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Purpose: Difficulties remain in dose optimization and evaluation of cervical

cancer radiotherapy that combines external beam radiotherapy (EBRT) and

brachytherapy (BT). This study estimates and improves the accumulated dose

distribution of EBRT and BT with deep learning–based dose prediction.

Materials and methods: A total of 30 patients treated with combined cervical

cancer radiotherapy were enrolled in this study. The dose distributions of EBRT and

BT plans were accumulated using commercial deformable image registration. A

ResNet-101–based deep learning model was trained to predict pixel-wise dose

distributions. To test the role of the predicted accumulated dose in clinic, each EBRT

plan was designed using conventional method and then redesigned referencing the

predicted accumulated dose distribution. Bladder and rectumdosimetric parameters

and normal tissue complication probability (NTCP) values were calculated and

compared between the conventional and redesigned accumulated doses.

Results: The redesigned accumulated doses showed a decrease in mean values

of V50, V60, and D2cc for the bladder (−3.02%, −1.71%, and −1.19 Gy, respectively)

and rectum (−4.82%, −1.97%, and −4.13 Gy, respectively). The mean NTCP values

for the bladder and rectum were also decreased by 0.02‰ and 0.98%,

respectively. All values had statistically significant differences (p < 0.01), except

for the bladder D2cc (p = 0.112).

Conclusion: This study realized accumulated dose prediction for combined

cervical cancer radiotherapy without knowing the BT dose. The predicted dose

served as a reference for EBRT treatment planning, leading to a superior

accumulated dose distribution and lower NTCP values.
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1 Introduction

The combination of external beam radiotherapy (EBRT) and

brachytherapy (BT) is a standard treatment for cervical cancer. The

EBRT part of the treatment aims to treat the whole pelvis, including

the tumor and the lymph nodes at risk. The BT part of the treatment

aims to boost the residual tumor in multiple fractions. Ideally, all

treatment parts should be combined for dose optimization and

evaluation. However, EBRT and each fraction of BT are optimized

independently in current clinical practice. This approach may result

in a less than optimal accumulated dose distribution that limits the

dosimetric advantage of combined radiotherapy. If treatment

planners knew the possible accumulated dose distribution before

EBRT treatment planning, then they could modify the dose to the

organs at risk (OARs) from EBRT and leave more OAR dose space

for BT. Additionally, the independent dose optimization results in

multiple dose distributions associated with different planning

images, which creates difficulties for total dose evaluation.

Currently, radiation oncologists (ROs) only assess total dose to

OARs by summing the dose-volume parameters of EBRT and BT.

This approach is a “worst case assumption” and usually does not

reflect the actual doses received by OARs, especially in the case of

significant dose gradients from external beam boosts. If a concrete

accumulated dose distribution could be predicted before treatment

initiation, then ROs could estimate the curative effect and radiation

toxicity, thereby helping make better treatment decisions.

Therefore, accumulated dose prediction has potential benefits for

both dose optimization and total dose estimation.

Deep learning is an advanced technique with the capability to

build robust prediction models in complex feature extraction.

Recently, deep learning has rapidly developed and been

successfully implemented in medicine and radiotherapy

applications, such as toxicity prediction, automatic segmentation,

synthetic image generation, and quality assurance (1–6). A

convolutional neural network (CNN) is a deep learning algorithm

that automatically extracts multi-level features from input data,

resulting in more concise and effective prediction. Research groups

have developed prediction models based on CNNs and

demonstrated their success in three-dimensional dose distribution

prediction (7–12). Furthermore, knowledge-based planning (KBP)

utilizing prior patient treatment plans to make dosimetric

predictions for new patients has shown promise in assisting

treatment planning. Studies have proved that KBP can improve

plan quality consistency (13–18). For cervical cancer, these methods

have been applied separately to EBRT or BT (19–32).

For accurate image registration and dose accumulation, a

deformable image registration (DIR) method has been developed.

This method accounts for anatomic variations and provides a

spatial transformation relationship between volume elements of

corresponding structures in different images. This transformation

can be applied to dose distributions, thereby enabling dose

accumulation with high-precision. Recent studies have proved the

feasibility of DIR for evaluating accumulated doses in combined

radiotherapy. However, DIR remains a challenge for combined

cervical cancer radiotherapy as large and complex deformations are

likely to occur in the pelvic cavity (33–38).
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In this study, we attempted to predict accumulated dose

