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Examination of the role of
mutualism in immune evasion
Lucie Gourmet1, Simon Walker-Samuel1 and Parag Mallick2*

1Centre for Computational Medicine, Division of Medicine, University College London, London, United
Kingdom, 2Canary Center for Cancer Early Detection, Stanford University, Palo Alto, CA, United States
Though the earliest stages of oncogenesis, post initiation, are not well

understood, it is generally appreciated that a successful transition from a

collection of dysregulated cells to an aggressive tumour requires complex

ecological interactions between cancer cells and their environment. One key

component of tumorigenesis is immune evasion. To investigate the interplay

amongst the ecological behaviour of mutualism and immune evasion, we used a

computational simulation framework. Sensitivity analyses of the growth of a

virtual tumour implemented as a 2D-hexagonal lattice model suggests tumour

survival depends on the interplay between growth rates, mutualism and immune

evasion. In 60% of simulations, cancer clones with low growth rates, but

exhibiting mutualism were able to evade the immune system and continue

progressing suggesting that tumours with equivalent growth rates and no

mutualism are more likely to be eliminated than tumours with mutualism.

Tumours with faster growth rates showed a lower dependence upon

mutualism for progression. Geostatistical analysis showed decreased spatial

heterogeneity over time for polyclonal tumours with a high division rate.

Overall, these results suggest that in slow growing tumours, mutualism is

critical for early tumorigenesis.
KEYWORDS
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Introduction

The earliest genetic aberrations in oncogenes and tumour supressors leading to

transformation of a cell from healthy to malignant have been extensively studied.

Additionally, it is generally established that critical cancer hallmarks such as genome

instability, immune evasion and angiogenesis (1) are required for tumour formation.

However, the earliest stages of a tumour, including the transition from partially

transformed collections of cells (2) to a malignant tumour are not well understood. The

traditional clonal evolution hypothesis implies that cancer originates from one cell (3)

which grows into a fully formed tumour. However, multiple studies have shown evidence of

early cancer polyclonality (4) suggesting that tumour formation may be a more complex

process involving intercellular interactions and interplay between early cancer cells and the

emerging tumour microenvironment. Because of the multiplicity of cell clones types,
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architectures and behaviours involved in tumorigenesis, cancer can

be viewed as an ecosystem.

Recent studies (5) have highlighted the role of ecological

behaviours in later stage cancers and also emphasised the role

that tumour ecology plays in both progression and therapeutic

response (6). These studies approach cancer growth from a

population dynamics perspective in which different cell types

compete for resources and survival and demonstrated the

existence of cooperative behaviours such as mutualism and

commensalism amongst cancer cells. Cooperation can be defined

as mutualism, where both cancer cells benefit from interacting, or

commensalism where only one of them benefits. One might also

describe immune-cancer interactions as predation as interactions

between immune cells and cancer cells typically lead to death of

targeted cancer cells. Mechanistically, ecological behaviours

amongst cancer cells are driven by either molecular or physical

interactions amongst cells. Two main types of chemical interactions

are relevant for cancer cooperation: juxtacrine and paracrine

signalling. Juxtacrine signalling occurs at short distances since it

is dependent on cell contact to pass signalling molecules directly

between cells (7). In contrast, paracrine signalling is the diffusion of

signalling molecules from one cell to another but does not require

cell-cell contact (7). Paracrine signalling was shown to increase

proliferation: for example, IL-6 promotes proliferation between

heterogeneous breast cancer subclones (8).Conversely, paracrine

signalling of TGF-b was shown to promote immune suppression

(9). Though there has been substantial study of intercellular

communication and the molecular and cellular consequences

thereof, the potential ecological impacts of that communication

have not been as well understood.

Multiple studies suggest that cooperation is essential for cancer

evolution. Early cancer formation in mice were found to be

polyclonal when skin papillomas were induced by chemicals (10).

This finding was the first to suggest that interaction between cells is

necessary for carcinogenesis rather than the proliferation of a single

clone. Moreover, the interleukin-6 family cytokines were shown to

be involved in tumour heterogeneity and required for sustained

tumour growth (11). This study found that minor subclones (which

make up to 10% of the tumour population) were not outcompeted

because they secrete Il-11 and FIGF. This is an advantage because

they induce metastasis by modulating the immune system and

blood vessels. Thus, the presence of such clones enables

angiogenesis, one of the hallmarks of cancer, which benefits the

whole tumour. Interclonal cooperation was also shown to be critical

for tumour maintenance in a mouse models of breast cancer (12).

