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Universidad Católica de Chile, Santiago, Chile
Fibroblast Growth Factor Receptors (FGFRs) play a significant role in Estrogen

Receptor-positive (ER+) breast cancer by contributing to tumorigenesis and

endocrine resistance. This review explores the structure, signaling pathways, and

implications of FGFRs, particularly FGFR1, FGFR2, FGFR3, and FGFR4, in ER+

breast cancer. FGFR1 is frequently amplified, especially in aggressive Luminal B-

like tumors, and its amplification is associated with poor prognosis and treatment

resistance. The co-amplification of FGFR1 with oncogenes like EIF4EBP1 and

NSD3 complicates its role as a standalone oncogenic driver. FGFR2 amplification,

though less common, is critical in hormone receptor regulation, driving

proliferation and treatment resistance. FGFR3 and FGFR4 also contribute to

endocrine resistance through various mechanisms, including the activation of

alternate signaling pathways like PI3K/AKT/mTOR and RAS/RAF/MEK/ERK.

Endocrine resistance remains a major clinical challenge, with around 70% of

breast cancers initially hormone receptor positive. Despite the success of CDK 4/

6 inhibitors in combination with endocrine therapy (ET), resistance often

develops, necessitating new treatment strategies. FGFR inhibitors have shown

potential in preclinical studies, but clinical trials have yielded limited success due

to off-target toxicities and lack of predictive biomarkers. Current clinical trials,

including those evaluating FGFR inhibitors like erdafitinib, lucitanib, and dovitinib,

have demonstrated mixed outcomes, underscoring the complexity of FGFR

signaling in breast cancer. The interplay between FGFR and other signaling

pathways highlights the need for comprehensive molecular profiling and

personalized treatment approaches. Future research should focus on

identifying robust biomarkers and developing combination therapies to

enhance the efficacy of FGFR-targeted treatments. In conclusion, targeting

FGFR signaling in ER+ breast cancer presents both challenges and
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opportunities. A deeper understanding of the molecular mechanisms and

resistance pathways is crucial for the successful integration of FGFR inhibitors

into clinical practice, aiming to improve outcomes for patients with endocrine-

resistant breast cancer.
KEYWORDS

endocrine resistance, FGFR signaling, breast cancer, ER positive, TKI - tyrosine
kinase inhibitor
Introduction

The human fibroblast growth factor receptor (FGFR) family

comprises FGFR1, FGFR2, FGFR3, and FGFR4. These highly

conserved receptor tyrosine kinases (RTKs) are in the cell

membrane (1, 2). Additionally, FGFR5 (also known as fibroblast

growth factor receptor-like 1; FGFRL1), which lacks the

intracellular kinase domain, is classified as the fifth member of

the FGFR family (3). FGFRs are activated through the interaction of

fibroblast growth factor (FGF) ligands. The mammalian FGF family

comprises 22 members that are classified into 6 subfamilies by their

mechanisms of action. In paracrine signaling (canonical FGFs)

there are 5 subfamilies: FGF1 (FGF1 and FGF2), FGF4 (FGF4,

FGF5, and FGF6), FGF7 (FGF3, FGF7, FGF10, and FGF22), FGF8

(FGF8, FGF17, and FGF18), and FGF9 (FGF9, FGF16, and FGF20).

Furthermore, the endocrine subfamily consists of FGF19 (FGF19,

FGF21, and FGF23) (4–6). FGF15 corresponds to the mouse

ortholog of human FGF19 (FGF15/FGF19) (7, 8). In paracrine

cellular communication, FGFs participate in various cellular
02
processes that include cell proliferation, migration, differentiation

