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Purpose: Developing innovative precision and personalized cancer therapeutics

is essential to enhance cancer survivability, particularly for prevalent cancer types

such as colorectal cancer. This study aims to demonstrate various approaches for

discovering new targets for precision therapies using artificial intelligence (AI) on

a Polish cohort of colorectal cancer patients.

Methods: We analyzed 71 patients with histopathologically confirmed advanced

resectional colorectal adenocarcinoma. Whole exome sequencing was

performed on tumor and peripheral blood samples, while RNA sequencing

(RNAseq) was conducted on tumor samples. We employed three approaches

to identify potential targets for personalized and precision therapies. First, using

our in-house neoantigen calling pipeline, ARDentify, combined with an AI-based

model trained on immunopeptidomics mass spectrometry data (ARDisplay), we

identified neoepitopes in the cohort. Second, based on recurrent mutations

found in our patient cohort, we selected corresponding cancer cell lines and

utilized knock-out gene dependency scores to identify synthetic lethality genes.

Third, an AI-based model trained on cancer cell line data was employed to

identify cell lines with genomic profiles similar to selected patients. Copy number

variants and recurrent single nucleotide variants in these cell lines, along with

gene dependency data, were used to find personalized synthetic lethality pairs.
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Results: We identified approximately 8,700 unique neoepitopes, but none were

shared by more than two patients, indicating limited potential for shared

neoantigenic targets across our cohort. Additionally, we identified three

synthetic lethality pairs: the well-known APC-CTNNB1 and BRAF-DUSP4 pairs,

along with the recently described APC-TCF7L2 pair, which could be significant

for patients with APC and BRAF variants. Furthermore, by leveraging the

identification of similar cancer cell lines, we uncovered a potential gene pair,

VPS4A and VPS4B, with therapeutic implications.

Conclusion: Our study highlights three distinct approaches for identifying

potential therapeutic targets in cancer patients. Each approach yielded

valuable insights into our cohort, underscoring the relevance and utility of

these methodologies in the development of precision and personalized cancer

therapies. Importantly, we developed a novel AI model that aligns tumors with

representative cell lines using RNAseq and methylation data. This model enables

us to identify cell lines closely resembling patient tumors, facilitating accurate

selection of models needed for in vitro validation.
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Introduction

Colorectal cancer (CRC) represents approximately 10% of all

diagnosed cancer cases and is the second most frequent cause of

cancer deaths worldwide (1, 2). Only in 2020, CRC caused 0.9 million

deaths and was newly diagnosed in 1.9 million patients (3–5). The

effectiveness of treating CRC, like with other cancers, hinges on

implementing preventive strategies to inhibit metastasis and

effectively manage metastatic disease (mCRC). Although the overall

survival of patients with mCRC has improved over the last 20 years,

mainly because of more effective surgical treatment of liver and lung

metastases and the invention of anti-tumor drugs (6), mCRC, in most

cases remains an incurable disease (7). The most commonly accepted

origin of CRC proposes the transformation of a normal colon

epithelium crypt into a benign adenomatous polyp, which then

progresses into the actual disease (8). The standard treatment for

CRC typically encompasses a multifaceted approach, integrating

surgical intervention, chemotherapy, radiation therapy, targeted

therapy, and immunotherapy. Tailoring the treatment plan to each

patient’s needs hinges on several factors, including the cancer’s stage,

tumor location, and the patient’s overall health. Traditionally, CRC

staging and grading have served as fundamental pillars in classifying
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the disease, offering insights into its progression and aggressiveness.

However, the recent integration of Consensus Molecular Subtypes

(CMS) has enriched our understanding of CRC at a molecular level,

providing invaluable insights for personalized treatment strategies,

prognostic evaluation, and therapeutic decision-making in the

management of colorectal cancer. The classification system of CRC,

based on gene and transcriptome profiling, is divided into four CMS

(9). According to this classification, CMS1 is characterized by

hypermutation, microsatellite instability (MSI), and active response

from the immune system. CMS2 is associated with high activation of

theWnt andMyc signal transduction pathways. CMS3, also known as

the metabolic subtype, exhibits a high degree of chromosomal

instability (CIN) and has relatively low somatic copy number

alterations. CMS4 displays a mesenchymal phenotype with gene

signatures engaged in angiogenesis, integrin binding and

TGFb signaling.

Personalized therapies involving autologous cancer-specific

immune cells or cancer vaccines play a promising role in the

treatment of CRC, particularly in the realm of immunotherapy.

What is crucial for such therapies is the identification of tumor-

specific antigens (TSAs), which are displayed at the tumor cell

surface in the context of Human Leukocyte Antigen (HLA)

molecules and are recognized by specific T cell receptors (TCRs)

(10). TSAs differ from germline proteins and can be specifically

recognized as non-self by the host immune system (11).

Additionally, due to their foreign origin, they are not easily subjected

to complex immune tolerance mechanisms (12). Genetic alterations

that cause TSA generation include single-nucleotide variants (SNVs),

insertions and deletions (indels), gene fusions, frameshift mutations,
frontiersin.org
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and structural variants (SVs) (11). These features of neoepitopes make

them attractive candidates for novel cancer vaccines and adaptive-cell

therapy (ACT) approaches utilizing TCRs.