The two clones (WnthighHRASwt and WntlowHRASmut) present in

the mammary tumour are essential for cancer as they form tumours

only when combined. The interplay between cancer cells at an early

stage is therefore important for cancer development.

Even if early tumours arise, they can also be removed by the

immune system or by cell competition. Cancer immunoediting

occurs in 3 stages: elimination, equilibrium and escape (13).

Elimination represents the process of immunosurveillance while

equilibrium is the selection of immune resistant clones. Finally,

immune escape means that the cancer is no longer controlled by the

immune system and can spread. Immune escape is an important
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aspect of cancer because it impacts prognosis. For example, patients

with pancreatic cancer showed higher survival when subjected to

strong immune editing (14). Nevertheless, clonal cooperation can

hinder immune predation as clonal cooperation was shown to

activate pro-proliferative signalling pathways such as JNK and IL-

6 (15). Cell contact–mediated mechanisms can also promote

tumour growth as breast cancer cell lines with PIK3CA mutant

cells were able to induce the proliferation of quiescent HER2

mutant through fibronectin interactions (16).

We hypothesise that early cell-cell interactions determine the

effectiveness of carcinogenesis with immune predation and clonal

cooperation acting as opposing forces. More specifically we test the

hypothesis that mutalism can be a mediator of successful immune

escape and examined the three-way interactions between cell’s basal

growth rate, mutualism and immune cell predation. To test these

hypotheses we extended the model of Boyce and Mallick (17)

(Figure 1). We define the difference in growth trajectory between

tumours within and without immune predation as K and estimate K

using the Kolmogorov-Smirnov statistic.
Methods

Agent-based modelling

Here we briefly describe the modelling framework used for our

simulation studies. We note that the additional detail about the

framework and the geostatistical measures used herein are

explained in more detail in our previous paper (17). Our tumour

growth and ecology model is implemented as a lattice-based cellular

automaton which considers two-dimensional space as a hexagonal

grid where each position has six direct neighbours with which it can

interact. The model is initialised with an initial number of cancer

cells, intrinsic oncoprotein-expression related birth and death rates

for each cell, rules for ecological interactions and the dimensions of

the canvas. Upon cell division, the cellular automaton looks for

space to divide and chooses the position closest to the model centre

to add a new cell. It keeps track of the number and types of agents

along with the dimensions of the canvas. Because cells that are

spatially proximal tend to have correlated expression, oncoprotein

initialisation is dependent on the expression of the neighbours of a

given cell. To achieve spatial autocorrelation, we utilise a Markov

Chain Monte Carlo sampling strategy that incorporates the mean

oncoprotein expression of a cellar neighbourhood (17). The

parameters of the model were chosen from high-content screening

studies of cancer cell growth in diverse microenvironments as

elucidated in (18, 19).
Ecological behaviours

To model mutualism, we initialise two separate clones on the

canvas, each with cancer cells and cancer stem cells, and the

tumours are allowed to grow (17). When we model mutualism, if

a cancer cell from the first clone contacts a cell from the second

clone, a mutualistic interaction occurs and both cells have an
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increase in oncoprotein expression and gain a fitness benefit and an

increase in instantaneous proliferation rate of 1.25. This increase is

not compound and is only allowed to happen once. In a non-

mutualistic setting, there is no proliferation advantage upon contact

between cells of different clonal origin.

We model immune interactions in the tumour microenvironment

via a predation model. Here, we initialised the tumour model with

cancer cells and cancer stem cells in the centre of the model canvas

and initialise a perimeter of immune cells encircling the tumour (17).

Immune cells are inactive until the tumour reaches a cancer cell count

threshold of 3000, upon which the immune cells are activated. While

the tumour continues to grow, immune cells begin to move with

preference towards the weighted centre of the cancer cells. When an

immune cell neighbours a cancer cell it will target and attach to the

cancer with its initialised target probability of 0.99. If an immune cell is

already targeting a cancer cell, it will kill that cell with its initialised

killing probability of 0.99. Immune cells can only target one cancer cell

at a time and targeting and killing occur at different steps of the model.