distribution to assist treatment planning and obtain a superior

dose distribution. We accumulated the dose distributions from

EBRT and BT using commercial DIR and used them to train a

CNN-based dose prediction model. Then, we quantitatively

evaluated the prediction performance. The practicability of the

predicted accumulated dose in clinic was verified by redesigning

EBRT plans.
2 Materials and methods

2.1 Patient data

A total of 30 cervical cancer patients who underwent 25

fractions of EBRT using volumetric-modulated arc therapy

(VMAT) followed by more than 3 fractions of high-dose-rate BT

were selected in this study. CT scans were performed with a

Brilliance CT Big Bore (Philips, Amsterdam, Netherlands) or a

Somatom Definition AS 40 (Siemens Healthcare, Forchheim,

Germany) with 512 × 512 matrix. The CT slice thickness was 5

mm for EBRT and 3 mm for BT, respectively. The clinical target

volume (CTV) of EBRT was the gross tumor volume (GTV), the

entire uterus and cervix, the lymph nodal region at risk (GTVnd),

and part of the bladder and rectum. A margin of 5 mm was applied

around the CTV and GTVnd to create the planning target volume

(PTV) and planning GTVnd (PGTVnd). The PTV was prescribed

with 45 Gy or 50 Gy, and the PGTVnd was boosted by 10 Gy to 15

Gy. Normal tissues, including the rectum, bladder, intestine, colon,

sigmoid, pelvic bone, and right and left femur head, were also

delineated for planning and dose evaluation. The EBRT VMAT

plans were designed using Pinnacle v9.1–16.2 (Philips Radiation

Oncology Systems, Fitchburg, WI, USA) and delivered using double

full arcs with 6-MV X-rays. All plans were optimized to ensure that

at least 95% of the target volumes received the prescription dose

(PD) while minimizing doses to OARs. To manage the deformation

caused by different organ filling, each patient was requested to

empty their bladder and rectum, and drink 800 mL of water 40 min

before undergoing treatment. Cone-beam CT was used to verify

their anatomical situation.

The target volume and OARs for BT were delineated on the

planning CT according to Groupe Européen de Curiethérapie

(GEC)- European SocieTy for Radiotherapy & Oncology

(ESTRO) recommendations, including the high-risk CTV (HR-

CTV), rectum, bladder, sigmoid, and bowel. MRI at diagnosis

acquired before the first BT fraction was served as a reference. All

BT plans were designed using Oncentra Brachy v4.6 (Elekta

Brachytherapy, Veneedal, The Netherlands) and delivered using

tandem/ovoid (T/O) applicators or T/O applicators with interstitial

needles. A Flexitron afterloader unit with an 192Ir source was used

for the BT treatment. The activation step was 2 mm. The source

dwell times for BT plans were optimized by inverse planning

simulated annealing and then manually adjusted on the basis of

OAR dose constraints. The fractional PD was prescribed to cover

90% of the HR-CTV and normalized to 6 Gy for a high-precision

dose prediction.
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2.2 Method description

The flowchart shown in Figure 1 illustrates the method of this

study. It can be divided into three steps: dose accumulation, dose

prediction, and plan redesign.

Step 1: Dose accumulation

To accumulate the dose distributions from EBRT and BT, all

doses were converted into equivalent doses in 2 Gy fraction (EQD2)

using the linear quadratic model with a/b = 10 Gy for tumors and

a/b = 3 Gy for normal tissues. Due to limited conditions of our

hospital, CT-guided BT was only performed for the first fraction.

Thus, we could only magnify the first fractional BT dose four times

to simulate the total BT dose. Commercially available DIR software

MIM Maestro (MIM Software, Cleveland, OH, USA) was used to

deform and sum the BT dose to the referenced EBRT dose to obtain

the accumulated dose distribution. For a high DIR accuracy, we

adopted a hybrid DIR method combining contour-based and

intensity-based DIR. The contours used for DIR were the bladder,

rectum, and the whole uterus and vagina (U + V). The purpose of

delineating the U + V is to include the BT applicator and packing

material. The CT numbers of these contours were, respectively,

overridden to a certain value to ensure consistent intensities in both

images. For the purpose of dose prediction, all accumulated doses

were interpolated into the same pixel size with corresponding EBRT

CT images.

Step 2: Dose prediction

The pixel-wise dose distribution prediction used a ResNet-101–

based deep learning model, which has been introduced in our

previous study (39). In this study, we also used combined

anatomic maps as three-channel inputs, including the planning

CT images of EBRT, corresponding structure maps, and distance

maps. In the structure maps, the voxels in each target and OAR

were assigned with a unique label. For voxels in the overlap, their

label values were summed to ensure uniqueness. The voxels in the

rest of the body and out of the body were labeled as 1 and 0,
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respectively. To improve dose prediction accuracy, we introduced a

distance map as an input for the model. It was defined as the

minimum distance from the PTV surface to each voxel of normal

tissue outside the PTV, called the distance-to-target volume (DTT).