Another promising approach that enables the discovery of cancer-

specific therapy targets is the identification of synthetic lethality (SL)

interactions. This phenomenon describes the condition where the loss

or mutation of one gene alone is not lethal but in combination with the

loss of another specific gene results in cell death or loss of viability (13).

SL interactions are exploited in cancer treatment e.g. BRCA1/BRCA2

and PARP, where targeting an SL partner of a cancer-specific mutation

can selectively eliminate cancer cells (13, 14). Identifying SL

interactions in cancer cells typically requires laborious experimental

validation, often leveraging CRISPR-Cas9 technology (15). However,

the translation of experimental results obtained from cell lines into

patients requires sophisticated comparative AI-based models as the

heterogeneity of cancer in patients is extremely high (16). Our study

introduces a novel approach that addresses several limitations in

existing solutions such as Celligner (17). By integrating advanced

Machine learning algorithms, incorporating batch corrections, and

utilizing a comprehensive dataset including multiple types of omics

data (RNAseq and methylation datasets), our approach offers

significant improvements in applicability.

Recent studies have demonstrated the effectiveness of various Deep

Learning (DL) approaches in enhancing predictive capabilities and

integrating diverse data types (18). For instance, a generative model

based on a conditional Variational AutoEncoder (VAE) enables the

identification of new molecules with desired properties (19). Single-cell

studies have utilized deep generative models to learn joint embeddings,

integrating multiple data modalities and compensating for missing

information (20). In the realm of microbiology, a multi-omics deep
Frontiers in Oncology 03
learning model accurately predicts genome-wide concentrations and

growth dynamics of Escherichia coli (21). Additionally, Multimodal

Variational AutoEncoder (MVAE) low-dimensional embeddings have

proven superior in predicting drug-protein interactions (22). These

advancements highlight the transformative potential of deep learning

and multi-omics integration in various research applications.

Herein, we show three different approaches to identify new targets

for designing precision and personalized therapies for cancer patients,

using our CRC patient cohort (NCT04994093) as an example

(Figure 1) (23). We employ AI-based methods to identify patient-

specific neoepitopes and synthetic lethality gene pairs.
Methods

Patient selection and sample collection

The patient cohort analyzed in this study was previously

described in Bujak et al. (23). The cohort consisted of 100 CRC

patients recruited from surgical oncology departments in Poland

between October 2021 and December 2022. The original study

protocol was approved by the local ethics committee (no. KB/430-

87/21) and informed consent was obtained from all participants

prior to enrollment in the study. The detailed criteria for the patient

selection process were described previously (23). Briefly, the

enrolled participants were ≥18 years of age, with a diagnosed and

histopathologically confirmed advanced resectional CRC

adenocarcinoma in active stage II, III, or IV. The biological

samples obtained from the study participants included the FFPE

block of the primary tumor tissue or histopathological slides derived
FIGURE 1

A visual overview of three distinct approaches for identifying therapeutic targets in cancer, utilizing omics data such as whole exome sequencing
and RNA sequencing — two of the most widely adopted techniques in cancer research. The proposed pipelines focus on uncovering two primary
categories of potential cancer targets (1): recurrent peptides presented by HLA class I molecules for cancer immunotherapies, and (2) synthetic
lethality pairs, which could inform the development of targeted therapies, such as protein inhibitors (e.g., PARP inhibitors).
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from it, along with peripheral blood samples. The peripheral blood

samples from each CRC patient were collected into PAXgene®

Blood DNA tubes (Qiagen, Hilden, Germany).
Whole Exome Sequencing (WES) and RNA
sequencing (RNAseq)

Nucleic acid extraction,WES, and total RNAseq were performed at

CeGaT GmbH (Tuebingen, Germany). The FFPE block samples and

peripheral blood samples were used for nucleic acid extraction. To

maximize tumor content, DNA and RNA were isolated from FFPE

after macrodissection of the tumor area, which was distinctly labeled by

a pathomorphologist. For DNA/RNA isolation the AllPrep DNA/RNA

FFPE Kit (Qiagen) or MagMax FFPE DNA/RNA Ultra (Thermo

Fisher) were used. The AllPrep DNA/RNA FFPE Kit is optimized to

reverse as many formaldehyde modifications as possible, without

causing further degradation of DNA and RNA. For extracting DNA

from blood, the QIA Symphony DSP DNA Mini Kit 96 (Qiagen) was

used according to the manufacturer’s protocol.

The quality control and concentration of isolated genomic DNA

(gDNA) and total RNA were assessed using the Qubit fluorometer

with the Qubit dsDNA HS Assay Kit or RNA High Sensitivity (HS)

Assay Kit (both from ThermoFisher Scientific, Waltham, MA,

USA) according to the manufacturer’s protocol. For WES, 50 ng

of gDNA from each sample was used to generate libraries with the

Twist Human Core Exome Plus Kit (Twist Bioscience, San

Francisco, CA, USA). For RNAseq, 10 ng of total RNA from each

sample was used to generate libraries with the SMART-Seq

Stranded Kit (Takara Bio, Kusatsu, Japan). The qualities of the

generated libraries (both for WES and RNAseq) were verified using

the 2100 Agilent Bioanalyzer with High Sensitivity DNA Kit and

High Sensitivity RNA Kit (both from Agilent Technologies, Santa

Clara, CA, USA). Next, the obtained libraries were paired-end

sequenced using the NovaSeq 6000 platform (Illumina, San

Diego, CA, USA) to achieve at least 150x and 300x (PBMC and

FFPE samples, respectively) reading depth for >98% targeted bases.