In our simulations, we combined the predation model with the

mutualism model such that our composite model includes the

immune system encircling two cancer clones.
Geostatistics

We calculate three global statistics at each step that describe

how the spatial heterogeneity of oncoprotein in the virtual tumour

(17). To quantify general clustering of oncoprotein at the global

level we use the Getis-Ord general G statistic. The G statistic is
Frontiers in Oncology 03
bounded between 0, indicating clustering of low values, and 1

indicating clustering of high values. To quantify spatial

heterogeneity, we utilise two statistics: Moran’s I statistic and

Geary’s C. The value of I is between −1 for perfectly dispersed

(low autocorrelation) data and +1 for perfectly clustered (high

autocorrelation) data. In contrast, Geary’s C is inversely related to

Moran’s I and can take on values between 0 with perfect clustering

(high autocorrelation) and an undefined upper bound for increased

dispersion (low autocorrelation).
Comparing cancer growth across different
division rates

We examined the impact of cellular growth rate on tumour

growth trajectory. As there are non-linear and spatial interactions in

the model, tumour growth rate is not simply a function of cellular

growth rate. For mutualism to occur, the two clones need to come

into contact. Our sensitivity analysis examined division rates

between 0.01 to 0.1 cell divisions per hour. This range of rates

includes the experimentally estimated growth rates of non-small-

cell lung cancer cells in 2D cell cultures that have been estimated to

have a division rate close to 0.0461 divisions per hour (18, 19). To

compare the tumour growth trajectories we used the Kolmogorov-

Smirnov distance: when the associated p value is above 0.05, we

consider that the number of cancer cells with/without predation are

statistically similar. If the number of cancer cells with/without

immune predation is similar at a lower division rate in the
FIGURE 1

Explanation of our hypothesis and methodology.
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mutualistic setting compared to no mutualism, we can conclude

that mutualism provides a significant advantage (Figure 1).

We also conducted statistical difference analysis by using the

Kruskal-Wallis test and the subsequent post-hoc analysis using

Dunn’s test with Bonferroni correction to examine the statistical

s ignificance of the differences amongst the different

mutualistic groups.
Randomisation analysis

We estimated the number of mutualistic cells with

advantageous proliferation (mutual cells with oncoprotein

expression superior to 4 as shown in red in Supplementary

Figure 3) and the number of cancer cells. We then used this ratio

as a rate of random mutualism: for example, we found that on

average 3% of all cancer cells are mutualistic cells dividing with a

proliferation advantage. Thus in this general case, instead of

mutualism upon clonal contact, we set the condition

np.random.uniform() > 0.97 for all cells, which means that there

is a 97% likelihood the cell will be a regular cancer, and a 3% chance

it will become randomly mutualistic. To ensure that the random

analysis reflects the mutualism model, we update the rate of random

mutualism at every step accordingly to the rate of the mutualism

model (Supplementary Figure 2).
Results

Differential growth trajectory of mutualistic
and non-mutualistic tumours

To visualise the impact of immune predation and mutualism on

tumour growth, we performed a sensitivity analysis across a range of

cellular growth rates and plotted tumour growth trajectory curves. At

cell division rates below.03 divisions per hour, cells from the two clonal

populations do not interact given their initial distance and are unable to

benefit from mutualism. For each cellular growth rate, we simulated 4

different scenarios: mutualism with/without immune predation (in

orange and red respectively) and no mutualism with/without immune

predation (in turquoise and blue respectively). We observed that the

mutualistic scenarios did not yield the highest number of cancer cells

(Figure 2A) and the Kruskal-Wallis test indicated significant differences

amongst the groups (c²(3) = 24.393, p = 2.068e-05). At a low cell

division rate of.04, the Dunn’s post hoc test did not show significant

pairwise comparison between “-mutualism, -immune predation” and

“+mutualism, -immune predation” growth curves (Z = 0.088,

p = 0.46478, p_adj = 1.000). It also did not significant pairwise

comparison between “-mutualism, +immune predation” and

“+mutualism, +immune predation” (Z = 1.270, p = 0.10202, p_adj =

0.61210). However, at a division rate of 0.08 division per hour,

mutualism eventually led to the highest number of cancer cells

(Figure 2B). At this division rate, the Kruskal-Wallis test again

indicated significant differences amongst the groups (c²(3) = 24.3925,
Frontiers in Oncology 04
p = 0). Interestingly, at even higher growth rates (for example 0.09), the

mutualistic and no mutualistic curves seem to completely overlap

(Supplementary Figure 1). Indeed, results from the Kruskal-Wallis test

indicated no significant differences amongst the groups (c²(3) = 4.8232,

p = 0.1852). We therefore observe that when the cellular division rate is

high enough, mutualism is not as impactful on overcoming the impact

of immune-mediated cell death.
Mutualism enables compensation for
immune predation

