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carcinogenic journey of
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Hepatitis B infection is substantially associated with the development of liver

cancer globally, with the prevalence of hepatocellular carcinoma (HCC) cases

exceeding 50%. Hepatitis B virus (HBV) encodes the Hepatitis B virus X (HBx)

protein, a pleiotropic regulatory protein necessary for the transcription of the

HBV covalently closed circular DNA (cccDNA) microchromosome. In previous

studies, HBV-associated HCC was revealed to be affected by HBx in multiple

signaling pathways, resulting in genetic mutations and epigenetic modifications

in proto-oncogenes and tumor suppressor genes. In addition, transforming

growth factor-b (TGF-b) has dichotomous potentials at various phases of

malignancy as it is a crucial signaling pathway that regulates multiple cellular

and physiological processes. In early HCC, TGF-b has a significant antitumor

effect, whereas in advanced HCC, it promotes malignant progression. TGF-b
interacts with the HBx protein in HCC, regulating the pathogenesis of HCC. This

review summarizes the respective and combined functions of HBx and TGB-b in

HCC occurrence and development.
KEYWORDS

HBx protein, hepatitis B virus, TGF-b signaling, hepatocellular carcinoma, tumor
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1 Introduction

Liver cancer is a substantial health problem globally, and it is estimated to be the 6th

most frequent tumor and the 3rd primary reason for cancer mortalities (1). In 2020,

approximately 905,700 and 830,200 people were diagnosed and died, respectively, due to

this tumor worldwide. Between 2020 and 2040, a 55.0% annual increase in new liver cancer

diagnoses is anticipated, with 1.4 million new cases expected (2). Various factors contribute
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to liver cancer development, including alcohol, metabolic

syndrome, type 2 diabetes, obesity, non-alcoholic fatty liver

disease (NAFLD), aflatoxin B1, and tobacco (3, 4). However,

HBV is still the most significant cause as it leads to 56% of the

cases, according to GLOBOCAN (5). The most common type of

liver cancer, HCC, accounts for nearly 75% of all cases

(6)(pp1978–2012).

HBV, a non-cytopathic DNA virus from the Hepadnaviridae

family, causes diseases of liver when transmitted through infected

blood or body fluids (7). The viral genomes contain relaxed circular

DNA (rcDNA), which encodes numerous proteins and can

transform into covalently closed circular DNA (cccDNA) in the

nucleus (8–10) (Figure 1).

The HBx protein, comprising 154 amino acids and a 17 kDa

molecular weight, and the variation in amino acid sequence of HBx

protein is more pronounced between different HBV genotypes than

within the same HBV genotype (12). It is named after its encoding

gene due to unknown homologous proteins (13). HBx is recruited

to cccDNA microchromosomes and enhances their transcription as

HBV replicates; alongside being necessary for HBV cccDNA

transcription/viral replication (14, 15), it is assumed to be

involved in hepatocarcinogenesis. HBx is primarily found in the

cytoplasm of hepatocytes, with some residing in the nucleus. HBx

activates transcription by interacting with nuclear transcription
Frontiers in Oncology 02
factors (TFs) while indirectly bound to DNA. Additionally, HBx

functions as an adaptor or kinase activator that influences signal

transduction pathways (16, 17).

Transforming growth factor-b (TGF-b) is a pleiotropic cytokine
involved in numerous physiological and pathological processes,

including tumorigenesis (18–21). It performs contradictory roles in

early and advanced liver cancer, inhibiting cell proliferation and

inducing apoptosis in early-stage lesions while promoting cancer

progression in advanced-stage HCC via fibrosis, invasion, and

epithelial-mesenchymal transition (EMT) (22, 23). TGF-b signaling

involves Samd-dependent and -independent pathways (21, 24).

As stated, TGF-b and HBx are expressed abnormally in HCC

and contribute to its development and progression. HBx expression

was positively correlated to TGF-b activity in hepatocytes of

cirrhotic/cancerous/chronic hepatitis patients. The results

suggested that HBx expression might induce TGF-b1 expression

in early-stage HBV infection (25). Additionally, HBx regulates the

transition of tumor-suppressive pSmad3C signaling to oncogenic

pSmad3L signaling (26), deeming necessary evidence that HBx is

intensely contributing to TGF-b carcinogenic effect in HCC.

In the following section, we will examine the specific

mechanisms of action of HBx and TGF-b in the progression of

HBV- associated HCC and their complex functional cross-talk

and interactions.
FIGURE 1

HBV genome map. HBV comprises a small, partially ~ dsDNA genome (the inner blue circle), which contains four promoters and two enhancer regions
(Enh1/2), in addition to two direct repeats (DR1/2). The four HBV-coded overlapping ORFs: preS/S, precore/C, polymerase, and X, are indicated by the
colored arrows. When the virus is replicating, the rcDNA enters the nucleus, it undergoes conversion into cccDNA through the action of host DNA
polymerase and repair enzymes, that act as the viral transcription template, showing the primary HBV transcripts (outer black lines), their 5′ initiation sites
(black arrowheads), aside with 3′ poly-A tails (AAAA).(This figure is modified from Figure 1 of the article PMID: 35648301) (11).
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2 Oncogenic mechanism of HBX

HBx contributes to HCC development and progression by

regulating multiple pathways, epigenetic changes, gene expression,

and transcription. (Table 1, Figure 2).
Frontiers in Oncology 03
2.1 HBx regulatory signaling pathway leads
to HCC

HBx is a key player in the etiology of HCC and manipulates

various biochemical pathways within host cells, which are vital for
TABLE 1 A summary of the mechanisms by which HBx leads to HCC.

Type Sub-Type Target Mechanism Reference

Pathways Proliferation and invasion Wnt/b-catenin HBx induces EMT and proliferation by activating
the Wnt/b-catenin signaling pathway

(27, 28)

Notch Notch-1, Jagge-1 and HECA-1 are upregulated by
HBx to promote cancer

(29, 30)

IN/IGF HBx activates IN/IGF pathway to enhance HCC cell
metastasis, migration, and invasion

(31)

DNA Repair p53 p53-mediated repair of damaged DNA is inhibited (32)

TFIIH The interaction between HBx and TFIIH blocks
DNA repair

(33)

Smc5/6 Hbx-induced Smc5/6 degradation inhibits HR repair (34)

Immune Evasion TRIF HBx protein can down-regulate TRIF to induce
immune escape

(35)

IPS-1 HBx interacts with IPS-1 to inhibit the activation of
IPS-1

(36)

ADAR1 HBx promotes ADAR1 expression to enhance
immune evasion

(37)

Epigenetics DNA Methylation DNMT1 HBx enhances regional hypermethylation of tumor
suppressor genes and inhibits the transcription of
PTPN13 by upregulating DNMT1

(38–40)

DNMT3A/3B HBx-increased DNMT3A/3B enhances CpG island
methylation in the SoCS-1 promoter, and it
antagonizes ATRA-mediated p53-dependent
apoptotic pathways

(41, 42)

Histone Modification WDR5 HBx enhances HBV transcription by promoting
H3K4me3 modification through upregulation
of WDR5