Due to the poor quality of the RNA (DV200 < 30%), 29 samples

were excluded from sequencing and further analyses. For 71

patients, full sequencing was performed, both for tumor tissue

(WES & RNAseq for tumor) and for blood samples (WES

normal). All of the aforementioned samples successfully passed

the bioinformatic quality control analysis, which assessed library

GC content, duplication levels, and base pair composition.
Identification of neoepitopes with
ARDentify and ARDisplay

In this study, a robust and comprehensive genomic analysis

pipeline was employed to examine tumor and normal tissues. The

initial processing of raw pair-end WES reads involved adapter

trimming using Cutadapt (24), followed by alignment to the

primary assembly genome (Ensembl GRCh38_95) using the
Frontiers in Oncology 04
Burrows-Wheeler Alignment (BWA) tool (25). To ensure data

integrity, duplicate reads in the resulting BAM files were

identified and removed using Picard processing tools (“Picard

Toolkit.” 2019. Broad Institute, https://broadinstitute.github.io/

picard/). Additionally, using the same toolkit, metadata was

incorporated into the files by adding read groups. Quality

refinement was further implemented through base quality score

recalibration utilizing the Genome Analysis Toolkit (GATK) (26).

Somatic variant calling was carried out employing Strelka 2

(v2.9.7) (27), VarDict (v1.6.0) (28) and MuTect (included in GATK

v4.3.0) (26), and only variants consistently reported by all three

callers were selected for downstream analysis. Germline variant

calling was performed using three independent variant callers:

Strelka 2 (v2.9.7) (28), GATK (26) and Octopus (v0.7.4) (29). To

ensure confidence in the variant calls included in the downstream

analysis, we intersected the results consistently reported by all three

callers using BCFtools (v1.10.2) (30). The variants for each sample

were then annotated with ANNOVAR (v2018Apr16) (31) using

RefSeq (32) and dbsnp150 (33) databases.

Furthermore, HLA class I typing was performed using

Polysolver (34). First, all the variants that could generate TSAs

were selected by filtering out synonymous mutations. Next, the

processed WES and RNAseq data were used in a multifaceted

approach adopted to assess various aspects of peptide-HLA (pHLA)

interactions and select the most promising neoepitopes candidates.

To enhance the selection process of neoepitopes with the highest

chance of being recognized by the immune system and likely to

elicit an immune response, we employed a systematic ranking

strategy that considers, among other factors, the two crucial

aspects of peptide presentation on the cell surface. Namely, using

ARDisplay (35) we account for both the binding affinity between

peptides and HLA molecules (using MHCflurry (36)) and for the

peptide:HLA complex - the presentation on the cell surface.

Notably, the ARDisplay model integrates patterns from a vast

dataset of HLA ligandomics mass spectrometry experiments,

enabling comprehensive characterization of the repertoire of

peptides presented via HLA molecules. This holistic approach

provides a deeper understanding of the entire antigen processing

and presentation pathway, facilitating the identification of

neoepitopes with superior immunogenic potential.
CMS calculation

Consensus Molecular Subtypes (CMS) were assigned using the

CMScaller tool as described elsewhere (37). Briefly, CMScaller is an

R package that assigns CMS category to samples based on the

expression profiles of cancer cells. It achieves this by using a filtered

set of markers specifically enriched in certain cancer subtypes.

CMScaller assigns a tumor to a specific category based on its gene

expression profile. The confidence of this assignment is estimated

by resampling the genes (1000 times) and checking for consistency.

Samples that do not meet a certain confidence threshold are labeled

as “not assigned”. The pipeline for processing RNA-seq data from
frontiersin.org
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tumor tissue to be used by CMScaller consisted of adapter removal

using Cutadapt, followed by alignment to the Ensembl GRCh38_95

primary assembly genome with STAR (38). Quantification of

gene expression levels was conducted using the RNA-Seq by

Expectation-Maximization (RSEM) algorithm (39).
Multimodal VAE for a comprehensive
understanding of gene regulation with
low-dimensional data representations

To develop a MVAE for description of genomic profiles of

cancer patients, we utilized a comprehensive dataset comprising

1456 cell lines sourced from the Cancer Cell Line Encyclopedia

(CCLE) (https://sites.broadinstitute.org/ccle/), complemented by

gene essentiality/dependence information for 1095 of these cell

lines obtained from the DepMap (https://depmap.org/portal/)

database. Additionally, our study incorporated cancer patient

data, drawing from a vast cohort of over 11,000 patients spanning

37 indications sourced from The Cancer Genome Atlas (TCGA)

database (https://www.cancer.gov/tcga).

For the CRISPR genome-scale knockout screening scores on cell

lines, we obtained the DepMap Public 23Q2 dataset, released in

May 2023, containing the Chronos gene effect from the Achilles

project (https://depmap.org/portal/achilles/) calculated for 19,000

genes. The TCGA data were acquired using the Bioconductor

package TCGAbiolinks version 2.28.3, last updated on June 5th,

2023 (40). Gene expression quantification data were accessible for

both cancer cell lines and patients, aligned to the hg38 reference

genome, and provided in Transcripts per Million (TPM). We

applied a logarithmic transformation on the TPM values using

the formula log2(TPM+1), and exclusively considered protein-

coding genes during processing. DNA methylation data were

obtained as methylation beta value derived from Methylation

Array technology utilizing Illumina 450K BeadChip microarray-

based methylation platform.