In each slice of the DTT map, each voxel corresponded to a label

value of DTT, and voxels inside the PTV and outside the body were

labeled as 0. The outputs for the deep learning model were the

corresponding accumulated dose maps. Due to the limited number

of available datasets, a fivefold cross-validation was used to test

prediction model performance. The prediction performance was

quantitatively evaluated by (1) the voxel-wise mean absolute error

(MAE) and (2) the dice similarity coefficient (DSC) of isodose

volumes. Isodoses from 10 Gy to 160 Gy were evaluated with a 10-

Gy interval.

Step 3: Plan redesign

The predicted accumulated dose distribution was used as a

reference to redesign EBRT VMAT plans. As the BT dose is

distributed within the cervix, the accumulated dose region is

contained in the EBRT target. In terms of the region outside the

EBRT target, the result of accumulated dose prediction would be

similar to that of pure EBRT dose prediction. Therefore, the

dosimetric parameters obtained from the predicted accumulated

dose distribution could be used as optimization objectives for most

normal tissues. However, as the bladder and rectum are partly

included in the EBRT target, they are usually close to the high-dose

region. As shown in Figure 2, the overlaps between the predicted

isodose volume of 70 Gy and the bladder/rectum were created as a

contour. For the redesigned plans, we minimized the dosimetric

hotspots from occurring in this contour.
2.3 Clinical validation

To test the role of the predicted accumulated dose in clinic, one

physicist designed an EBRT VMAT plan using the conventional
FIGURE 1

Flowchart showing dose accumulation, dose prediction, and plan redesign steps.
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method without knowing the predicted dose and then redesigned a

new EBRT VMAT plan using the proposed method. The two

resulting EBRT dose distributions were separately accumulated

with the BT dose for comparison. Critical dosimetric parameters

of the bladder and rectum (V50, V60, and D2cc) were recorded.

Normal tissue complication probability (NTCP) values were

calculated using the Lyman–Kutcher–Burman model. The

estimated parameter values for the rectum and bladder were D50

= 80 Gy, m = 0.15, and n = 0.12 and D50 = 80 Gy, m = 0.11, and n =

0.50, respectively (40). The statistical significance of the results was

proven with a Wilcoxon signed-rank test at 5% level significance.
3 Results

3.1 Dose prediction performance

The mean MAE between predicted and actual dose

distributions were as follows: 3.73 ± 1.58 Gy for the whole body,

3.27 ± 1.06 Gy for the whole body without PTV, 6.55 ± 3.10 Gy for

the bladder, 8.05 ± 4.95 Gy for the rectum, 4.10 ± 1.88 Gy for the

intestine, 3.67 ± 2.01 Gy for the colon, 5.06 ± 3.10 Gy for

the sigmoid, 3.48 ± 1.28 Gy for the pelvic bone, 2.71 ± 1.52 Gy

for the femur head, 4.96 ± 3.32 Gy for the cord, and 2.75 ± 1.56 Gy

for the kidney. Because the bladder, rectum, and sigmoid were close

to the high-dose region, their mean MAE was larger than that of

other OARs. Table 1 presents the results of the DSC of isodose

volumes between predicted and actual dose distributions. For an

isodose less than or equal to the PD of EBRT, the mean DSC was

high, ranging from 0.87 to 0.92, whereas the mean DSC of isodose

volumes higher than the PD of EBRT was low and decreased with

increasing isodose, ranging from 0.73 to 0.49. For the isodose

volume of the summed PD of EBRT and BT (76.25/82 GyEQD2),

the mean DSC was approximately 0.7. Compared to the actual dose

distribution, the predicted dose distribution exhibits characteristics

of a more homogeneous dose in the target, lower dose gradient, and
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indistinct boundaries between the target and normal tissues.

Consequently, the predicted volumes for low isodoses were

slightly larger, whereas those for high isodoses were smaller

compared to the actual volumes. This observation is also evident

in Figure 3 that illustrates a comparison between the predicted and

actual DVHs for all OARs. Furthermore, the predicted and actual

spatial locations of the high-dose regions of the bladder and rectum

were similar. For the bladder, the high-dose region often occurs in

the trigonum vesicae. In the rectum, it is often located near the

upper cervix segment.
3.2 Redesigned plan evaluation

Table 2 shows the dosimetric parameters of the bladder and

rectum for the conventional and redesigned EBRT + BT. Compared

with the conventional EBRT + BT, the mean V50 and V60 of the

redesigned EBRT + BT for the bladder decreased by 3.02% and

1.71%, respectively, whereas those for the rectum decreased by

4.82% and 1.97%, respectively. All values showed significant
FIGURE 2

Overlaps (blue contours) between the predicted isodose volume of 70 Gy and the bladder/rectum.
TABLE 1 Mean DSC of isodose volumes between predicted and actual
dose distributions.