To assess the impact of mutualism on immune predation, we

did 10 simulations for each cellular division rate. Across the

different cellular division rates, 6 out of 10 of the mutalistic

virtual tumours had higher growth trajectories than the non-

mutualistic virtual tumours. One simulation showed no difference

between mutualism and no mutualism. In 3 non-mutalistic virtual

tumours had higher growth trajectories than the mutualistic virtual

tumours. The results from all the simulations are summarised in a

violin plot representing the Kolmogorov-Smirnov distance versus

the division rate (Figure 3). Mutualism starts when the division rate

is high enough (around 0.03) to enable contact between the clones

before one of them is removed by the immune system. Interestingly,

already at this division rate (0.03), we can observe that mutualism

is advantageous.
Mutualism rather than just the number of
clones promotes cancer survival

In the previous paper, Boyce and Mallick focussed on immune

predation in the case of one cancer clone. Here, we analyse the

geostatistics upon the presence of two distinct clonal populations

(Figure 4). We notice that N, the delta number of cancer cells,

becomes constant over time indicating that the tumour neither

grows nor shrinks. Compared to the monoclonal predation model,

the geostatistics vary considerably. Geary’s C is continually

increasing, reflecting the fact that spatial heterogeneity increases

over time. In contrast, the other two metrics stay constant unlike the

monoclonal predation model in which there is an eventual increase.

Having two clones instead of one promotes heterogeneity, as we

may expect, and seems to lead to more stable geostatistics overall.

If we enable mutualistic interactions in the predation model, we

see little change from our previous results. The main difference is

the fact that N, the delta number of cancer cells, continues to

increase instead of staying constant at a certain point (Figure 5). If

we compare our results of our simulation with the simulation

representing mutualism only, we observe more similarities. The

metrics Getis-Ord G and Moran’s I follow the same pattern, thereby

indicating that mutualism determines spatial heterogeneity more

than immune predation. Therefore, this result already supports

observation that mutualism outcompetes the immune system, as the

output of the simulation is closer to the mutualistic results.
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Polyclonal tumours with high division rate
also become homogeneous over time

With this simulation, we explore what happens to cancer clones

which have a high division rate (which can be considered malignant)

but also what happens in the long term. Therefore, we used a higher

division rate (0.1) and a longer timeframe (490 steps instead of 340 as

showed in Figure 6). We notice that there is much more variation in

the geostatistical values due to the increase division rate. For instance,

Geary’s C increases and decreases significantly, leading to a

homogeneous tumour. It seems that increasing the potential for

mutualism increases spatial heterogeneity, but the level of

heterogeneity remains low eventually. Moreover, the delta number

of cancer cells N starts to decrease as the tumour is filling all the

available space left.
Frontiers in Oncology 05
Discussion

By analysing growth curves, we observed that mutualism

provides a tumour growth advantage at high division rates

(Figure 2). We observe that in the majority of simulations

mutualism makes a statistical difference to enable tumours to

compensate for immune predation (Figure 3). When there is

immune predation, having two clones instead of one has

important consequences regarding cancer evolution. Indeed, we

show in Figure 4 that it promotes spatial heterogeneity. Adding

mutual interactions to this simulation increases N, the delta number

of cancer cells, implying that mutualism enables sustained tumour

growth. Without mutualism, the tumour seems to be contained

(even though it is not completely removed) but mutualism seems

necessary for continuing further cancer development (Figure 5).
A

B

FIGURE 2

Growth curves representing the number of cancer cells depending on different conditions (the presence immune predation and/or mutualism). The
x axis represents time steps while the y axis is the number of cancer cells. (A) 0.04 division per hour. (B) 0.08 division per hour.
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Increasing the division rate does increase drastically spatial

heterogeneity, but the tumour becomes homogeneous eventually

(Figure 6). We note that this is not due to having a larger number of

cells at tumour initiation. Additionally, this behaviour would not be

observed with a fixed number of cells randomly having higher

growth rates. In fact, we discovered that when there is immune

predation, mutualism seem more advantageous than random

mutualism but the Kruskal-Wallis test indicated no significant

differences amongst the groups (c²(5) = 9.3017, p = 0.09762)

(Supplementary Figure 2).