(43)

SETDB1 HBX inhibits SETDB1-mediated HBV suppression (44)

SIRT2 HBX upregulates SIRT2 to promote HBV
transcription and replication

(45)

DLL3 HBx prevents cancer cell apoptosis through histone
acetylation leading to the silencing of DLL3

(46)

miRNAs miR5188 HBx-induced miR5188-FOXO1/b-catenin-c-Jun
feedback loop promotes HCC stemness, metastasis,
proliferation, and chemoresistance

(47)

miR-21 HBx inhibits the expression of the tumor suppressor
gene PDCD4 by inducing overexpression of miR-21

(48)

miR1269b HBx upregulates miR1269b in an NF-kB signal-
dependent manner, targeting and increasing CDC40
to promote HCC progression

(49)

miR-106b HBx leads to increased transcription of miR-106b to
promote HCC

(50)

miR1270 (51)

(Continued)
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physiological and biochemical functions. HBx redirects these pathways

to promote cell proliferation and invasion, impair DNA repair, and

evade immune responses, collectively contributing to tumorigenesis.

In particular, the Wnt/b-catenin, Notch signaling pathways,

and the insulin-like growth factor (IN/IGF) pathway have been

associated with the organization of HBx’s carcinogenic influence.

The Wnt/b-catenin pathway is upregulated in over 90% of HCC

cases (67), it is activated via HBx ectopic expression combined with

Wnt-1, nevertheless, this activation is crucial for stabilizing the

effect of HBx on b-catenin (27). In turn, the inhibition of Wnt/b-
catenin pathway antagonists, SFRP1 and SFRP5, by HBx increases

HCC cell proliferation and epithelial-mesenchymal transition
Frontiers in Oncology 04
(EMT) (28). Concurrently, HBx also leads to prolonged activation

of the oncogenic pathway Notch by upregulating its receptors and

ligands, particularly Notch-1 and Jagged-1 (29, 30). This Notch

pathway activation is further amplified by HBx’s effect on the Erk

(MEK1/2) and PI3K/AKT pathways (68). Furthermore, HBx alters

the IN/IGF pathway, which acts in tandem with the Wnt/b-catenin
pathway. IN a double-transgene mouse model of HBx and IRS1 that

mimic human hepatocellular carcinoma, persistent activation and

cross-talk of IN/IGF1, WNT/b-catenin, and Notch enhance HCC

cell metastasis and invasiveness, and up-regulation of aspartate b-
hydroxylase (ASPH) is central to these signaling cascades (31). The

above mechanism exploration is primarily based on mouse models
TABLE 1 Continued

Type Sub-Type Target Mechanism Reference

HBx can upregulate CENPM through miR-
1270 downregulation, which
promotes hepatocarcinogenesis

miR-216b HBx can down-regulate cancer-suppressing miR-
216b to promote HCC

(52)

miR-122 HBx-LINE1 promotes cell migration by depleting
miR-122

(53)

miR-18b HBx inhibits the expression of miR-18b by
upregulating NUSAP1, thus promoting cancer

(54)

miR-148a HBx inhibited the p53-induced activation of miR-
148a and reversed the inhibitory effect of miR-148a
on the HPIP/mTOR pathway

(55)

lncRNAs DLEU2 HBx and DLEU2 co-recruit on cccDNA and
regulate its transcription

(56)

LINC01431 HBx-LINC01431-PRMT1 feedback loop facilitates
HBV replication and immune evasion

(57)

TRERNA1 TRERNA1 upregulated by HBx triggers the RAS/
Raf/MEK/ERK pathway and increases resistance
to sorafenib

(58)

LINC01010 HBx promotes the progression of HCC by down-
regulating the expression of LINC01010

(59)

lncRNA-Dreh HBx reduces the expression of lncRNA-Dreh to
promote the development of HCC

(60)

lncIHS HBx-induced lncIHS expression to activate AKT/
GSK-3b and ERK pathways

(61)

HBx mutation Ct-HBx TXNIP Ct-HBx transactivates NFATC2 to transcriptionally
repress TXNIP, thus promoting the HCC

(62)

C-jun/AP1 Ct-HBx enhances the invasion and metastasis of
HCC cells through C-Jun/AP1 signal activation

(63)

MMP10 Ct-HBx promote the HCC’s invasion and metastasis
by increasing MMP10

(63)

Cav1 Ct-HBx activates the Cav1/LRP6/b-catenin/FRMD5
axis to enhance hepatocarcinogenesis

(64)

FXR Anticancer FXR signal is weakly co-activated by Ct-
HBx compared to full-length HBx

(65)

N-terminal mutation F30V F30V enhanced the phosphorylation of PI3K-Akt,
thereby enhancing the antiapoptotic activity of HBx,
and it affects the binding of HBx to cccDNA to
promote immune evasion

(66)
frontiersin.org

https://doi.org/10.3389/fonc.2024.1407434
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yan et al. 10.3389/fonc.2024.1407434
and cells; however, further clinical experiments are required to

validate its potential as a therapeutic target for liver cancer patients.

HBx also compromises DNA repair, a critical tumorigenic facet

of HBV-induced HCC. The HBx protein can impede the repair of

damaged DNA mediated by the anti-oncogene p53 (32), inhibition

of transcription factor IIH (TFIIH) (33), and degradation of Smc5/6

complex (34). This disruption of DNA repair processes leads to the

accumulation of DNA damage, subsequently instigating the onset

of hepatocarcinogenesis.

On the immune evasion front, HBx uses several strategies to

avoid the innate immune response, particularly suppression of

interferons. It suppresses Toll-like receptor 3 (TLR3) and its

adaptor protein, TIR-domain containing adaptor protein inducing

interferon-b (TRIF), thereby reducing the anti-HBV immune

responsee (35). Furthermore, HBx inhibits interferon b (IFN-b)
signaling by interacting with IPS-1, suppressing interferon

induction during HBV infection (36). Moreover, HBx facilitates

adenosine deaminases acting on RNA 1 (ADAR1)-mediated viral

RNA editing, which prevents the recognition of HBV RNA by

pattern recognition receptors, thereby inhibiting interferon

production (37). Patients with HBV immune tolerance experience

a higher incidence of HCC compared to those who receive immune

activation therapy (69). Type I interferons are approved as a first-

line treatment for chronic HBV. However, it is speculated that the

effectiveness of IFN therapy may be limited due to inhibition by

HBx, and its significant side effects limit its broader clinical

application. Thus, there is a need to develop more effective
Frontiers in Oncology 05
immunotherapeutic drugs to curb the progression of HBV-

associated HCC.
2.2 HBx causes HCC through
epigenetic mechanisms

In the context of HBV or HCV infection, HCC development

and progression are supported by epigenetic dynamics. This is

associated with DNA methylation, histone modifications,

microRNAs (miRNAs), and long noncoding RNAs (lncRNAs).