Isodose (Gy) DSC Isodose (Gy) DSC

10 0.90 ± 0.01 90 0.67 ± 0.09

20 0.87 ± 0.02 100 0.64 ± 0.09

30 0.89 ± 0.01 110 0.61 ± 0.08

40 0.92 ± 0.01 120 0.59 ± 0.08

50 0.90 ± 0.04 130 0.56 ± 0.09

60 0.73 ± 0.10 140 0.54 ± 0.09

70 0.73 ± 0.09 150 0.51 ± 0.10

80 0.70 ± 0.09 160 0.49 ± 0.10
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differences (p < 0.001). The mean D2cc of the bladder and rectum for

the redesigned EBRT + BT were also lower than those for the

conventional EBRT + BT (−1.19 Gy and −4.13 Gy, respectively).

The rectal D2cc showed statistical significance (p < 0.001). Figure 4

shows typical dose distributions and DVHs of the conventional and

redesigned EBRT + BT for a single patient.
3.3 NTCP results

When considering NTCP, the redesigned accumulated doses

resulted in a decrease of NTCP for the bladder (0.04 ± 0.06‰ vs.

0.06 ± 0.09‰, P = 0.004) and rectum (1.21 ± 1.39% vs.2.19 ± 2.41%,

P < 0.001). Figure 5 compares bladder and rectum NTCP values for

conventional and redesigned EBRT + BT for each patient.
4 Discussion

To address dose optimization and evaluation difficulties associated

with separate implementation of EBRT and BT, we predicted the

accumulated dose distribution using a combination of DIR and deep

learning techniques. High-precision DIR is particularly challenging in

the pelvic region due to large and complex deformations caused by

tumor shrinkage, different organ filling, bowel gas, and the presence of

a BT applicator and vaginal packing. Thus, we adopted an advanced

hybrid DIR method, which could minimize both the intensity
Frontiers in Oncology 05
differences between the two images and the differences between

corresponding contour surfaces. Additionally, we delineated the U +

V and used it as a registration contour. As an important anatomy in the

whole pelvis, it could not only solve the issue of inconsistent intensity

between the EBRT and BT images but also help to improve the DIR

accuracy. After the DIR, the mean DSC for all contours reached 0.8–

0.9, which satisfied the accuracy requirement recommended by AAPM

TG-132 report (41).

Although dose prediction has been successfully realized in

studies, the accumulated dose prediction faces new challenges. The

input data for deep learning were all based on EBRT. However, the

output data were accumulated in dose maps correlated with both

EBRT and BT. This led to an uncertain location of the predicted

accumulated dose region in the EBRT targets. Consequently, the DSC

of the isodose volume for the summed PD was relatively low for our

initial dose prediction. To solve this problem, we added the U + V to

the structure maps. Although it is an extra delineated structure used

for DIR, it could specify the location of the BT dose. With this

structure, the DSC of the isodose volumes was increased by

approximately 0.05 for the 100%, 150%, and 200% summed PD.

However, the accuracy of the accumulated dose prediction is still

affected by many factors, including the DIR method, the number of

training data, and the various types of applicators used in BT. It can

be observed from Table 1 that there was a significant decrease in

mean DSC when the isodose exceeded the PD of EBRT. This suggests

that, while the current model performs well in predicting the EBRT

dose part, improvements are required for accurately predicting the
FIGURE 3

Mean DVHs of OARs. Solid and dashed lines represent actual and predicted DVHs, respectively.
TABLE 2 Dosimetric parameters of bladder and rectum for the conventional and redesigned EBRT + BT.

Bladder Rectum

Conventional Redesigned P value Conventional Redesigned P value

V50 (%) 34.47 ± 7.51 31.46 ± 7.28 <0.001 16.92 ± 10.40 12.10 ± 8.23 <0.001

V60 (%) 14.35 ± 5.82 12.64 ± 5.42 <0.001 6.25 ± 4.96 4.28 ± 3.87 <0.001

D2cc (Gy) 85.56 ± 9.89 84.37 ± 9.18 0.112 61.82 ± 10.90 57.69 ± 10.46 <0.001
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BT dose part. Enhancing accuracy in BT dose prediction may be

achieved through adopting a more powerful DIR method, increasing

the training data, and using a consistent BT applicator. Another

limitation of this study is that we used the dose of the first BT fraction

to represent the total BT dose due to the limited clinical data. This led

to a deviation from the actual BT dose indeed. However, the

treatment planning only needs the general scope of high-dose

region as a reference, which is confirmed to be basically consistent

among BT fractions (42) and could be provided by the first BT

fraction. Moreover, multiple DIRs need to be performed if
Frontiers in Oncology 06
accumulating multiple BT doses. Our approach could avoid

multiple errors caused by multiple DIR. The intra-fraction

variations in the tumor and OARs were also not taken into

account in this study. In fact, these variations will result in a

deviation between the predicted dose and the actual dose (43, 44).