To address the high dimensionality inherent in omics data, we

adopted a strategy employing an encoder-based approach. Specifically,

we developed separate VAEs (Variational AutoEncoders) tailored to

each modality, here, limited to 1/gene expression, and 2/DNA

methylation. This approach enabled us to extract important features

while effectively and concurrently reducing the input dimensionality.

To facilitate the integration of diverse omics data, we used a

Multimodal VAE, a VAE model based on the concept of Product of

Experts (41). Such amodel enables the integration and enhancement of

signals detected in individual components, as the two modalities

influence each other, allowing for a more holistic and comprehensive

understanding of gene regulation. The loss function is the Kullback-

Leibler (KL) divergence of the combined experts (individual VAEs)

plus the reconstruction losses of each modality. We reused the

architecture and loss functions from the unimodal training scheme.

MVAE was implemented in Python 3.9 using the PyTorch v.2.0

library to perform fast operations on tensors and neural networks

with GPU acceleration. Additionally, we have used the PyTorch

Lightning v2.0.0 framework to streamline the training process of

our models alongside the open-source MLflow platform to monitor
Frontiers in Oncology 05
metrics during model development and document progress. GPU-

based computations were done on a machine equipped with

NVIDIA Ampere A100 GPU cards with CUDA® 8.6 architecture,

640 Tensor Cores, 6,912 CUDA® Cores, and 40 GB HBM2 GPU

Memory, and using cuDNN 8.5.0 and cudatoolkit 11.7.99. Standard

Python libraries for data analysis and machine learning were used,

inter alia, scikit-learn, pandas, numpy, matplotlib, and seaborn.
Selection of recursive variants for
synthetic lethality

Two distinct methodologies were employed to identify genetic

variations potentially associated with synthetic lethality. For the

precision medicine strategy, recurrent somatic mutations present in

at least 3 out of 71 CRC patients were identified using the dplyr package

(v. 1.1.3) in R. Subsequently, the presence of these mutations was

assessed in the CCLE (42) database containing somatic variants, copy

number variants, and CRISPR knockout survivability screens. Lastly,

the presence of the selected pairs of mutations was verified in two

TCGA cohorts (TCGA-COAD and TCGA-READ). As for the

personalized SL approach, our MVAE model was utilized to extract

features from gene expression data, facilitating the identification of

cancer cell lines (CCLs) that exhibit similarities to the patient data.

Although RNA-seq embeddings were prioritized due to their stronger

predictive performance, methylation data played a key role during

training, providing a more nuanced representation of gene regulation

and accounting for epigenetic factors that influence expression

patterns. The subsequent analysis involved the identification of all

recurrent SNVs and copy number variations (CNVs) found within the

corresponding CCLs. For each recurrent variant, a study group

consisting of CCLs with the mutation and a control group of CCLs

without the mutation were generated. The study group had to be

composed of at least 7 CCLs to proceed to the subsequent steps of the

analysis. Limma R package v.3.56.2 (43) was used to concurrently

estimate the mean difference in the dependency score (a numeric value

representing the essentiality of a gene in a CCL) for each gene between

the study group and the control group. The p-values and p-adjusted

values were computed using the empirical-Bayes moderated t-statistics.

For each analysis, a volcano plot was generated with ggplot2 v.3.4.3.
Results

Cohort characterization

The cohort consisted of 71 patients diagnosed with colorectal

cancer, with a mean age of 68 years (SD = 9). Of these, 65% were

male and 35% were female (Table 1). Around half of the patients

within the cohort were at stage II at the time of diagnosis while

another half were at stage III and IV (Table 1). Utilizing CMScaller,

we determined CMS of colorectal cancer for our cohort of patients

(Table 1, Supplementary Figure 1) (9).

Among the cohort, 15 patients were classified under category

CMS1 - hypermutated, microsatellite unstable with a strong immune

activation; 23 patients fell into category CMS2 - epithelial,
frontiersin.org
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chromosomally unstable with a marked WNT and MYC signaling

activation; 3 patients were identified in category CMS3 - epithelial,

evident metabolic dysregulation; and 22 patients were categorized as

CMS4 - mesenchymal, prominent transforming growth factor b
activation, stromal invasion, and angiogenesis. For 8 patients the

category was not assigned as their results showed mixed or

intermediate features. The cohort was compared to 2 published

datasets, containing 4 cohorts in total. In most cases, the new cohort

followed previously observed trends (Supplementary Figure 1).
Pathogenic germline variants