In liver tissue affected by chronic hepatitis or cirrhosis due to

HBV or HCV infection, DNAmethylation can be detected, which is

considered a precancerous state of HCC (70). Significantly elevated

HBx expression is associated with methylation abnormalities in

HBV-infected HCC patients (38). DNMT1, responsible for

maintaining DNA methylation during replication, and DNMT3A/

3B, also known as de novo methyltransferases, are involved in

methylation modifications (11). HBx upregulates DNMT1/3A1/

3A2, resulting in the hypermethylation of tumor suppressor-

related genes (38, 39), such as increasing CpG island methylation

of the cytokine signaling-1 (SOCS-1) promoter (41) and

hypermethylation of p14’s promoter (42). HBx also inhibits

Tyrosine-protein phosphatase nonreceptor type 13 (PTPN13)

transcription by upregulating DNMT3A and promoting DNA

methylation, thereby facilitating the progression of HCC

progression (40).
FIGURE 2

HBx and its multifunctional roles in hepatocarcinogenesis. HBx interacts with several cellular targets through various mechanisms, including affecting
multiple signaling pathways, damaged DNA repair, immune evasion, and epigenetic changes (DNA methylation, histone acetylation, ncRNAs) to
accelerate HBV transcription, replication, and malignant progression of HCC.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1407434
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yan et al. 10.3389/fonc.2024.1407434
Epigenetic modification of histones contributes to multiple

malignant tumor pathogeneses and metastases, including HCC

(71–73). HBx inhibits H3 lysine 4-methyltransferase complex

core subunit WDR5 ubiquitination, resulting in increased HBV

transcription via H3K4me3 modification of cccDNA (43). A

positive feedback loop is formed when the HBx-WDR5-

H3K4me3 axis increases ALKBH5, a demethylase enzyme that

catalyzes m6A demethylation of HBx mRNA (74). However,

other reports indicate that H3K4me3 is generally diminished in

HBV infections. HBx can alleviate the reduction in H3 acetylation

and H3K4me3, as well as the methylation of histone 3 lysine 9

(H3K9me), following HBV infection. This action helps to mitigate

the transcriptional silencing of cccDNA (45). HBx inhibits cell

apoptosis by inducing DLL3 silencing via histone acetylation in

HBV-associated HCC (46).

MicroRNAs (miRNAs) and long noncoding RNAs (lncRNAs)

are two important classes of noncoding RNAs that substantially

impact cellular processes, including differentiation, proliferation,

and survival (75, 76).Notably, irregular expressions of these RNA

types are characteristic of liver disorders, including HCC (77, 78).

HBx is a key mediator in hepatocarcinogenesis, influencing the

levels of both miRNAs and lncRNAs to promote or inhibit HCC

development (79, 80). For example, HBx can induce the expression

of miR-5188 throughWnt signaling, thereby establishing a feedback

loop that promotes HCC stemness, metastasis, and chemoresistance

(47). Additionally, it can modulate the expression of miR-21, miR-

1269b, and miR-106b, thereby affecting tumor suppression and the

progression of HCC (48–50, 81)(p12). In contrast, downregulated

miRNAs affected by HBx, such as miR-1270, miR-216b, miR-122,

miR-18b, and miR-148a, are involved in HCC carcinogenesis via

numerous pathways (51–55). HBx influences transcription,

translation, and epigenetic regulation of lncRNAs, with

implications for HBV replication, immune evasion, drug

resistance, and the activation of numerous signaling pathways

(80). Noteworthy examples include DLEU2, LINC01431,

TRERNA1, LINC01010, lncRNA-Dreh, and lncIHS (56, 57) (p1),

(58–61). Consequently, these interactions between HBx and

noncoding RNAs emphasize their significance in the molecular

mechanisms underlying the development and progression of HBV-

associated HCC.
2.3 HBx mutation leads to
HCC progression

HBV DNA integration into the host genome induces genomic

instability and direct insertion mutations in cancer-related genes in

early-stage clonal HCC expansion (82). Variation in the HBx

sequence, specifically at the 3’-terminus, substantially affects the

HCC development. Chimeric transcripts of HBx and human genes,

often including 3’-terminal deletions, are frequently expressed and

can encode alternative HBx versions implicated in transcriptional

regulation (83, 84).

The carboxyl terminus of HBx plays multiple roles in protein-

protein interactions, transcriptional transactivation, DNA repair,

cellular signaling, and HCC pathogenesis (85). COOH-terminal
Frontiers in Oncology 06
mutations are associated with HCC and may lead to reactive oxygen

species (ROS) production, which damages mitochondrial DNA (86,

87). The clustering pattern of HBx 3’ end generates a truncated X

protein (Ct-HBx) (62) that promotes HCC progression by

mediating glucose metabolism reprogramming, increasing matrix

metalloproteinase 10 (MMP10) transcription (62, 63), and

enhancing Wnt/b-Catenin signaling (64). HBX-C30 (30 aa

deletion from HBx C terminus) co-activates anticancer FXR

signaling less effectively than full-length HBx (65). Additionally,

mutations in the N-terminal domain, such as F30V, increase HBx’s

antiapoptotic activity and diminish HBV’s replication efficacy.

These HBx mutations facilitate the development of HCC and

immune evasion (66).
2.4 Therapeutic approach for HBx

Currently, there is a lack of drugs and therapeutic methods

targeting HBx, which awaits further development by researchers.

During HBV infection, the host SMC complex, SMC5/6, suppresses

viral transcription. HBx promotes ubiquitination and degradation

of SMC5/6, enhancing cccDNA transcription and increasing viral

replication. This destabilization of SMC5/6 aids HBV in evading

host immune surveillance and facilitates viral persistence and

propagation (15, 88, 89). Nitazoxanide, an FDA-approved

thiazolide antimicrobial for protozoal enteritis, and Pevonedistat,

an NAE inhibitor approved for myelodysplastic syndromes, have

demonstrated in vitro efficacy in inhibiting the HBx/SMC5/6 axis.

This inhibition restores SMC5/6 protein levels, effectively

suppressing HBV transcription and translation (90–92).

Dicoumarol, the precursor to warfarin and a competitive NQO1

inhibitor, reduces HBx level and cccDNA transcription in both

HBV-infected hepatocytes and humanized mouse models (93).
3 TGF-b

3.1 Overview of the TGF-b Signaling

The TGF-b branch, classified as the TGF-b family, is activated

by three ligands: TGF-b1-3, with TGF-b1 being the most abundant

and typical isomer as it is secreted by almost all cells (94). The TGF-

b ligand synthesis is in a longer precursor protein that is cleaved by

furin protease; additionally, TGF-b disulfide-bonded dimers and

the latency-associated peptide (LAP) are joined by non-covalent

bonds to form a small latent complex, which is cross-linked with the

latent TGF-b binding protein (LTBP) forming a large latent

complex. This inactive complex is then secreted and associated

with the extracellular matrix (ECM) (95). Activation occurs when

particular signals initiate the release of active TGF-b from the

complex, involving elements such as extreme pH, proteases, and

integrins (96). Upon TGF-b ligand binding, TbRII dimerizes and

recruits TbRI to produce a heterotetrameric TbRI-TbRII complex

(97, 98).