We analysed the cases in which no mutualism was more

advantageous than mutualism and we found that cell distribution

seems to impact whether immune predation is outcompeted. The

location and pattern of mutualistic cells varied between the cases
Frontiers in Oncology 06
that support our hypothesis and those which do not

(Supplementary Figure 3). From a qualitative point of view,

mutualism did not seem to help outcompeting immune predation

when it was restricted to a specific part of the clone (Supplementary

Figure 3). Other factors to consider are the way in which the

tumours merge and the distribution of immune cells around the

tumour. The overall spatial composition of the tumour and its

environment seems to be key for its evolution.

There are a few limitations to approach used in this study,

including the fact that the model employed is a 2D on-lattice model

which does not incorporate 3-dimensional or continuum aspects of

the tumour (the diffusion of molecules, angiogenesis, cell

morphology, long range communication…). As our model is

dominantly a cell scale model, it does not have a specific set of

molecular pathways responsible for the change in cellular

behaviours. If it did, we could have modelled signalling pathways

responsible of clonal cooperation instead of looking at contact-

mediated mutualism. If we had used an off-lattice model, which is

based on physical interactions, our results would be more realistic.

Besides, the outcome of our model is mainly defined by the balance

between the rate of cell division and cell death, but we investigated

growth kinetics across multiple proliferation rates to overcome this

shortfall. Moreover, the parameters of our model come from

experiments involving non-small lung cancer cell line meaning

that our results are relevant to this specific cell type. In the end, it is

difficult to generalise the results of our simulation to real tumours

because of the limitations mentioned above. Nevertheless, using our

agent-based model was advantageous because we modelled an event

difficult to measure and it was not computationally expensive.

In the future, by understanding the mechanisms underlying

mutualism (mutations, down/upregulation of genes…), it may be

possible to stop the development of cancer not through cytotoxic or

cytostatic therapies, but instead by therapies that target mutualism

specifically. Finding signatures of cancer cooperation could help us
FIGURE 5

Geostatistics of two cancer clones with mutualism and immune
predation. Metrics from top to bottom: N the delta number of
cancer cells from the previous step, Geary’s C, Getis-Ord G,
Moran’s I.
FIGURE 3

Summary of sensitivity analysis of tumour growth trajectory in the
presence of immune predation. The Kolmorgorov-Smirnov distance
is used to compare mutualism (in red) and no mutualism (in blue)
across different division rates. The lower the Kolmogorov-Smirnov
distance, the more similar the number of cancer cell is between
immune predation and no immune predation.
FIGURE 4

Geostatistics of two cancer clones without mutualism and with
immune predation. Metrics from top to bottom: N the delta number
of cancer cells from the previous step, Geary’s C, Getis-Ord G,
Moran’s I.
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make sense of early carcinogenesis. Moreover, it could have a

clinical impact if we not only investigate experimental models but

also unravel interactions in patient samples. The key conclusion

from our study is that mutualism will increase cancer proliferation

in a manner that enables slower growing cells to evade the immune

system until they reach a critical threshold in which the effective

tumour growth rate exceeds the cell-killing capacity of tumour-

infiltrating immune system. Characterising cooperation in cancer at

an early stage is therefore essential to prevent cancer formation. A

therapy strategy would be to selectively remove mutualistic cells,

known as “common gooder” cells which have paracrine influence,

to make the tumour collapse (20).