and cell survival (9, 10), while endocrine secreted FGFs are released

into the blood and can reach different tissues of the body,

participating in the regulation of the bile acids, carbohydrates,

lipids and phosphate/vitamin D metabolism (11–19).
FGFR structure

The structure of FGFR1 – FGFR4 from N- to C-terminus

contains an extracellular region comprising three immunoglobulin-

like loop domains (Ig domains; DI, DII and DII) (5, 20). Between DI

and DII domains is the acid box, a conserved motif rich in aspartic

acid residues (21). This is followed by a transmembrane region

formed by a single a-helix, a juxtamembrane domain, and two

intracellular tyrosine kinase domains (1, 5, 20, 22) FGFR5 has three

extracellular domains similar to immunoglobulins, a transmembrane

domain and a short intracellular tail without a tyrosine kinase

domain that presents a histidine-rich region (23, 24) (Figure 1).
FIGURE 1

FGFR signaling pathway in breast cancer: FGF binds to the extracellular domain of FGFR leading to receptor dimerization and through
phosphorylation inducing downstream activation of canonical pathways. Signaling pathways dependent of FGF-FGFR axis, include Fibroblast Growth
Factor Receptor Substrate 2 (FRS2) Ras-mitogen-activated protein kinase (MAPK), phosphatidylinositol-3 kinase (PI3K), protein kinase B (AKT),
phospholipase Cg1 (PLCg1) and signal transducer and activator of transcription (STAT).
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Overview of FGF/FGFR
signaling pathways

FGFs are molecules that bind to FGFR monomers in their

extracellular region between domains II and III (20, 25). Ligand

binding induces conformational changes and dimerization of FGFR,

which trigger transphosphorylation within the dimerized receptor pair,

and therefore the activation of cytosolic kinase domains (20, 26–30).

The autophosphorylated domains of FGFRs serve as specific binding

sites for different substrates, which in turn are phosphorylated by active

receptors (23, 31). Through this mechanism, various downstream

effector molecules are activated and participate in the signaling

pathways of the FGF-FGFR axis, including Fibroblast Growth Factor

Receptor Substrate 2 (FRS2) Ras-mitogen-activated protein kinase

(MAPK), phosphatidylinositol-3 kinase (PI3K), protein kinase B

(AKT), phospholipase Cg1 (PLCg1) and signal transducer and

activator of transcription (STAT). FRS2, a protein located in the

plasma membrane, is the main substrate of FGFR. Following

activation by phosphorylation, FRS2 binds and recruits the adapter

protein Growth factor receptor-bound protein 2 (GRB2) triggering the

activation of the Ras-MAPK signaling pathway, which regulates the

mitogenic cellular response, cell cycle regulation and cell survival (32–

37). Also activated FRS2 results in the phosphorylation and

recruitment of PI3K, activating the PI3K-AKT signaling cascade

involved in cell survival and angiogénesis (38–44). Furthermore,

tyrosine residues of FGFR are also recognized by PLCg1 and STATs,

proteins related to cell motility and cell transformation, respectively

(40, 45–48) (Figure 1).
FGFR in estrogen receptor-positive
breast cancer

Estrogen receptor-positive (ER+) tumors represent the most

frequent subtype in breast cancer (BC) across all ages (49) yet

unveiling its biology, beyond the estrogenic receptor pathway, has

been challenging. Several genomic alterations in both FGFs and

FGFRs genes have been reported in BC patients, which vary in their

presentation according to BC subtypes and stage (50–52). Among

ER+ BC, FGFR signaling pathway has emerged as a relevant factor

in tumorigenesis and treatment resistance (53, 54). FGFR1 gene

alterations are the most frequently detected, mainly characterized

by the amplification of 8p11–12 locus, present in 10 -15% patients

and reaching over 16% to 27% in aggressive tumors (Luminal B-

like) (55). FGFR1 signaling appears to play a central role in

proliferation, migration, and survival of mammary cells and its

amplification is a relevant prognostic factor as it has shown to

strongly predict poorer overall survival among BC patients (56).

However, FGFR1 amplification generally occurs alongside the co-

amplification of several neighboring genes, of which EIF4EBP1 and

NSD3 have been identified as oncogenic, the former with a proven

oncogenic role in luminal BCs (57, 58). Thus, FGFR1 is not the only

oncogene present in the 8p11.23 amplicon, which challenges its role

as an oncogenic driver and the real dependency or addiction to

FGFR1 signaling (59). Moreover, there is a low concordance
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between FGFR1 amplification and final protein expression (60).

While, simultaneously, FGFR1 overexpression can occur

independently of gene amplification, as proven in lung cancer

studies (61).