TbRI phosphorylates R-Smads (Smad2/3) at their extreme C-

terminal Ser-X-Ser motifs in the canonical Smad signaling, resulting
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in oligomerization with Co-Smad (Smad4) and nuclear translocation

(99). The activated Smad4-R-SMAD complex regulates the

transcription of target genes through interactions with DNA-

binding transcription factors (20). The Smad linker can also be

phosphorylated to activate numerous signaling pathways involved

in pathological or pathophysiological gene expressions (100).

Inhibitory Smad6/7 (I-Smads) modulate canonical Smad signaling

in a feedback manner via various mechanisms (101, 102). Besides

canonical Smad signaling, TGF-b functions by activating non-

canonical Smad pathways, including the mitogen-activated protein

kinase (MAPK), extracellular signal-regulated kinases1/2 (Erk1/2),

Rho-like, phosphatidylinositol-3-kinase (PI3K)/AKT, c-Jun amino-

terminal kinase (JNK), p38/MAPK (103), and the Src tyrosine kinase

signaling pathways (104, 105) (Figure 3).
3.2 TGF-b Signaling in HCC

TGF-b signaling is essential at every stage of liver disease

progression, from initial inflammation and damage to fibrosis,
Frontiers in Oncology 07
cirrhosis, and ultimately liver cancer. Early on, it inhibits tumor

growth by inducing senescence and apoptosis. It promotes tumor

growth, EMT, and metastasis in advanced stages. Nevertheless,

Smad-dependent and independent pathways are involved in the

complex signaling (106). (Figure 4).

3.2.1 Tumor suppressor roles of TGF-b in HCC
3.2.1.1 Cell cycle arrest

TGF-b induces HCC cell cycle arrest by suppressing

transcriptional factor expression, including the pro-growth TF c-

Myc, which is mediated through nuclear translocation of a complex

consisting of Smad3, E2F4, or E2F5, and RB-related factor p107

(107, 108). It also regulates cyclin-dependent kinases (CDKs) and

their inhibitors, leading to G1 arrest (109). CDK2 binds to cyclin E

to drive the cell cycle, while CDK4 or CDK6 binds to cyclin D (110).

Furthermore, TGF-b reduces the inhibitory effects of c-Myc on

CDK inhibitors p21CIP1 and p15INK4B, leading to cell cycle arrest

(111–113)(p1), (114). The accumulation of NADPH oxidase-4

(Nox4) and ROS in well-differentiated HCC cell lines further

enhances the expression of TGF-b-induced p21CIP1 and
FIGURE 3

Canonical and non-canonical TGF-b signaling pathways. Regarding canonical TGF-b signaling pathways (SMAD‐dependent signaling pathways), the
TGF-b ligand secreted by extracellular matrix binds to TGFbRII to initiate this pathway; and TGFbRII upon activation, forms a complex with TGFbRI
and phosphorylates TGFbRI. Then Smad2/3/4 forms transcription complexes, entering the nucleus besides binding to DNA to regulate the target
gene expressions. Smad6/7 are canonical TGF-b pathway inhibitors. Non-canonical Smad pathways (SMAD‐independent signaling pathways) include
MAPK, Erk1/2, Rho-like, PI3K/AKT, JNK, p38/MAPK, and Src tyrosine kinase pathways.
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p15INK4B (115). In addition to G1 phase arrest, TGF-b causes

HCC-cell G2 phase arrest by inducing CDK inhibitors p21CIP1 and

p27KIP1, along with Wee1 kinase (116)(p1).

3.2.1.2 Cellular senescence

Cellular senescence is a persistent cell cycle arrest state

inhibiting tumor progression (117–119). There is a significant

relationship between tumor inhibition and cell senescence in

HCC. Telomerase and telomeres are mainly involved in

malignant cell senescence and hepatocyte aging (120), with

telomerase reactivation promoting uncontrolled proliferation and

malignant transformation in HCC (121). In malignant tumors,

TGF-b/Smad signaling inhibits human telomerase reverse

transcriptase (hTERT), demonstrating a regulatory role for TGF-

b in HCC cell senescence (122–124).

3.2.1.3 Autophagy

Autophagy is responsible for the degradation of proteins and

cells (125, 126). Through Smad and non-Smad pathways, TGF-b
induces autophagy in HCC cells by upregulating the expression of

autophagy-related genes, including BECLIN1, ATG5, ATG7, and

DAPK. Autophagy is closely related to TGF-b-mediated growth

inhibition of HCC cells. Autophagy gene knockdown reduces TGF-

b-mediated growth suppression and decreases pro-apoptotic gene

expression. HCC cells are more resistant to TGF-b-induced
autophagy than breast cancer cells, indicating its significance in

growth suppression (127, 128). However, recent studies have found

that tumor cells in HCC rely on autophagy for survival. This process

can promote tumor development by inducing autophagic cell death
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in liver (129, 130). Therefore, the role of TGF-b-induced autophagy

in liver cancer requires further research to clarify.

3.2.1.4 Apoptosis

In liver cells, TGF-b induces apoptosis and inhibits cell

proliferation (131). It initiates apoptosis through the death

receptor pathway by mediating the activation of the TNF-related

apoptosis-inducing ligand (TRAIL) promoter’s AP-1 site via Jun,

Fos, and Smad proteins (132)(p1), (133). TGF-b can induce

apoptosis in liver cancer cells via the mitochondrial and death

receptor pathways. TGF-b can also induce apoptosis via the

mitochondrial pathway by reducing the expression of

antiapoptotic B-cell lymphoma 2 (Bcl-2) family proteins and

activating caspases (134). ROS generation via NADPH oxidase is

essential for TGF-b-induced HCC cell apoptosis (135, 136). The

apoptotic response can be suppressed by the epidermal growth

factor receptor (EGFR) pathway (137, 138).

3.2.2 Tumor promoter role of TGF-b in HCC
3.2.2.1 Cancer cell proliferation

Most malignant tumors exhibit an increase in cell proliferation.

TGF- promotes HCC proliferation via several pathways. Through

the EGFR, TGF-b activates Ras/Erk, PI3K/AKT, and STAT3

signaling, resulting in hepatocyte proliferation. In addition, it

upregulates the expression of PDGF to activate the PI3K and b-
catenin pathways. TGF-b also activates other pathways, such as

Wnt/b-catenin, Snail, and GLI-1, contributing to cancer cell

proliferation (139–143). Furthermore, TGF-b/SMAD2 signaling

induces c-KIT receptor ligand (stem cell factor) expression,
FIGURE 4

TGF-b dichotomous role in HCC development and progression. TGF-b has various tumor-suppressing functions, including G1 and G2 cell cycle
arrest, cellular senescence, autophagy, and apoptosis. Conversely, it has the ability to serve as a tumor promoter, inducing cancer cell proliferation,
EMT, and immune suppression in HCC.
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activating c-KIT/JAK1/STAT3 signaling and establishing a positive

feedback loop for HCC proliferation (139). The p38 and PI3K/AKT

pathways mediate the PRL-3-induced TGF-b1 by activating FAK

and developing another positive feedback loop (144).Thus, TGF-b
interacts with multiple carcinogenic pathways in tumors, and

blocking TGF-b activation could serve as a vital approach in the

treatment of liver cancer.