Furthermore, our hypothesis makes a few assumptions such as the

fact that cancer cooperation necessarily leads to an increase of

proliferation. As we already mentioned, there are various examples

of mutualism where collaboration involves sharing cancer hallmarks

rather than a direct consequence on cell division. Interestingly, cancer

cells have recently been shown to survive immune predation by hiding

inside other cancer cells (21). This cell-in-cell formation implies that

only the internal hidden cancer cell survives but this mechanism

provides resistance against T cells attacks and chemotherapies. We

also consider that mutualistic cells have a high frequency, even though

they may be outcompeted by a “free rider” clone. Nevertheless, because

we focus on early carcinogenesis (a time during which tumours are

more easily removed by immune predation), the later stages of cancer

development do not matter that much. We also consider a tumour size

threshold after which immune predation cannot outcompete the

tumour anymore, which may not be the case. However, a study

supports our hypothesis as its model predicts the existence of an

antigen diversity threshold level beyond which T cells fail at controlling

heterogeneous tumours (22). A recent study showed that a specific

clone can suppress anti-cancer CD8 T cell responses and protect other

clones from the immune system.

Though our study has focussed dominantly on the earliest stages

of tumour development, it is also possible that the developed model
Frontiers in Oncology 07
might have relevance to understanding cancer immunotherapy. For

example, a recent model revealed that mutualistic interactions could

lead to the persistence of drug-resistant cells even in the presence of

therapies like Obinutuzumab, which are designed to induce apoptosis

in cancer cells (23). The model suggested that different interaction

exponents result in varied outcomes in terms of population steady

states under therapeutic pressure, with certain conditions leading to a

dominant population of resistant cells. Thus, by accounting for

mutualistic interactions, we may be able to predict how cancer cells

will respond to treatments and guide the optimisation of therapy

regimens to counteract resistance mechanisms effectively. Along with

our work, this study highlights the importance of understanding

mutualistic interactions between tumour cells and the immune

system in developing therapeutic strategies.
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SUPPLEMENTARY FIGURE 1

Number of cancer cells depending on different conditions, the division rate in

the simulation is 0.09.

SUPPLEMENTARY FIGURE 2

Number of cancer cells for random mutualism, the division rate in the
simulation is 0.08.

SUPPLEMENTARY FIGURE 3

Qualitative comparison of mutualism and no mutualism. On the left

simulations supporting our hypothesis, on the right simulations which do
not support our hypothesis.
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22. Aguadé-Gorgorió G, Solé R. Tumour neoantigen heterogeneity thresholds
provide a time window for combination immunotherapy. J R Soc Interface. (2020)
17:20200736. doi: 10.1098/rsif.2020.0736

23. Ganesh SR, Roth CM, Parekkadan B. Simulating interclonal interactions in
diffuse large B-cell lymphoma. Bioengineering. (2023) 10:1360. doi: 10.3390/
bioengineering10121360
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fonc.2024.1406744/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2024.1406744/full#supplementary-material
https://doi.org/10.1016/j.cell.2011.02.013
https://doi.org/10.1073/pnas.0606053103
https://doi.org/10.1126/science.959840
https://doi.org/10.1016/j.mrrev.2018.05.001
https://doi.org/10.1038/nrc2013
https://doi.org/10.1038/nrc3712
https://doi.org/10.1038/s41576-020-00292-x
https://doi.org/10.3390/cancers14092292
https://doi.org/10.3390/cancers14092292
https://doi.org/10.1016/j.cell.2019.05.012
https://doi.org/10.1038/bjc.1989.220
https://doi.org/10.1038/s41556-019-0346-x
https://doi.org/10.1038/s41556-019-0346-x
https://doi.org/10.1038/nature13187
https://doi.org/10.1038/ni1102-991
https://doi.org/10.1038/s41586-022-04735-9
https://doi.org/10.1016/j.semcdb.2016.08.028
https://doi.org/10.1172/JCI143557
https://doi.org/10.4137/CIN.S19338
https://doi.org/10.1038/srep29752
https://doi.org/10.1038/nrc3971
https://doi.org/10.7554/eLife.80315
https://doi.org/10.1098/rsif.2020.0736
https://doi.org/10.3390/bioengineering10121360
https://doi.org/10.3390/bioengineering10121360
https://doi.org/10.3389/fonc.2024.1406744
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	Examination of the role of mutualism in immune evasion
	Introduction
	Methods
	Agent-based modelling
	Ecological behaviours
	Geostatistics
	Comparing cancer growth across different division rates
	Randomisation analysis

	Results
	Differential growth trajectory of mutualistic and non-mutualistic tumours
	Mutualism enables compensation for immune predation
	Mutualism rather than just the number of clones promotes cancer survival
	Polyclonal tumours with high division rate also become homogeneous over time

	Discussion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