Other FGFR alterations have been implicated in ER+ breast

cancer. Though infrequent (around 3%) and mainly found in ER-

negative BC, FGFR2 amplification plays a predominant role as a

driver oncogene. The FGFR2 amplicon is shorter, compared to

FGFR1, and includes fewer coamplified genes, thus being more

centered on FGFR2, better predicting its oncogenic role. FGFR2

regulates FGFR3 expression, leading to high levels of FGFR3 in

FGFR2-activated tumors. Additionally, the origin of FGF2 and its

interaction with FGFR2, may determine the cell line context. Either

autocrine, with high FGF2 expression seen in basal-like breast

cancer cell lines, or paracrine, where it is stromal FGF2 that

activates hormone receptors and induces proliferation of luminal

cancer cells. Consequently, preclinical studies have shown that

FGFR2-amplified cell lines are more sensitive to inhibition

compared to those with FGFR1 amplification (62–64).

Furthermore, FGFR4 gene amplification is detected in around

10% of patients and its overexpression tends to be found more

frequently in HER2 enriched tumors (65). As opposed to other

histologies, point mutations, fusions, nuclear FGFR expression and

FGF ligand amplification are initially infrequent in BC, however

their clonal acquisition after treatment does play a role in ER+ BC,

especially after treatment exposure with endocrine therapy (ET)

and Cyclin–dependent kinase 4/6 inhibitors (CDK 4/6 inhibitors)

(66, 67).
FGFR and ET resistance

Around 70% of BC are initially classified as hormone receptor-

positive (68), meaning that the estrogen receptor signaling pathway

is the main driver of cancer cell growth and tumor survival.

Whereby endocrine therapy is the mainstay of its treatment both

in early BC and in advanced BC (ABC) (69). Among patients with

distant recurrence, however, around 14% of patients are primarily

resistant to estrogen deprivation therapy, and the vast majority

acquire resistance at some point of their treatment (70, 71). This has

led to the development of targeted therapies such as CDK 4/6

inhibitors that in combination with ET have dramatically changed

the natural history of this disease, with median progression free

survival for first line treatment of ET plus CDK 4/6 inhibitors

reaching over 24 months (72). Still, most patients eventually

progress due to drug resistance, prompting for changes in the

treatment strategy. Yet, further treatment lines are less effective,

without one defined subsequent therapy (73). Resistant

mechanisms have been extensively studied, and different

treatments have been developed to overcome resistance. Estrogen

receptor 1 (ESR1) mutation detection, identified as a strong

predictor of standard ET resistance, has led to the approval of

elacestrant, an oral selective estrogen receptor degrader (SERD) in

patients progressing after ET in combination with CDK 4/6

inhibitors (74). Whereas PIK3CA gene mutations, truncal

mutations present at initial stages in over 30% of patients, have
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shown to predict worst response to ET (75), and led to the

development of PI3K inhibitors such as alpelisib (76) and the

recently presented inavolisib (77). The latter showing interesting

results among patients defined as endocrine resistant, due to early

relapse con ET. Moreover, inhibitors of the AKT pathway have

demonstrated to play a relevant role in ET sequence strategy when

either PIK3CA, AKT1 or PTEN mutations are detected (78). This

led to the Food and Drug Administration (FDA) approval of

capivasertib for ER+/HER2- advanced BC patients following

progression on at least one endocrine-based regimen (79). Loss of

ER and other alterations, such as mutations in RAS/RAF/MEK

pathway, have also been described as relevant resistance

mechanisms favoring non estrogen dependent pathways, however

drug development targeting this pathway has been elusive in

BC (80).

FGFR1 gene amplification has an often-unaccounted role in

endocrine resistance. Several resistance mechanisms have been

described, including the activation of PI3K/AKT/mTOR pathway,

persistent RAS/RAF/MEK/ERK pathway activation and cyclin D1

overexpression (81, 82). Upon inhibition of CDK4/6, AKT signaling

is upregulated, which contribute to the accumulation of cyclin D1.