To verify if any of the patients harbored germline variants that

were previously linked to CRC incidence, we checked the

intersection between all germline variants from our patients and

the database of 871 germline cancer variants (44). No variants

directly linked to CRC were identified, indicating the spontaneous

character of the disease. However, in 5 patients, we found 4

missense variants that were present in one or two of them and

had been linked to increased cancer incidence. These variants were

identified for the following genes: ATM R2832C (chr11:108345818

C>T), SDHA R31* (chr5:223509 C>T), PMS2 R9* (chr7:6003982
Frontiers in Oncology 06
G>A), DKC1 S280R (chrX:154769233 A>C). Importantly, the

occurrence of these mutations in our cohort was ~7%, which was

consistent with the 8% found in the cohort of 10,389 patients from

Huang et al. (44).
Somatic landscape

The analysis of our cohort unveiled the most frequently

mutated genes (Supplementary Table 1, Table 2), with APC being

the most frequently mutated one (31 patients), followed by KRAS,

SYNE1 (29 patients, 41% each), and TP53 (24 patients). Moreover,

the top 10 most prevalently mutated genes in CRC (45), ie. APC,

TP53, KRAS, PIK3CA, FAT4, FBXW7, CSMD3, BRAF, LRP1B and

SMAD4, were all recurrently identified in our cohort (45) (Table 2).

Next, using the consensus-based approach to variant calling

(section Identification of neoepitopes with ARDentify and

ARDisplay), we identified 32 recurrent mutations present in at

least 3 patients (Supplementary Table 2). Notably, the most

prevalent variants were detected in NBPF1 A955V (chr1

g.16565782G>A, 14 patients), KRAS G12D (chr12:25245350 C>T,

8 patients) and BMPR2 N583Kfs*6 (NM_001204.7, 7 patients). To

identify potential neoepitopes as therapy targets, we assessed

whether any of the detected somatic variants could be presented

on the tumor cell surface within the patient’s HLA class I.

Leveraging our in-house presentation model, ARDisplay, we

identified 8775 unique neoepitopes with a high probability of

being presented. Out of them, 89 were shared by at least two

patients, while the vast majority were present only in individual

patients (Supplementary Table 3). Even the most prevalent variants

did not yield commonly shared neoepitopes due to the significant

variability in HLA class I alleles expressed by patients carrying these

mutations. This heterogeneity in HLA expression across individuals

limited the generation of universally recognized neoepitopes,

making it challenging to identify common immunogenic targets

among the cohort.
Cohort gene essentiality

To explore potential targets for cancer therapies beyond HLA-

dependent mechanisms, we undertook an analysis of gene

essentiality within our cohort. From the 32 recurrent somatic

variants identified in at least 3 patients, we selected the most

common ones and analyzed further 5 of them which were

detected in at least 7 cell lines from CCLE. These variants

included PIK3CA E545K (chr3:179218303 G>A), APC

T1396Nfs*3 (chr5 :112840254 G>GA) , BRAF V600E

(chr7:140753336 A>T), KRAS G12A (chr12:25245350 C>G) and

KRAS G12D (chr12:25245350 C>T). Interestingly, for mutations in

APC and BRAF, we identified essential genes previously described

in the literature as promising targets for cancer therapy. Specifically,

for APC T1396Nfs*3 mutation, two essential genes CTNNB1 and

TCF7L2 were discovered (Figure 2A) (46). Similarly, for BRAF

V600E, the essential gene DUSP4 was found (Figure 2B) (47).

However, for the 3 remaining variants, no such genes were
TABLE 1 Cohort description (n=71).

Number
of patients % of total

Age
<=65 22 31.0

>65 49 69.0

sex
M 46 64.8

F 25 35.2

tumor location

rectal 21 29.6

colon 29 40.8

NA 21 29.6

stage

I* 0 0.0

II 35 49.3

III 20 28.2

IV 16 22.5

CMS

CMS1 15 21.1

CMS2 23 32.4

CMS3 3 4.2

CMS4 22 31.0

NA 8 11.3

BRAF
MUT 6 8.5

WT 65 91.5

KRAS
MUT 29 40.8

WT 42 59.2
*Stage I was an exclusion criterion.
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identified. In an analysis of TCGA colon and rectum

adenocarcinoma samples (n=196), the APC variant T1396Nfs*3

was detected in 3 cases. None of these samples exhibited variants in

CTNNB1 or TCF7L2. Additionally, the BRAF V600E mutation was

found in 26 samples. In one of the patients we also found a co-

occurring DUSP4 variant (chr8:29338496 A>AC) which was

however heterozygous and its full functional impact may be limited.
Personalized gene essentiality with MVAE

Finally, we assessed the potential utility of our Multimodal VAE

model in a more personalized approach by the identification of

possible targets tailored to specific patients. Initially, we mapped

RNAseq expression results for each patient to CCLs, observing that

all patients clustered with cell lines derived from colon or rectal

cancer (Figures 3A, B). These Figures represent the UMAP

(Uniform Manifold Approximation and Projection) space, ie. a

dimensionality reduction technique that enables to effectively

visualize 32-dimensional data in a 2-dimensional space.

Notably, the overlapping colors in Figure 3A demonstrate the

creation of a unified representation, where cell lines and patient

samples blend together without forming separate clusters. This

suggests that the representation is organized by cancer type and

genomic characteristics rather than by the origin of the samples.