3.2.2.2 Genetic alteration and epigenetic modification

HCC development involves genetic, epigenetic, and

transcriptomic mechanisms. Approximately 40% of HCC cases

contain mutations in TGF-b pathway genes. Overexpression of

TGF-b pathway genes is associated with inflammation and fibrosis,

whereas their down-regulation inhibits tumor growth (145). Several

TGF-b target genes implicated in HCC are overexpressed, including

VEGFA, COL4A1, SNAI2, DAPK2/3, CDKN1A, and CDKN1.

Genomic instability in HCC is caused by mutations in the TGF-b
pathway and its non-canonical targets, including the JNK/MAPK/

IKK, ERK/MAPK, RHO-ROCK, and PI3K/AKT pathways (146).

Epigenetic modifications increase the carcinogenic influence of

TGF-b on HCC. In early HCC, demethylation of the Smad4’s

promoter suppresses tumor growth, whereas hypomethylation of

Smad7 and SNAI1 in the promoter region facilitates EMT

recurrence and metastasis, it has been reported that the use of

decitabine may drive liver cancer progression towards a pro-

carcinogenic direction through this pathway (147). Methylation of

the TTP promoter eliminates the post-transcriptional regulatory

function of c-Myc, shifting TGF-b signaling from proliferation

inhibition to promotion (148, 149). In HCC, high methylation

levels frequently lead to the inactivation of the tumor suppressors

RUNX3 and Smad Interacting Protein-1 (SIP1), which interact with

Smads (150, 151). In conjunction with HDACs and G9

methyltransferase, the TGF-b-induced overexpression of SNAIL2

suppresses E-cadherin and enhances the invasiveness and

metastasis of HCC cells (152).

3.2.2.3 Epithelial-mesenchymal transition

EMT triggers epithelial cells to acquire mesenchymal

properties, leading to migration, invasion, stemness, and

resistance to apoptosis and immune responses (153, 154). TGF-b
plays a fundamental role in triggering EMT in HCC (154, 155)(p1).

It downregulates epithelial markers (E-cadherin, ZO-1, and

Occludin) and upregulates mesenchymal markers (N-cadherin,

vimentin, and SMA) via Smad and non-Smad pathways

(Rhogtase, MAPK, and PI3K/AKT/mTOR) (156, 157). TGF-b
induces EMT-TFs, including SNAIL1/2, ZEB1/2, and TWIST.

Smads interact with Notch, Hedgehog, Wnt, and Hippo signaling

pathways to reprogram EMT-related genes. Additionally, miRNAs

(158), such as the SNAIL-miR-34 and ZEB1-miR-200 feedback

loops, regulate EMT during TGF-b stimulation (159). Long

noncoding RNA also activated by TGF-b (lncRNA ATB)

promotes ZEB1/2 overexpression via competitive binding with

the miR-200 family, thereby inducing EMT and invasion (160).
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3.2.2.4 Immune suppression

TGF-b, by modulating immune cells involved in immune

homeostasis and tolerance, acts as a critical inhibitor of both

adaptive and innate immunity. This creates an immunosuppressive

tumor microenvironment that facilitates tumor progression (161).

Induction and differentiation of liver Treg cells by TGF-b contribute

to immunosuppression (162) via numerous cell types, such as LSECs,

HSCs, CAFs, TAMs, and MDSCs. Treg cells suppress immune

responses, enhance cell proliferation, and deplete cytotoxic T

lymphocytes (CTLs).TGF-b upregulates PD-1 and PD-L1,

inhibiting TCR signaling and T cell proliferation and leading to T

cell depletion in HCC (146). In addition to inhibition of T cells, TGF-

b increases alternative macrophage activation by enhancing Tim-3

transcription in tumor-associated macrophages (TAMs), leading to

the growth of HCC (163).
3.3 Therapeutic approach for TGF-b
in HCC

The TGF-b pathway plays a crucial role in the progression of

HBV-associated HCC. Many drugs targeting the TGF-b pathway

have shown promising results in treating HCC (164). However, the

clinical applicability and efficacy of these treatments require further

validation through extensive clinical trials. Studies have shown that

various chemotherapeutic agents, including Fluorofenidone (AKF-

PD) (165), Sanguinarine (San) (166), Aspirin (167), Praziquantel

(PZQ) (168), and Ursodeoxycholic acid (UDCA) (169), along with

small molecule inhibitors such as Galunisertib (LY2157299) (170–

172), LY2109761 (173), SKLB023 (174), and LY3200882 (175), are

effective in treating HBV-HCC. The therapeutic vaccine

Belagenpumatucel-L (Lucanix) (176) also exhibits efficacy in this

setting. Studies show significant activation of the TGF-b pathway in

immunotherapy-resistant tumors, with TGF-b often implicated in

establishing suppressive tumor microenvironments (177, 178). The

TGF-b and PD-1 pathways operate through independent, yet

complementary, immunosuppressive mechanisms, enhancing

cancer immune evasion (179, 180). Consequently, combining

TGF-b inhibitors with PD-1 monoclonal antibodies presents a

promising treatment approach for HBV- HCC.
4 Interaction of HBx and TGF-b
in HCC

As described previously, HBx and TGF-b play distinct functions in

HBV-HCC progression. In fact, HBx was shown to induce TGF-b
expression early in HBV infection (25). Meanwhile, TGF-b can increase

signaling pathway proteins in HBx pathogenesis (181), suggesting that

TGF-b and HBx co-regulate specific signaling pathways that promote

HCC. Additionally, regulating multiple pathways and epigenetic and

genetic events by HBxmediates TGF-b’s participation in distinct ways in
HBV-HCC progress pathogenetic mechanism.
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4.1 HBx shifts TGF-b action from tumor
suppression to tumorigenesis

As mentioned, the TGF-b pathway is involved in tumor

suppression during early-stage tumorigenesis and tumor

promotion in advanced cancers (94 , 182–184) . This

dichotomous effect is determined by the phosphorylation

status of the Smad3 protein, particularly its c-terminus or

linker region (185). The linker region of Smad2/3 contains

numerous conserved motifs subject to regulatory factors and

post-translational modifications, such as phosphorylation (186,

187). The linker domain is phosphorylated at specific serine/

threonine residues by cytoplasmic MAPKs and nuclear CDKs

(20, 35–38). The phosphorylation of Smad2/3 in the linker

region generates three types of phospho-isoforms: C-terminally

phosphorylated Smad2/3 (pSmad2C/3C), linker-phosphorylated

Smad2/3 (pSmad2L/3L), and dually phosphorylated Smad2/3

(pSmad2L/C and 3L/C) (188).

In normal epithelial homeostasis, TGF-b mediates pSmad3C

signaling, inhibiting cell proliferation by interfering with cell cycle

progression (189–191). This is accomplished via activating CDK

inhibitors, such as p15INK4B and p21CIP1, and inhibiting c-Myc

gene expression and cell cycle-related molecules (192–194). The

pSmad3C pathway protects against cancer development, leading to

transient Ras activation followed by growth inhibition and

apoptosis. Furthermore, pSmad3C can regulate apoptosis-related

protein expressions, including Bcl2 (195)(p2).