This accumulation allows cyclin D1 to associate with CDK2,

bypassing CDK4/6 inhibition, and promoting S phase

progression. Notably, up to one-third of FGFR1-amplified tumors

also harbor amplification of CCND1 gene, which encodes for cyclin

D1 protein. Still, FGFR1 signaling promotes cell proliferation by

directly upregulating the CCND1 gene, with higher levels of cyclin

D1 mRNA observed even among FGFR1-amplified tumors without

CCND1 amplification (83). Additionally, FGFR1 induces ET plus

CDK 4/6-inhibition resistance by activating cancer cell stemness

[(84) 21098263] and by upregulating Wnt/b-catenin signaling (85).

ctDNA samples collected after progression on CDK 4/6-inhibitors

showed an enrichment of FGFR pathway alterations, while FGFR1

amplifications detected in baseline ctDNA samples of patients

included in Monaleesa -2 trial was associated with worse survival

outcomes (83).

This has led to a growing body of research exploring the use of

FGFR inhibitors, with preclinical data suggesting that FGFR1

amplified BC could maintain ERa pathway activated even with

estrogen deprivation therapy (86). Amplification of the

chromosomal region 8p11-12, the genomic location of FGFR1, is

the most frequent FGFR alteration in BC, furthermore, Formisano

et al. (86), measured FGFR1 prior and post preoperative ET and

confirmed an increase in FGFR1 levels in post-treatment samples.

Suggesting that FGFR1 amplification represents not only an

intrinsic resistant mechanism, but also an adaptive mechanism of

escape to antiestrogen treatment. Preclinical data have also shown

that tumor cells that harbor FGFR1 amplification when treated with

ET in combinations with CDK 4/6 inhibitors reach significantly

lower levels of cell cycle arrest state (83, 87), with reduced cell

senescence (measured by senescence-associated (SA) b-
galactosidase-positive cells) (88). Ever more relevant considering

the role of senescent cells as elimination route of tumor cells when

treated with cytostatics therapies (89). The addition of anti FGFR1

drugs could reverse this condition and has led to an important

number of clinical trials evaluating its effectiveness and safety.
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However, as stated one third of these tumors present other co-

occurring pathway altered functions and in up to over 20% of

patients there is discordance between FGFR1 amplification and

overexpression (81), underscoring the need to better define and

quantify FGFR amplification.

Regarding FGFR2, several reports have shown a tight

interaction between progesterone receptor (PR), FGFR2 and

STAT5 proteins. Wherein stromal FGF2 and progesterone exert

overlapping functions by activating common signaling pathways

including ERK, AKT and STAT5. Thereby enabling the formation

of a nuclear complex between PR, FGFR2 and STAT5. These

complexes lead to the expression of PR/STAT-5 regulated

proteins, favoring mammary gland differentiation and hormone-

mediated growth. This way, among patients under endocrine

suppression therapy, FGFR2-altered tumors may become

independent of hormonal stimulation by switching to FGF2-

mediated STAT5-dependent mechanisms for continuous cell

proliferation (90). However, whole exome sequencing analysis of

BC patients confirmed that both FGFR2 overexpression and

mutations are rarely truncal mutations but acquired in metastatic

biopsy after treatment progression (91).

Other FGFR alterations have been shown to promote endocrine

resistance, including co-amplification of FGF 3/4/19 and CCND1,

nuclear FGFR1 expression, FGFR3 overexpression, FGFR4

overexpression and FGFR4 mutations. However, their clinical

relevance has yet to be determined (66, 92–94).
Clinical evidence and ongoing trials

Various agents ranging from pan-FGFR inhibitors and specific

FGFR 1, 2 and 3 inhibitors have been developed. With several FGFR

inhibitors currently under development. So far for the treatment of

solid tumor patients, erdafitinib for urothelial carcinoma (FGFR 2/3

alterations) (95), and futibatinib, infigratinib and pemigatinib for

cholangiocarcinoma (FGFR2 fusions or rearrangements) have been

approved (96, 97). While in BC, ongoing clinical trials and preclinical

data have long been evaluating possible treatment strategies to block

FGFR pathway by using small molecules tyrosine kinase inhibitors

(TKIs). Notwithstanding, limited benefit has so far been the norm.