The impact of these variations to different degrees on the actual

effectiveness of the dose prediction model needs to be specifically

studied in the future.

Treatment planning is a complex process with a large amount of

optimization parameters to adjust based on the skill and experience of
FIGURE 4

Example of (A, B) dose distributions and (C) DVHs for the conventional (dashed lines) and redesigned (solid lines) EBRT + BT.
FIGURE 5

Bladder and rectum NTCP values for conventional and redesigned EBRT + BT.
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the planner. In recent years, KBP is increasingly used to improve plan

quality and consistency. In previous literatures, the dose predictions

used for KBP mainly focused on EBRT or BT alone (19–32). Li et al.

applied a commercial KBP system to control EBRT plan quality in a

clinical trial. They reported that the mean NTCP for gastrointestinal

toxicity was lower for KBP plans compared to validation-set plans

(48.7% vs. 53.8%, P < 0.001). Chen et al. used CNN to predict a

patient-specific set of IMRT objectives based on overlap volume

histograms (OVHs). They showed that the V40 of the bladder and

rectum decreased by 6.3% and 12.3% compared to that of manual

plans. In addition to EBRT, a research group applied knowledge-

based dose prediction to BT (19, 24, 25). Their latest results showed

that the differences between actual and predicted D2cc were −0.17±

0.67 Gy, −0.04 ± 0.46 Gy, and 0.00 ± 0.44 Gy for the bladder, rectum,

and sigmoid, respectively. Reijtenbagh et al. also used machine

learning models to predict D2cc to OARs using OVHs for

identifying plans that may require further optimization. The

models achieved mean squared errors ranging from 0.13 Gy to 0.40

Gy (31). Furthermore, dose prediction models have also been used to

assess intra-fractional dose variations in OARs (27). To our

knowledge, the accumulated dose of EBRT and BT is currently

used only for predicting toxicity prediction and not for KBP (45,

46). However, for this combined radiotherapy, dose prediction for

EBRT alone is not sufficient to guide EBRT treatment planning and

BT doses should be taken into account to minimize the overall risk of

toxicity. However, the problem is that EBRT is usually implemented

before BT and the BT dose is unknown. This study realized

accumulated dose prediction without knowing the BT dose, thereby

allowing the BT dose to be taken into account in EBRT treatment

planning. With the predicted dose, planners could set optimization

objectives more appropriately to improve the consistency of plan

quality. More importantly, the prediction could indicate an overlap

between the high-dose region and OARs. This could help planners

further decrease the EBRT dose to OARs, leavemore OAR dosimetric

space for BT, lower the overall OAR dose, and achieve an optimal

accumulated dose distribution. For the redesigned EBRT plans, we

minimized the hotspots occurred in the overlaps between the

predicted high-dose region and the bladder/rectum. The results

verified the redesigned EBRT + BT had lower total doses to the

bladder and rectum. However, this study did not consider the

sigmoid and bowel as they are too complex to be accurately

registered. Furthermore, we only used the predicted accumulated

dose for the EBRT planning. Ideally, it can be helpful for both EBRT

and BT planning. This may be our next research direction.

Accumulated dose prediction could also be helpful to ROs. In

current clinical practice, the actual accumulated dose for combined

radiotherapy is not entirely clear or visible. Usually, tumor dosages

are determined on the basis of the guidelines and combined with

personal experience. Total OAR doses are evaluated on the worse case

assumption. Accumulated dose prediction provides a final dose

distribution before treatment initiation. It could help ROs,

especially young and inexperienced ROs, in making treatment

decisions, delineating targets, guiding the insertion of the BT

applicator, and predicting the risk of toxicity. This effect could be

further explored in future work.
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5 Conclusion

In this study, we realized accumulated dose prediction for

combined cervical cancer radiotherapy without knowing the BT

dose. EBRT treatment planning referencing the predicted

accumulated dose distribution could improve accumulated dose

distribution and decrease OAR NTCP values. The predicted dose

could also help ROs estimate the total doses to OARs and make

better treatment decisions.
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