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and Wencai Huang1,2*
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of Radiology, General Hospital of Central Theater Command of the People’s Liberation Army,
Wuhan, China, 3Wuhan University of Science and Technology School of Medicine, Wuhan, China,
4Radiology Department, Bayer Healthcare, Wuhan, China
Objectives: To investigate the value of CT radiomics combined with radiological

features in predicting pathological grade of stage I invasive pulmonary

adenocarcinoma (IPA) based on the International Association for the Study of

Lung Cancer (IASLC) new grading system.

Methods: The preoperative CT images and clinical information of 294 patients with

stage I IPA were retrospectively analyzed (159 training set; 69 validation set; 66 test

set). Referring to the IASLC new grading system, patients were divided into a low/

intermediate-grade group and a high-grade group. Radiomic features were selected

by using the least absolute shrinkage and selection operator (LASSO), the logistic

regression (LR) classifier was used to establish radiomics model (RM), clinical-

radiological features model (CRM) and combined rad-score with radiological

features model (CRRM), and visualized CRRM by nomogram. The area under the

curve (AUC) of the receiver operating characteristic (ROC) curve and calibration

curve were used to evaluate the performance and fitness of models.

Results: In the training set, RM, CRM, and CRRM achieved AUCs of 0.825 [95% CI

(0.735-0.916)], 0.849 [95% CI (0.772-0.925)], and 0.888 [95% CI (0.819-0.957)],

respectively. For the validation set, the AUCs were 0.879 [95% CI (0.734-1.000)],

0.888 [95% CI (0.794-0.982)], and 0.922 [95% CI (0.835-1.000)], and for the test

set, the AUCs were 0.814 [95% CI (0.674-0.954)], 0.849 [95% CI (0.750-0.948)],

and 0.860 [95% CI (0.755-0.964)] for RM, CRM, and CRRM, respectively.

Conclusion: All three models performed well in predicting pathological grade,

especially the combined model, showing CT radiomics combined with

radiological features had the potential to distinguish the pathological grade of

early-stage IPA.
KEYWORDS

tomography, X-ray computed, adenocarcinoma of lung, neoplasm grading, logistic
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Introduction

In 2020, the International Association for the Study of Lung

Cancer (IASLC) proposed a new pathological grading system based

on the predominant histopathological subtypes and 20% high-grade

pattern of invasive pulmonary adenocarcinoma (IPA) (1). This

system was subsequently adopted by the 2021 WHO Classification

of Lung Tumors (2). Prior to this, there was no internationally

recognized grading system due to the high heterogeneity of

pulmonary adenocarcinoma. The architectural grading system,

established in 2011, is a commonly used grading system based on

the histologic classification of pulmonary adenocarcinoma

according to prognostic stratification (3). Numerous studies have

confirmed that the presence of a high-grade pattern, even if not

predominant, indicating a poor prognosis of patients (4–6). A

limitation of the architectural grading system is that it considers

only the one most predominant pattern, which may underestimate

the pathological grades of IPA with high-grade patterns but not

predominant subtype. Sica’s grading system may provide an

improvement over the architectural grading system, as it takes

into account the two most predominant patterns (7). In contrast,

the IASLC grading system integrates both the most predominant

pattern and the proportion of high-grade patterns; any tumor with

20% or more high-grade patterns is classified as high-grade IPA.

The primary distinction between the IASLC grading system and the

other two systems is its emphasis on the presence of high-grade

patterns, establishing this threshold as a significant prognostic

factor for recurrence and mortality. Furthermore, the IASLC

grading system differentiates complex glandular patterns

(cribriform and fused gland) from the traditional acinar subtype,

categorizing them as high-grade patterns. Previous studies have

shown that these complex glandular patterns are associated with

poor prognosis, similar to solid and micropapillary subtypes (8, 9).

The IASLC grading system has been validated through large-sample

cohort studies conducted in various countries, indicating that this

new grading system may more effectively predict patient prognosis,

particularly in early-stage IPA (6, 10–14). Therefore, the early

identification of the pathological grade of IPA could inform

subsequent surveillance strategies, surgical approaches, or

adjuvant therapies both prior to and following surgery.

However, the pathological invasiveness and grade of IPA are

mainly estimated from completely resected tumor specimens

instead of using needle biopsy. Because biopsy usually only takes

a part of the tumor tissue, which may not fully reflect the
Abbreviations: IASLC, International Association for the Study of Lung Cancer;

IPA, invasive pulmonary adenocarcinoma; AIS, adenocarcinoma in situ; MIA,

minimally invasive adenocarcinoma; IMA, invasive mucinous adenocarcinoma;

ICC, intraclass correlation coefficient; GLCM, Gray Level Co-occurrence Matrix;

GLDM, Gray Level Dependence Matrix; GLRLM, Gray Level Run Length Matrix;