Several molecules have been tested in different settings. Soria et al.

showed promising results in 12 patients with advanced BC with

FGFR1 amplified tumor treated with first generation multikinase

inhibitor lucitanib (98). Later, in the phase II FINESSE study an

exploratory biomarker analysis suggested a higher overall response

rate in patients with FGFR1 amplifications defined by IHC H-score

≥50. However, treatment resulted in significant toxicities limiting

optimal inhibitory dose (99). More recently, a phase Ib trial including

23 patients with ER+/HER2- FGFR1 amplified metastatic BC

previously exposed to CDK 4/6-inhibitors, combined erdafitinib

with fulvestrant and palbociclib and showed a median PFS of only

3 months and a clinical benefit rate (CBR: complete response, partial

response, or stable disease) of 28% at 6 months (100). While the

phase II study EAY131 led by Gong and colleagues, which enrolled 18

patients with tumor FGFR 1-4 amplification to receive erdafitinib and

included 9 patients with BC did not meet its primary endpoint, with
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only one patient with FGFR1-amplified BC showing prolonged

survival (101). Additionally, the phase IIA RADICAL trial (102)

which included 52 patients, compared the combination of anastrozole

or letrozole to fexagratinib (AZD4547), a strong FGFR inhibitor

(FGFR-1, 2 and 3), in endocrine resistant BC. Overall, objective

response was only 10% (5/50) with a clinical benefit rate (CBR) after

28 weeks of therapy that reached 25%, with almost 27% (14) of

patients discontinuing treatment due to adverse events, mainly ocular

complications such as corneals ulcers, mucositis, elevated liver

enzymes, anemia and fatigue. Two phase II trials have studied the

benefit of the Dovitinib, a small molecule multikinase inhibitor of

FGFR1, FGFR2, FGFR3 and other receptor tyrosine kinases.

Preclinical data showed activity in FGFR positive and amplified BC

xenograft models, reversing aromatase inhibitor resistance. Initially,

single-agent Dovitinib showed activity in ER+/HER2- FGFR1

amplified BC patients, particularly among patients with higher

levels of amplification. However, CBR reached a meager 25% (103).

Following these results, the combination with fulvestrant was tested

in a double blind, phase II trial, however the study had to be stopped

early due to slow accrual. Still, the final analysis, once again showed

limited benefit, with no progression free survival difference in the

intention to treat analysis, but with a significant difference (according

to definition of study protocol) among patients from the predefined

subgroup with FGF pathway amplification; reaching a median PFS of

10.9 months vs 5.5 months with fulvestrant as monotherapy and a
Frontiers in Oncology 05
response rate (ORR: Complete response or partial response) of 27.7%

(104). Ongoing trials including a phase II trial evaluating futibatinib

plus fulvestrant (NCT04024436) and the phase I dose escalation trial

(ROGABREAST) with rogaratinib in combination with palbociclib

and fulvestrant (NCT04483505), are yet to show any benefit. Table 1

summarizes completed phase II or III randomized control trials.

Finally, new strategies are being evaluated to better tailor

therapy with FGFR inhibitors by molecularly selecting BC

patients that will benefit from treatment. As such, translational

research evaluating FGFR1-4 mRNA levels has shown to be a better

predictive biomarker (108). Future prospective trials including

molecular determinants will help better profile patients with

actionable FGFR alterations that will benefit from target therapy.
Future directions and conclusions

The FGFR pathway represents an elusive target in the landscape

of BC therapy. Particularly in ER+/HER2- BC patients, where

resistance to therapy remains a significant clinical challenge.

Genomic alterations and dysregulation within the FGFR signaling

axis, including FGFR amplifications, fusions and point mutations,

have been associated as strong prognostic factors in BC, mainly as

intrinsic or acquired resistant mechanisms to endocrine therapies,

favoring disease progression and poorer survival outcomes for
TABLE 1 Phase II/III trials evaluating anti FGFR treatments in breast cancer patients.