This cohesive representation is achieved through the MVAE model

with the successful removal of batch effects among samples of

diverse origin. This approach provides valuable insights into the

underlying biological processes, in particular, by enabling the

alignment between in vitro models and tumor samples. Utilizing

color encoding, based on cancer types (Figure 3B, the 15 most

frequent types selected for better legibility), reveals that the

structure of the clusters can be attributed to cancer type or tissue

origin, despite these factors not being directly introduced to the

model. This capability of the model to discern such differences

enables the exploration of cellular heterogeneity.
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Additionally, data points representing CRC patients from our

cohort were color-coded based on the CMS categorization

(Figure 3C). In the visualization, distinct patterns emerge in the

distribution of CMS categories across the UMAP space. Notably,

CMS4 samples appear clustered together, while the remaining CMS

categories exhibit their own clusters. This observation underscores

the significance of the gene signature and highlights the substantial

heterogeneity of CRC, as revealed by genomic and transcriptomic

profiling techniques.

Subsequently, we determined the CCLs that mimic the biology

of each patient (Figure 4, Supplementary Table 4). The plot reveals

significant variation in terms of the number of CCLs that are the

closest to the respective patients. Some patients, such as ARD-23,

ARD-44, ARD-46, or ARD-55, exhibit substantial representation,

with more than 30 similar cell lines each. Conversely, patients ARD-

4, ARD-15, ARD-19 and ARD-24 demonstrate comparatively

limited representation.

For further analysis, we focused on patient ARD-44 due to the

highest number of similar CCLs (>40, Figure 4). Specific cell lines

similar to this patient are depicted on the plot (Figure 5,

Supplementary Figure 2), although they may not always be the

closest points on the plot. This suggests that the relationship

between the patient and CCLs may not always be directly

observable in the scatter plot. The underlying 32-dimensional

space harbors a wealth of additional biological insights beyond

what can be visualized in 2D. While the scatter plot provides a

simplified view of the similarities between CRC patients and CCLs,

it is the MVAE embedding that encapsulates an understanding of

the biological landscape.

After identifying a set of cell lines designated as similar to the

patient, we examined all recurrent SNV and CNV present in more

than 20% of these cell lines. This analysis revealed 16 SNVs

and 16 recurrent large deletions occurring in at least 5 CCLs

(Supplementary Tables 5, 6). Further investigation using volcano

plots highlighted VPS4B and VPS4A as potential targets associated

with reduced cell proliferation (Figure 6). Notably, both genes

constitute a synthetic lethality pair, as previously described (48).

Subsequently, we determined genes crucial for cell survival and

examined whether any of the recurrent SNVs or CNVs observed in

the CCLs were also present in the patient. We then explored

whether patient ARD-44 harbored a deletion in either VPS4A or

VPS4B. By analyzing the frequency of heterozygous mutation (15

variants) in VPS4B and its neighboring genes in tumor versus

normal tissues, we concluded that the patient’s tumor exhibited a

mosaic deletion of VPS4B (Supplementary Figure 3).
Discussion

CRC remains one of the most prevalent cancer types and its

incidence continues to rise globally (4). Although CRC survival

rates are increasing for the early stages, most of the available

treatments prove insufficient in the metastatic stage, especially for

patients that are not classified to CMS1 with MSI and high TMB

(~80% of patients in our cohort) (6, 7, 49, 50). All this makes the

development of innovative personalized approaches and precision
TABLE 2 Comparison of the prevalence of mutated variants in our
cohort and (45).

Percentages of mutated variants

Gene CRC Literature CRC
Ardigen cohort

APC 66% 44%

TP53 52% 34%

KRAS 43% 41%

PIK3CA 30% 21%

FAT4 19% 27%

FBXW7 16% 14%

CSMD3 15% 30%

BRAF 14% 8%

LRP1B 12% 16%

SMAD4 11% 10%
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therapeutics against CRC an important research subject, that in the

future might save patients’ lives. In this publication, we introduced

various pipelines created by Ardigen aiming at the identification of

targets for novel CRC therapies.

The study was performed on a group of 71 patients of Polish

nationality with confirmed advanced resectional CRC

adenocarcinoma in active stages II, III or IV. In comparison to

the other cancer types, the genetic landscape of CRC in the Polish

population has not been extensively studied yet (51). Based on

multiple types of NGS data, this study analyzed different

characteristics of CRC (e.g. germline mutations, somatic

mutations, CMS). Our analyses revealed that CMS2 and CMS4

are the most prevalent subtypes in our CRC cohort, while CMS1

and CMS3 are less frequent, which is consistent with the literature

(9) (52), (Supplementary Figure 1). Furthermore, when we

compared the landscape of somatic and germline mutations with

other previously published cohorts, we concluded that our patient
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group did not differ significantly from other non-Polish populations

(Table 2) (9, 44, 45, 52).