GLSZM, Gray Level Size Zone Matrix; NGTDM, Neighborhood Gray-Tone

Difference Matrix; LASSO, least absolute shrinkage and selection operator; LR,

logistic regression; RM, radiomics model; CRM, clinical-radiological features

model; CRRM, combined rad-score with radiological features model; RUL, right

upper lobe; RML, right middle lobe; RLL, right lower lobe; LUL, left upper lobe;

LLL, left lower lobe; OR, odds ratio; CI, confidence interval.
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heterogeneity of the tumor (15). Therefore, it is difficult to

accurately obtain the histological characteristics of the tumor for

patients who do not or cannot have surgery. How to non-invasively

evaluate the pathological invasiveness and histopathological

grading of tumors by preoperative medical images has become an

urgent problem to be solved. Radiomics has been an emerging

research field in recent years, which can non-invasively reflect

tissues underlying pathological and physiological characteristics

by converting digital medical images into mineable data and

extracting numerous hidden quantitative information from

morphological and functional images in a high-throughput

manner. Radiomics have been widely studied in the classification

of benign and malignant lung tumors (16), differentiation of

different histological types of lung cancer (17), prediction of lung

cancer prognosis (18), evaluation of treatment effects (19),

prediction of genotypes in pulmonary adenocarcinoma (20),

prediction of PD-L1 expression and tumor mutation burden (21)

and differentiation of immune pneumonitis from radiation

pneumonitis (22). Currently, there are limited reports on the

application of radiomics to the IASLC grading system for IPA.

Therefore, this study aims to investigate the potential of utilizing

preoperative CT radiomics combined with clinical and radiological

features to predict the pathological grade of stage I IPA.
Materials and methods

Study population

This retrospective study was reviewed by our institutional ethics

committee, and the patient’s informed consent was waived (Ethical

Approval No. 2020035-1). Patients with stage I IPA confirmed by

pathology from January 2017 to July 2023 were collected. The

exclusion criteria were as follows: (1) the pathological results were

obtained by needle biopsy or without complete clinicopathological

information; (2) patients with stage II-IV IPA; (3) patients with

minimally invasive adenocarcinoma(MIA), invasive mucinous

adenocarcinoma(IMA), and other variants; (4) interventions such

as needle biopsy or radiotherapy or chemotherapy before CT scan;

(5) patients did not have a CT scan within 2 weeks before surgery;

(6) the images were unclear and couldn’t be used for analysis.

Finally, a total of 294 eligible patients were included in this

study. Among them, 228 patients from January 2017 to July 2022

were randomly divided into the training set and the validation set

using a 7:3 random sampling method. Additionally, 66 patients

from August 2022 to June 2023 constituted the independent test set.

According to the IASLC grading system, patients were divided into

low/intermediate-grade and high-grade groups for analysis and

discussion (Figure 1).
CT image acquisition

Images were acquired from three different machines.

CT scanner 1: TOSHIBA Aquilion 16-row detector spiral CT,

scan parameters: tube voltage 120kV, tube current 250mA,
frontiersin.org
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scanning collimation 1.0mm×16, pitch 1.3, rotation time 0.5s/circle,

FOV 500mm, acquisition matrix 512×512.

CT scanner 2: GE 16-row detector spiral CT, scan parameters:

tube voltage 120kV, tube current changes, scanning collimation

1.0mm×16, pitch 1.375, rotation time 0.5s/circle, FOV 360mm,

acquisition matrix 512×512.

CT scanner 3: TOSHIBA Aquilion ONE 320-row detector

dynamic volumetric CT, scan parameters: tube voltage 120kV,

tube current changes, scanning collimation 0.5mm×84, pitch 1.3,

rotation time 0.5s/circle, FOV 400mm, acquisition matrix 512×512.

All scans were performed with breath-hold scanning at the end

of deep inspiration, and the scanning range was from the level of the

costophrenic angle at the bottom of the lung to the thoracic

entrance. 3D high-resolution reconstruction was performed at a

sub-workstation after scanning. The reconstructed slice thickness

was 2.0 mm. A standard lung window (WL: -550HU, WW:

1600HU) and mediastinal window (WL: 40HU, WW: 320HU)

were used for observation.
Histologic evaluation

Two senior pathologists evaluated pathological sections of

postoperative specimens simultaneously, and a consensus

diagnosis was reached after discussion. The percentage of each

pattern was recorded in 5% increments. All pathological sections

were divided into three grades according to the IASLC grading

system: low- grade (well-differentiated adenocarcinoma: lepidic

predominant tumors with<20% of high-grade patterns),

intermediate-grade (moderately differentiated adenocarcinomas,

acinar or papillary predominant tumors with<20% of high-grade

patterns), and high-grade(poorly differentiated: any tumor

with≥20% of high-grade patterns).
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Tumor segmentation and radiomic
feature extraction

Tumor segmentation was performed by two radiologists with

more than five years’ experience in respiratory system imaging

diagnosis using an open-source image processing software-3D

Slicer (Version 4.13.0, https://www.slicer.org/). The region of

interest (ROI) that covers the entire CT visible tumor was

manually contoured slice by slice on the axial plane, avoiding

surrounding normal tissues as much as possible. When the

nodule was close to the pleura, it was required to contour more

than 1 mm from it. Both radiologists were blind to the clinical

information and pathological results. The intraclass correlation

coefficient (ICC) was used to measure and evaluate inter-observe

and test-retest reliability. The features of ICC≥0.75 indicated good

repeatability and were reserved for further analysis.