Cytoplasmic Ras-re lated kinase act ivat ion during

carcinogenesis, including MAPKs, transforms Smad3 signaling

from an antitumor pSmad3C state to the oncogenic pSmad3L and

pSmad2L/C pathways. JNK, a serine/threonine kinase activated by

Ras, plays a crucial role in this conversion by defeating TbRI/
pSmad3C-mediated growth arrest (196, 197). Smad3 is

phosphorylated at Ser-213 upon activation of JNK (198), a site

where RTK pro-inflammatory cytokines, growth factors, and, to a

lesser extent, TGF-b can increase phosphorylation levels. It has

been demonstrated that c-Myc overexpression can inhibit the

Smad3-dependent transcription of p15INK4B and p21WAF1

proteins, thereby opposing cell cycle arrest (199). The JNK/c-Myc

mitotic pathway inhibits the TRI/pSmad3C/P21WAF1-mediated

growth arrest (200). Ser-213 phosphorylation of Smad3L via TbRI
perturbs COOH-tail phosphorylation (26, 198, 201), promoting

nuclear translocation and accelerating cell proliferation signals

mediated by pSmadL (198). JNK-activated pSmad3L-mediated

cell proliferation signal and TbRI-activated pSmad3C-mediated

cell cycle arrest signal are mutually antagonistic. Mutations in

essential pathway components can cause persistent Smad3 linker

phosphorylation, so highly phosphorylated Smad3L likely reduces

pSmad3C’s sensitivity to growth inhibition in tumor cells (26, 202–

204). The overexpression of receptors by cancer cells modifies

Smad3 phosphorylation (205). The Ras/JNK pathway controls

both pSmad3C and pSmad3L. Strong Smad2L/C and Smad3L/C

phosphorylation is observed in colorectal cancer EMT-related

tumors (206). CDK4 converts TGF-b signal-mediated pSmad2/3C

to malignant pSmad2L/C and 3L/C pathways (207). The interaction

between pSmad2L/C and pSmad3L induces fibrogenic signals and
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liver fibrosis via PAI-1 (208). Increased PAI-1 transcription

and ECM synthesis positively modulate liver fibrosis in

hepatocytes (209).

It has been demonstrated that HBx overexpression induces the

development of hepatic tumors by stimulating DNA synthesis (210).

Studies have revealed that HBx shifts TGF-b signaling from the

TbRI-dependent pSmad3C tumor-suppressive pathway to the JNK-

dependent pSmad3L oncogenic pathway during carcinogenesis, as

observed in biopsy samples from chronically HBV-infected patients

and HBx transgenic mice with liver lesions (26). The proto-oncogene

c-Myc, a target of TGF-b/SMAD signaling (211, 212), is involved in

HCC malignant progression (213). pSmad3L/Smad4 triggers c-Myc

transcription, whereas pSmad3C/Smad4 inhibits it. The two

complexes antagonize each other and govern c-Myc expression.

HBx’s presence may cause the signal to upregulate c-Myc and

promote cancer cell growth (214) (Figure 5).

In conclusion, the interaction between HBx and TGF-b plays an

essential role in hepatocarcinogenesis at various stages of HBV

infection. TGF- b signaling has a dual function, promoting tumor

suppression in the early stages of tumorigenesis while promoting

tumor growth in advanced malignancies. Smad3’s function is

determined by its phosphorylation status, with C-terminally

phosphorylated Smad3 (pSmad3C) functioning as a tumor

suppressor and linker-phosphorylated Smad3 (pSmad3L)

contributing to oncogenesis. HBx modifies the TGF-b signaling

pathway, redirecting it to the oncogenic pSmad3L pathway.

This perturbation promotes the progression of the cell cycle,

inhibits apoptosis, and accelerates the development of

hepatocellular carcinoma.
4.2 Other HBx effects on TGF-b signaling

In prior studies, researchers revealed a correlation between

HBx and TGF-b expression in HBV-infected cells. TGF-b1 level

correlates positively with HBx protein expression in early-stage

HBV infection, suggesting that HBx may directly or indirectly

promote TGF-b1 expression. HBx forms a complex with Egr-1

protein and transactivates the TGF-b1 promoter via the Egr-1

binding site (25). HBx overexpression during HBV infection

correlates with the release of secreted factors, particularly TGF-

b, from HBx-transfected HCC cells or adjacent endothelial cells

through increased CD133 expression, which induces invasion of

these cells by EMT (210).

TGF-b1 inhibited cell proliferation and invasion in a study

involving trophoblast cells (HTR-8/SVneo). Nevertheless, HBx

activated the Smad pathway in HBx-transfected cells, resulting in

the downregulation of E-cadherin and the upregulation of vimentin

and N-cadherin, which reduced the apoptotic capacity and

increased the invasive capacity of HTR-8/SVneo cells. The

mechanism by which HBx shifts TGF-b signaling in HTR-8/

SVneo cells needs additional investigation (211). Additionally,

HBx inhibits the expression of the E-cadherin gene (CDH1) by

activating TGF-b, which may be an additional mechanism for its

downregulation of E-cadherin and promotion of tumor metastasis

(212). The HTR-8/SVneo cell line is derived from cells that were
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grown from early human placental chorionic villi explants and

transfected with a gene encoding the Simian Virus 40 large T

antigen. Since it is not sourced from a liver cancer cell line, further

foundational experiments are necessary to determine whether it can

represent the general mechanisms within HBV-infected and liver

cancer patients. This includes using human-derived liver cancer cell

lines and replicating the studies in mouse models that simulate liver

cancer to validate the results.

Epigenetic and genetic events affect the interaction between HBx

and TGF-b. HBx can increase TGF-b expression via autophagy

induction, and increased TGF-b upregulates lncRNA-ATB, thereby

enhancing liver cancer cell migration and invasion (215). Both HBx

and TGF-b1 stimulation induces significant overexpression of miR-

199a-3p in hepatic progenitor cells (HPCs), thereby promoting HPCs

oncogenic transformation via a JNK/c-Jun/miR-199a-3p-dependent

pathway (216). C-terminal truncated mutants (ctHBx) commonly

found in HCC tissue samples (217) decrease bone activin membrane-

bound inhibitor (BAMBI) more than HBx alone. ctHBx significantly

inhibits BAMBI promoter activity in the absence of the Wnt/b-
catenin pathway, thereby reducing the inhibition of TGF-b1 and b-
catenin and promoting malignancy (218).
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In an HBx transgenic mouse model undergoing partial

hepatectomy, TGF-b, Smad2, and phosphorylated Smad3/4

(ser423/425) were significantly overexpressed in the HBx

transgenic mice liver compared to non-transgenic mice,

indicating the impact of HBx on the TGF-b/Smad pathway,

which promotes the progression of HCC (213). Furthermore,

HBx disrupts the negative feedback loop between TGF-b and

protein phosphatase magnesium-dependent 1A (PPM1A) by

enhancing PPM1A ubiquitination and degradation, resulting in

TGF-b pathway overactivation, HCC migration, and invasion

(219). HBx also stabilizes the binding of the Smad complex to the

transcriptional machinery and facilitates the nuclear transposition

of Smads, thereby amplifying TGF-b signaling (220).

