed at discovering new biomarkers needed for some

illnesses. In this regard, Table 1 summarises the different aspects

to take into consideration before considering mass or spectral

cytometry approaches. Therefore, it seems obvious that spectral

cytometry overtakes the approaches performed by mass cytometry,

as it is faster, cheaper, and requires a smaller sample size. Indeed,

there are several issues that need to be addressed in the near future

for both CRC and HCC, and they may be overcome when using

different types of approaches, for example spectral cytometry

studies, which, to the best of our knowledge, have not been

performed in this context.

In addition, these techniques provide a high-resolution single-

cell analysis, so the more parameters can be detected on cancer cells,

the more specific will be the exploration of the tumour

heterogeneity. The classification of the function and phenotype of

the immune cells leads to an accurate examination of the altered

cellular process, early diagnosis and detection, and prediction of

therapy response. The integration of cytometry, proteomics, and

genomics technologies will bring a promising precision medicine in

order to improve patients’ outcomes and life expectancy (98).
7 Conclusions

The only current approach for CRC diagnosis and monitoring is

the use of regular colonoscopies, which, however, are not only

invasive and uncomfortable for the patients but also expensive and

time consuming for the health systems. On the other hand,
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regarding HCC, most of its current knowledge has been obtained

from murine models, which, although essential to deepen our

understanding on such disease, they may not always translate into

the human setting (99, 100). Therefore, given the large amount of

information that computational cytometry approaches provide,

these approaches will allow the identification of novel (and better)

biomarkers to aid on CRC or HCC diagnosis, monitoring, or even

predicting disease outcome. In addition, given that both mass and

spectral cytometry usually focus on the study of the immune

system, they may not only identify biomarkers but also provide

novel insights into the specific pathogenic mechanisms potentially

unravelling novel targets to perform immunotherapy or identify

novel mechanisms, hence rendering to the development of

novel treatments.
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TABLE 1 Conventional mass and spectral cytometry features.

Conventional
Flow
Cytometry

Mass
Cytometry

Spectral
Cytometry

Parameters
capability

Up to 30 >60 Up to 50

Cell labelling Fluorochrome Heavy metal Fluorochrome

Cell
throughout

>10,000
events/second

500
events/second

30,000
events/second

Detection
Fluorescence
(maximum
peak emission)

Mass
spectrometry

Fluorescence
(whole spectrum)
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