Subsequently, we verified whether there are shared neoepitopes

that could be promising targets, through the use of ARDentify,

Ardigen’s proprietary platform. This platform facilitates the

identification of neoepitopes from tumor and blood WES data

and prioritizes them using another proprietary presentation

model called ARDisplay. ARDisplay has been trained on a

comprehensive set of curated mass spectrometry data (53). As

previously shown by the Rosenberg team, neoepitopes are rarely

shared between CRC patients (54) and the analysis of the Polish

cohort revealed a correlation with these results, as the detected

neoepitopes were shared by a maximum of 2 patients. Out of 8

patients with KRAS G12Dmutation, two had HLA-A03:01 or HLA-

A11:01 type and could be potential candidates for TCR-Ts therapy

that is being developed (55). Additionally, all 8 patients with KRAS

G12D mutations could participate in clinical trials and potentially
FIGURE 2

Gene essentiality for cell lines with (A) APC T1396Nfs*3 mutation, (B) BRAF V600E mutation. On the left selected essential genes for cell lines with
(A) APC T1396Nfs*3 mutation (chr5:112840254 G>GA) and (B) BRAF V600E mutation (chr7:140753336 A>T) are shown. The genes that should be
considered crucial for cell proliferation are the ones with a mean difference of dependency score below -0.5 or above 0.5. A score below -0.5
indicates genes whose absence negatively affects cell proliferation, whereas a score above 0.5 indicates genes whose knock-out positively impacts
cell proliferation. A pie chart on the right shows the number and proportion of CCL lineages with (A) APC T1396Nfs*3 and (B) BRAF V600E mutation.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1407465
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Murcia Pienkowski et al. 10.3389/fonc.2024.1407465
FIGURE 3

Two-dimensional UMAP visualization derived from the MVAE model’s representation of multi-omics data. Each point in the plots corresponds to
either a single cell or a patient sample. The scatter plot allows to observe patterns and relationships between different samples. (A) Data points are
color-coded to distinguish between different data sources, such as cancer cell lines (CCLE) and patient samples (TCGA and CRC). The overlapping
colors reflect the creation of a unified representation, aided by MVAE model predictions, and the removal of batch effects. (B) Color encoding is
based on cancer types, with the 15 most frequent types selected for better legibility. Additionally, we restricted the embedding space to areas with
all CRC patients and zoomed in. Legend labels marked in bold are cancer types with at least 10 data points in the selected area. (C) Each point in the
plots corresponds to either a single cell (CCLE) or a patient sample (TCGA and CRC). Data points corresponding to CRC patients from our cohort are
color-coded according to their Consensus Molecular Subtype (CMS) classification.
FIGURE 4

The number of CCLs classified as similar to each patient with cancer lineage discrimination. The stacked bar plot illustrates the number of cancer
cell lines (CCLs) similar to each CRC patient with an additional distinction between the 15 most frequent cancer types. Similarity was determined
based on the Euclidean distance in the 32-dimensional space obtained via the MVAE model, with a threshold set at the 1st percentile. Each bar
represents a CRC patient (x-axis), and the height of the bar indicates the number of similar CCLs (y-axis). Segments in each bar are color-coded
according to the cancer type of cancer cell lines they represent. The absence of bars on the plot for patients ARD-25 and ARD-42 is attributed to
the lack of closely related CCLs, while for ARD-64 and ARD-65, predictions from the MVAE model were unavailable.
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benefit from specific inhibitor therapies targeted against this

mutation or pan-KRAS mutation vaccines (56).

Nevertheless, in most CRC patients, it would be more optimal

to focus on more personalized approaches, e.g. Tumor Infiltrating

Lymphocytes transfer therapy (57) or neoepitope vaccines (58), as

no recurrent neoepitopes are present. This can be further supported

by the notion that CRC is one of the cancer types with the highest

tumor mutational burden (TMB), which increases the probability of

finding neoantigen-specific T cells that can be further expanded in

vitro and then delivered to the patient (59, 60). This is especially

true for CMS1 patients, where in our cohort the mean number of
Frontiers in Oncology 10
neoepitopes equals 347 vs CMS2 - 4 with a mean of 60 neoepitopes

per patient.

Next, using our in-house approach we checked if any synthetic

lethality pairs could be used for a substantial number of patients in

our cohort. Interestingly, the proliferation of cell lines with APC

T1396Nfs*3 mutation was heavily dependent on CTNNB1 and

TCF7L2 genes, while BRAF V600E was dependent on DUSP4,

respectively. The pairs APC-CTNNB1 and BRAF-DUSP4 were

previously described (47) (61–64), validating our approach to SL

gene pairs identification. Additionally to the well-known SL pairs,

we detected the APC-TCF7L2 pair. This pair has been recently
FIGURE 5

Two-dimensional UMAP visualization derived from the MVAE model’s representation of multi-omics data. Two-dimensional UMAP visualizations
derived from MVAE representations of multi-omics data. Each point represents either a single cell line (CCLE) or a patient sample (TCGA and CRC).
Additionally, similarities between a specific CRC patient (ARD-44) and various cancer cell lines (CCLs) are depicted on the plot, based on the
Euclidean distances in a 32-dimensional space obtained via the MVAE model. This focused visualization provides insights into the similarities
between CRC patients and CCLs, particularly in the context of colon cancer.
FIGURE 6

Gene essentiality for cell lines with CNV on chromosome 18 encompassing VPS4B gene. On the left selected essential genes for cell lines with
deletion of more than 100 genes on chromosome 18 including VPS4B a gene known for its synthetic lethality effect in collaboration with VPS4A.
The genes that should be considered crucial for cell proliferation are the ones with a mean difference of dependency score below -0.5 or above 0.5.
A score below -0.5 indicates genes whose absence negatively affects cell proliferation, whereas a score above 0.5 indicates genes whose knock-out
positively impacts cell proliferation. On the right CCLs lineages carrying the deletion.
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described as a new potential candidate for SL. However, it has not