Contrary to previous findings, some studies suggest a

negative correlation between HBx and TGF-b activation. For

example, HBx inhibits TGF-b-induced apoptosis by linking Src

to PI3K, thereby activating the PI3K/Akt signaling pathway

(221, 222). And another study showed that cells transfected

with HBx exhibited reduced expression of the TGF-b type II

receptor, resulting in a weaker TGF-b1 response and reduced

growth inhibition in response to TGF-b1 (214). Furthermore,
FIGURE 5

HBx participated in the conversion of dichotomous effects on HCC in the TGF-b pathway. JNK-activated pSmad2/3L-mediated cell proliferation
signal and TbRI-activated pSmad2/3C-mediated cell cycle arrest signal are mutually antagonistic. HBx leads TGF-b signaling in hepatocytes to shift
from the TbRI-dependent pSmad3C tumor-suppressive pathway to the JNK-dependent pSmad3L oncogenic pathway during carcinogenic stages.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1407434
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yan et al. 10.3389/fonc.2024.1407434
research also shows that HBx plays different roles at hepatocyte

cell line. In normal liver cells, HBx induces cell cycle arrest by

elevating TGF-b and p27 levels, leading to G1 or G2 phase

blocks that facilitate HBV replication. In HBV-infected HCC

cells , however, HBx may accelerate carcinogenesis by

promoting cell cycle progression through the downregulation

of TGF-b and the p53/27/21 pathway (223). Despite these

findings, the overall trend indicating tumor progression via

the HBx/TGF-b axis aligns with earlier results. This may be

attributed to the paradoxical roles of TGF-b at different stages

of tumor progression or variations in experimental conditions.

It is evident that the TGF-b signaling pathway is primarily

influenced and regulated by HBx, particularly within HBV-infected

cells. It is worth noting that HBx has been shown to lead to malignant

transformation of HCC by influencing dysregulation of TGFB and

thereby activating multiple cancer-promoting mechanisms. including

EMT, anti-apoptosis, proliferation, inflammatory responses,

metastasis, invasion, and fibrosis. Therefore, researchers need to

pay more attention to the interaction mechanism of these HBx-

TGF-b axis, and develop anti-tumor drugs that can target the

common pathway of this axis, bringing new hope to the drug

treatment of hepatocellular carcinoma. (Figure 6).
5 Conclusion and discussion

The incidence and mortality rates of liver cancer have garnered

widespread attention within the academic community. With the

advancement of liver cancer research, there has been a deeper

understanding and significant progress in elucidating carcinogenic

molecular mechanisms. Various mechanisms, such as DNA damage,

immune evasion, epigenetic alterations, and genomic mutations, have
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been emphasized in studies and are considered crucial in promoting

HCC through HBx. Notably, as a key signaling pathway, TGF-b plays
dual roles in HCC, transitioning from an early anticancer effect to a

late pro-cancer effect. HCC can acquire invasive tumor characteristics

such as EMT and aberrant proliferation through this pathway. In

numerous recent studies, it has been demonstrated that HBx and

TGF-b signals interfere and interact with one another in HCC and

collectively regulate HCC progression. With future technological

advances, it is believed that more in-depth studies will be necessary

to reveal the HBx oncogenic mechanism, a star protein, and TGF-b, a
potential HCC therapeutic target, and to design effective clinical

management strategies for HBV-correlated HCC patients. In the near

future, these efforts will provide HCC patients withmore effective and

sensible options for receiving targeted therapies.
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responses, metastasis, invasion, and fibrosis.
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Malfettone A, et al. The level of caveolin-1 expression determines response to TGF-b as
a tumour suppressor in hepatocellular carcinoma cells. Cell Death Dis. (2017) 8:e3098–
8. doi: 10.1038/cddis.2017.469

139. Zhang K, Zhang M, Luo Z, Wen Z, Yan X. The dichotomous role of TGF-b in
controlling liver cancer cell survival and proliferation. J Genet Genomics. (2020)
47:497–512. doi: 10.1016/j.jgg.2020.09.005

140. Marquardt JU, Andersen JB, Thorgeirsson SS. Functional and genetic
deconstruction of the cellular origin in liver cancer. Nat Rev Cancer. (2015) 15:653–
67. doi: 10.1038/nrc4017

141. Moon H, Ju HL, Chung SI, Cho KJ, Eun JW, Nam SW, et al. Transforming
growth factor-b Promotes liver tumorigenesis in mice via up-regulation of snail.
Gastroenterology. (2017) 153:1378–1391.e6. doi: 10.1053/j.gastro.2017.07.014

142. Sun S-L, Wang X-Y. TGF-b1 promotes proliferation and invasion of HCC cell
line HepG2 by activating GLI-1 signaling. Euro Rev Med Pharmacol Sci. (2018) 8:7688–
95. doi: 10.26355/eurrev_201811_16389

143. Zucman-Rossi J, Villanueva A, Nault JC, Llovet JM. Genetic landscape and
biomarkers of hepatocellular carcinoma. Gastroenterology. (2015) 149:1226–1239.e4.
doi: 10.1053/j.gastro.2015.05.061
frontiersin.org