Study Name Drug Target

FGFR
inhibition

site Year N° Study Arms Outcomes

FINESSE trial
(Phase II) (99)

Lucitanib
VEGFR1-3,

FGFR1-3, and
PDGFRa/b

First-generation
FGFR inhibitors
Multi-TKIs
ATP binding site
of tyrosine kinase
domain
(99, 105–107)

2020 76

Cohort 1: FGFR1
amplified
Cohort 2: FGFR1
nonamplified,
11q13 amplified
Cohort 3: FGFR1
and
11q13
nonamplified

Cohort 1: ORR
19% (9% - 35%)

RADICAL Trial
(Phase IIa) (102)

Fexagratinib
(AZD4547)

FGFR1-3

Second-
generation FGFR
inhibitors
Pan-FGFR
inhibitor
Reversible
ATP binding site
of tyrosine kinase
domain
(1, 102, 105–107)

2022 52

1 arm: AZD4547
(FGFR inhibitor)
endocrine-
resistant BC

ORR 10% and
CBR 25%

NCI-MATCH
ECOG-ACRIN
Trial (EAY131)
Subprotocol K1
(Phase II) (101)

Erdafitinib FGFR1-4

Second-
generation FGFR
inhibitors
Pan-FGFR
inhibitor
Reversible
ATP binding site
of tyrosine kinase
domain (1, 101,
106, 107)

2024 18 (9*)
1 arm: Erdafitinib
for FGFR1-4
amplified tumors

ORR 0%, CBR
22% (2/9
BC patients)

(Continued)
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patients. Despite promising preclinical data evaluating FGFR as a

relevant resistant pathway, ongoing clinical trials testing FGFR

inhibitors have not been able to translate these findings into

meaningful clinical benefits. Challenges such as lack of predictive

biomarkers, due to the intricacies of signaling pathways in ER+/

HER2- BC, and significant adverse events due to off-target toxicities,

have hindered the success of FGFR-targeted therapies in BC (109).

Tumor heterogeneity mandates a deeper understanding of tumor

biology including genomics analysis and new molecular

technologies ranging from transcriptomics to RNA sequencing.

Which may help better understand the complex interplay

between FGFR signaling and other pathways involved in

endocrine resistance (110). Furthermore, exploring innovative

drug combinations could enable innovative approaches to

overcome resistance mechanisms. Research efforts should focus

on elucidating mechanisms of resistance, refining identification of

predictive biomarkers, and exploring rational combination

therapies to maximize efficacy while minimizing toxicity.

Ultimately, the successful integration of FGFR-targeted agents

into the clinical management of ER+/HER2- BC should be

focused on further improving patient outcomes by overcoming

the limitations posed by endocrine resistance.
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TABLE 1 Continued

Study Name Drug Target

FGFR
inhibition

site Year N° Study Arms Outcomes

Dovitinib and
Fulvestrant
(Phase II)
(104)

Dovitinib
(TKI258) FGFR1-4, VEGFR

1-3 & PDGFR
a/b

First-generation
FGFR inhibitors
Multi-TKIs
ATP binding site
of tyrosine kinase
domain
(103–107)

2017 97

Fulvestrant plus
Dovitinib or
Placebo in
postmenopausal
patients with
endocrine-
resistant BC

mPFS: 5.5 (3.8-
14.0) vs 5.5 (2.5-
10.7) months
(HR 0.68 0.41 -
1.14)
FGF pathway
amplification:
mPFS 10.9 (3.5
-16.5) vs 5.5 (3.5
-16-4) months.
HR: 0.64 (0.22
-18.86)
mOS: NR (18.6 -
NR) vs 25.9 (18.4
- NR) HR 0.81
(0.39-1.85)
ORR 27.7%
(15.6% - 42.6%)
vs 10% (3.3%
- 21.8%)

TKI258 trial
(Phase II) (103)

Dovitinib
(TKI258)

2013 81
1 arm:
Dovitinib
monotherapy

CBR 25%
FGFR, Fibroblast growth factor receptor; FGF, Fibroblast growth factor; VEGFR, Vascular endothelial growth factor receptor; PDGFR, Platelet derived growth factor receptor; BC, breast cancer;
Multi-TKIs, multi-target tyrosine kinase inhibitors; ATP, adenosine triphosphate; mPFS, median progression free survival; mOS, median overall survival; ORR, overall response rate; HR, Hazard
Ratio; NR, Not reached; CBR, clinical benefit rate (Complete response; partial response or stable disease).
*Patients with breast cancer.
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