been confirmed experimentally in any in vitro test so far (46). APC

and TCF7L2 are part of the Wnt/b-catenin pathway. The APC gene

encodes a critical tumor suppressor protein that functions as a

negative regulator of the Wnt signaling pathway and it exerts its

inhibitory effect on b-catenin (65). The TCF7L2 gene encodes a

High Mobility Group (HMG) box transcription factor critical for

the Wnt signaling pathway. While implicated in blood glucose

regulation with variants linked to type 2 diabetes risk, TCF7L2’s

primary function lies within the intestine (66). In healthy intestinal

epithelium, TCF7L2 acts as the sole mediator of canonical Wnt/b-
catenin signals in stem and progenitor cells, driving their

proliferation and maintaining tissue homeostasis (67, 68). This

essential role positions TCF7L2 as a potential tumor promoter

(69). However, TCF7L2 presents a paradoxical role in CRC. Despite

its growth-promoting function in healthy tissue, TCF7L2 is

frequently mutated in CRC (~10%) (70). However, it is not

specified whether inactivating mutations in TCF7L2 and APC can

coexist, similarly to the APC and CTNNB1 pair. In instances of

CTNNB1 mutation, inactivating APC mutations are never present

(62). We believe that APC-TCF7L2 should be further studied as a

novel putative SL pair.

We tested our model’s ability to align cancer samples to the

corresponding CCLEs by cluster colocalization of TCGA samples

and DepMap cell lines (Supplementary Figure 5). Additionally, we

performed an external validation by utilizing Multimodal VAE on

one case to see if this particular patient could benefit from a

personalized approach to cancer therapy. This framework enabled

us to construct a robust joined representation of the input omics

data, accommodating scenarios where certain modalities were

missing or incomplete. For example, in the case of CRC patients,

where DNA methylation data was absent, the MVAE model

provided a mechanism for making predictions disregarding the

missing information or even imputing it based on the remaining

modalities. Using this model we were able to select 41 CCLs that can

represent the cancer type of the selected patient (ARD-44). In 8 cell

lines, we identified a deletion on chromosome 18 encompassing the

VPS4B gene that was also present in our patient. Additionally,

VPS4A was found by our analysis as a potential SL pair for VPS4B,

which is consistent with the available literature (48). All this

validates our MVAE model and implicates its usefulness in

finding novel SL pairs.

Importantly, the heterogeneous number of similar CCLs found

for different CRC patients by our MVAE model emphasizes the

necessity for diverse and personalized approaches to better

understand and treat the disease. Patients with limited

representation may showcase disease subtypes or molecular

profiles that are not as evident in the existing cancer cell lines. As

expected, colon CCLs represent a substantial part of the similar

CCLs for most of the patients (Figure 5). Additionally, the presence

of CCLs derived from lung, pancreas, and other cancer types among

similar CCLs may suggest that some CRC tumors might be sensitive

to therapeutics used in cancer types derived from other tissues.

While the study of common molecular features and shared

pathways across cancer types may lead to the discovery of novel

therapeutic strategies applicable to CRC and other cancers, the
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study of individual molecular patterns can help plan a highly

personalized treatment plan and predict response to therapy. The

individual approach, in particular, can facilitate clinical trials by

using the MVAE model to stratify patients and predict potential

adverse effects, thereby enhancing patient safety and increasing the

benefit of participation.

In the future, additional applications of the MVAE model such

as e.g. expansion into animal models with an attempt to map them

to CCLs and cancer patients or integration of multi-omics data

from other diseases, e.g. Parkinson’s disease might render our

model useful in the identification of novel targets for diseases

outside of cancer. Lastly, it is worth noting that the addition of

different representations of multi-omics data like copy number

variants and single nucleotide variants might further ameliorate

MVAE models’ performance.

Herein, we presented 3 different approaches to the identification

of possible targets for cancer patients using our in-house models:

ARDentify, ARDisplay and an MVAE-based model. Notably, in

every approach we have gained valuable insights into our cohort of

71 CRC patients, e.g. 1/APC-TCF7L2 synthetic lethality pair that

could be used in some carriers of variants in APC from our cohort,

2/VPS4A-VPA4B - a known synthetic lethality pair that was

identified as a potentially personalized approach to one of our

patients, importantly this gene pair could be an interesting target

not only for CRC patients but also for carriers of the same CNV in

other tumors and 3/a plethora of neoepitopes for every case that

could be useful in personalized immunotherapies. Importantly in

analysis 2, our findings indicate that the use of advanced techniques,

such as MVAE and batch correction, results in a more

comprehensive and versatile approach in comparison with other

existing methods like Celligner (17). Since a direct cross-validation

of the unsupervised model is not feasible on a dataset constructed

using our approach, we use additional meta-data on cancer type as

an alternative means of validating the model’s performance and

generalizability as shown by the clustering of the cell lines in our

model Supplementary Figure 5). The enhanced performance can be

attributed to the joint representation of multi-omics data (RNAseq

and methylation data), addressing the knowledge gaps identified in

previous studies. It is worth noting that the authors of Celligner also

indicate that the use of more explainable models based on VAE is a

better approach than what they implemented in Celligner v1. This

insight has led them to start incorporating such models in Celligner

2.0. Our study aligns with this perspective and improves upon it, as

we have integrated VAE-based methodologies to enhance

explainability and performance. By leveraging these advanced,

explainable models, we provide a more transparent and

interpretable framework that addresses both the limitations of

Cel l igner v1 and the evolving needs highl ighted by

recent advancements.
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