https://doi.org/10.1016/j.molmed.2022.06.002
https://doi.org/10.1016/j.molmed.2022.06.002
https://doi.org/10.1016/j.jcmgh.2018.10.010
https://doi.org/10.1002/hep.30491
https://doi.org/10.1016/j.jhep.2020.09.019
https://doi.org/10.3390/cancers14040940
https://doi.org/10.1126/scisignal.aav5183
https://doi.org/10.1101/cshperspect.a021907
https://doi.org/10.1101/cshperspect.a021907
https://doi.org/10.3390/cells8101235
https://doi.org/10.1101/cshperspect.a022061
https://doi.org/10.1038/cr.2008.327
https://doi.org/10.1007/s00018-019-03266-3
https://doi.org/10.1038/39355
https://doi.org/10.1038/39369
https://doi.org/10.1186/s12943-022-01569-x
https://doi.org/10.1186/s12943-022-01569-x
https://doi.org/10.1101/cshperspect.a022053
https://doi.org/10.1038/cr.2008.302
https://doi.org/10.1016/j.ceb.2019.07.007
https://doi.org/10.1016/S1097-2765(02)00584-1
https://doi.org/10.1016/S1097-2765(02)00584-1
https://doi.org/10.1016/s0092-8674(02)00801-2
https://doi.org/10.1016/s0092-8674(02)00801-2
https://doi.org/10.1016/0303-7207(95)03721-7
https://doi.org/10.1016/j.tcb.2018.07.002
https://doi.org/10.1073/pnas.150006697
https://doi.org/10.1016/j.molcel.2016.03.026
https://doi.org/10.1038/35070076
https://doi.org/10.1101/cshperspect.a022145
https://doi.org/10.1002/hep.23769
https://doi.org/10.1002/mc.10111
https://doi.org/10.1152/physrev.00020.2018
https://doi.org/10.1152/physrev.00020.2018
https://doi.org/10.3390/ijms231911082
https://doi.org/10.3390/ijms231911082
https://doi.org/10.3390/cells10020208
https://doi.org/10.1002/hep.20308
https://doi.org/10.1038/s41575-019-0165-3
https://doi.org/10.1016/S0092-8674(03)00430-6
https://doi.org/10.1038/sj.cr.7310023
https://doi.org/10.1016/j.cellsig.2007.08.012
https://doi.org/10.1038/nature06639
https://doi.org/10.1126/science.290.5497.1717
https://doi.org/10.1158/0008-5472.CAN-08-4401
https://doi.org/10.1158/0008-5472.CAN-08-4401
https://doi.org/10.4161/auto.6.5.12046
https://doi.org/10.4161/auto.6.5.12046
https://doi.org/10.3390/ijms161125984
https://doi.org/10.1038/nrgastro.2013.211
https://doi.org/10.1038/nrgastro.2013.211
https://doi.org/10.1053/j.gastro.2014.07.018
https://doi.org/10.1158/1541-7786.MCR-08-0073
https://doi.org/10.1158/1541-7786.MCR-08-0073
https://doi.org/10.1002/hep.20757
https://doi.org/10.1002/hep.510300503
https://doi.org/10.1016/j.jhep.2008.07.021
https://doi.org/10.1096/fj.00-0267com
https://doi.org/10.1016/j.jhep.2010.10.041
https://doi.org/10.1038/cddis.2017.469
https://doi.org/10.1016/j.jgg.2020.09.005
https://doi.org/10.1038/nrc4017
https://doi.org/10.1053/j.gastro.2017.07.014
https://doi.org/10.26355/eurrev_201811_16389
https://doi.org/10.1053/j.gastro.2015.05.061
https://doi.org/10.3389/fonc.2024.1407434
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yan et al. 10.3389/fonc.2024.1407434
144. Zhou Q, Zhou Q, Liu Q, He Z, Yan Y, Lin J, et al. PRL-3 facilitates
Hepatocellular Carcinoma progression by co-amplifying with and activating FAK.
Theranostics. (2020) 10:10345–59. doi: 10.7150/thno.42069

145. Chen J, Zaidi S, Rao S, Chen JS, Phan L, Farci P, et al. Analysis of genomes and
transcriptomes of hepatocellular carcinomas identifies mutations and gene expression
changes in the transforming growth factor-b pathway. Gastroenterology. (2018) 154
(1):16. doi: 10.1053/j.gastro.2017.09.007

146. Chen J, Gingold JA, Su X. Immunomodulatory TGF-b Signaling in
hepatocellular carcinoma. Trends Mol Med. (2019) 14:1010–23. doi: 10.1016/
j.molmed.2019.06.007
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Glossary

HCC hepatocellular carcinoma

HBV Hepatitis B virus

HBx Hepatitis B virus X protein

cccDNA covalently closed circular DNA

TGF-b transforming growth factor-b

NAFLD nonalcoholic fatty liver disease

rcDNA relaxed circular DNA

ORFs overlapping open reading frames

aa amino acids

TFs transcription factors

EMT epithelial-mesenchymal Transition

ASPH Aspartate b-hydroxylase

TFIIH Transcription factor IIH

HR homologous recombination

DSBs DNA double-strand breaks

TLR3 Toll-like receptor 3

PRR pattern recognition receptor

TRIF TIR-domain-containing adaptor-inducing interferon-b

IFN interferon

IPS-1 IFN-b promoter stimulator 1

ADAR1 adenosine deaminases acting on RNA 1

SOCS-1 suppresses cytokine signaling-1

ATRA all-trans retinoic acid

PTPN13 phosphatase nonreceptor type 13

IGF2BP1 insulin-like growth factor 2 mRNA-binding protein 1

WDR5 WD repeat domain 5 protein

H3 histone 3

H3K4me3 H3 lysine 4-trimethylation

H3K9me histone 3 lysine 9 ethylation

HP1 heterochromatin protein-1 factor

SETDB1 SET domain bifurcated1

SIRT2 Sirtuin 2

miRNAs microRNAs

PDCD4 programmed cell death 4

HBx-LINE1 HBX-LINE1-674

NUSAP1 nucleolar spindle-associated protein 1

HPIP hematopoietic pre-B cell leukemia TF-interacting protein

lncRNA long non-coding RNA
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PRMT1 type I protein arginine methyltransferase

ZHX2 Zinc fingers and homeoboxes 2

TRERNA1 translation regulatory lncRNA 1

NRAS neuroblastoma RAS

MAPK Mitogen-Activated Protein Kinase

Era estrogen receptor

APC adenomatous colon polyps

PPI protein-protein interactions

ROSs reactive oxygen species

Ct-HBx C-terminus truncated X protein

NFATC2 nuclear factor of activated T cells 2

MMP10 matrix metalloproteinase 10

Cav1 Caveolin-1

LRP6 lipoprotein receptor-related protein 6

FRMD5 FERM domain containing 5

HBX-C30 30 aa deletion from HBx C terminus

FXR farnesoid X receptor

F30V a specific HBx genetic mutation

LAP latency-associated peptide

LTBP latent TGF-b binding protein

ECM extracellular matrix

Erk1/2 extracellular signal-regulated kinases1/2

PI3K phosphatidylinositol-3-kinase

JNK c-Jun amino-terminal kinase

CDKs cyclin-dependent kinases

Nox4 niacinamide adenine dinucleotide phosphate oxidase-4

RB retinoblastoma protein

hTERT human telomerase reverse transcriptase

DAPK death-associated protein kinase

ER endoplasmic reticulum

Bcl-2 B-cell lymphoma 2

TNF tumor necrosis factor

TRAIL TNF-associated apoptosis-inducing ligand

EGFR epidermal growth factor receptor

TAMs Tim-3 transcription in tumor-associated macrophages

SCF stem cell factor

SIP1 Smad interacting protein-1

H3K9 histone H3 lysine9

a-SMA a-smooth muscle actin

FSP-1 fibroblast specific protein1
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frontiersin.org

https://doi.org/10.3389/fonc.2024.1407434
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yan et al. 10.3389/fonc.2024.1407434
Continued

MDSCs myeloid-derived suppressor cells

HSCs hepatic stellate cells

CAFs tumor-associated fibroblasts

Treg regulatory T cells

CTLS cytotoxic T lymphocytes

PD-L1 programmed death ligand 1

TCR transmission of T cell antigen receptor

PTMs post-translational modifications

SP SerPro

TP ThrPro

Abs antibodies

PAI-1 plasminogen activator inhibitor-1

CDH1 E-cadherin gene

PPM1A protein phosphatase magnesium-dependent 1A

lncRNA-
ATB

lncRNA activation by TGF-b

HPCs hepatic progenitor cells

BAMBI bone activin membrane-bound inhibitor
F
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