All CT images were resampled using a spline interpolation

algorithm to ensure radiographic consistency, and all images

were spaced 1mm×1mm×1mm. We extracted radiomic features

using PyRadiomics software (https://pyradiomics.readthedocs.io/).

A total of 1211 radiomic features were extracted for each patient

on CT images. The radiomic features could be classified into

seven categories: Shape Features, First Order Features, Gray Level

Co-occurrence Matrix (GLCM) Features, Gray Level Dependence

Matrix (GLDM) Features, Gray Level Run Length Matrix (GLRLM)

Features, Gray Level Size Zone Matrix (GLSZM) Features and

Neighborhood Gray-Tone Difference Matrix Features (NGTDM)

(23). Three types of images were used to extract these quantitative

radiomic features: the Original Image, the Laplacian of Gaussian

Image, and the Wavelet Image, which was derived after eight

wavelet decompositions. By applying High (H) or Low (L) pass

filter in three dimensions, we got eight combinations: LHL, HHL,

HLL, HHH, HLH, LHH, LLH, and LLL. A sequence of sigma values
FIGURE 1

Flowchart of the patient selection.
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was used to generate LoG Image by LoG filter. A high sigma

emphasizes coarse textures, while a low sigma emphasizes fine

textures. Sigma of 2, 3, 4, and 5 were used in this study.
Feature selection and construction,
validation of radiomic model

Dimensionality reduction for radiomic features was achieved in

three steps. Firstly, radiomic features with variance>1.0 were selected.

Secondly, Analysis of Variance (ANOVA) was used to choose the

statistical influence feature for pathological grade. Lastly, radiomic

features were available by selecting pathological grade-related features

with non-zero coefficients from the training set using the least absolute

shrinkage and selection operation (LASSO) algorithm. With a

combination of selected features weighted by their respective

coefficients, the rad-score was computed for each patient using the

LASSO regression. Both feature selection and radiomic signature

construction were performed in the training set. Radiomic signature

performance was evaluated using an inter-validation set and

independent test set which were not used for model construction.
Definition of CT Image
radiological features

The CT images were analyzed and recorded by two senior

radiologists with more than ten years’ experience in respiratory

system imaging diagnosis, and a consensus diagnosis was reached

after discussion: a) lesions density, including pure ground glass

nodule (pGGN), mixed ground glass nodule (mGGN), sub-solid

nodule (SSN) and solid nodule (SN), where mGGN was defined as

the ratio of the solid portion to the maximum diameter of the entire

lesion<1/2, and SSN lesion was defined as the ratio of the solid part

to the maximum diameter of the entire lesions≥1/2; b) long-axis

and short-axis diameter of lesion; c) internal signs of the lesion; d)

relationship between lesion and blood vessel; e) relationship

between lesion and bronchus; f) lesion edge. The representative

cases are shown in Figure 2.
Statistical analysis

Statistical analysis used SPSS (version 26.0, https://

www.ibm.com) and MedCalc software (version 20.104, https://

www.medcalc.org). The normality of the data was tested using the

Shapiro-Wilk normality test. The continuous variable with normal

distribution was expressed as (mean ± SD), and the independent

sample t-test was used for comparison between groups; the

continuous variable with non-normal distribution was expressed

as M (P25, P75), and the Mann-Whitney U test was used for

comparison between groups; The chi-square test or Fisher’s exact

test was used to compare categorical variable. ICC was used to

evaluate the consistency of radiomic features, and ICC≥0.75

represented good repeatability. Logistic regression (LR) classifier

was used to establish radiomics model (RM), clinical-radiological
Frontiers in Oncology 04
features model (CRM), and combined rad-score with radiological

features model (CRRM). The area under the curve (AUC) of the

receiver operating characteristic (ROC) curve and calibration curve

were used to evaluate the performance and fitness of models.

Delong test was used to compare AUC between models, and

p<0.05 was considered statistically significant.
Result

Clinical and CT radiological features

The training set included 159 patients (130 low/intermediate-

grade; 29 high-grade), the validation set included 69 patients (56

low/intermediate-grade; 13 high-grade) and the test set included 66

patients (49 low/intermediate-grade; 17 high-grade). The clinical

and radiological features of patients are compared in Table 1.
Feature selection and radiomic
model construction

After a series of feature selection, five optimal radiomic features

were obtained, including log-sigma-4-0-mm-3D_ngtdm_

Complexity, original_firstorder_Median, original_glcm_

ClusterShade, wavelet-LLL_glcm_Autocorrelation, wavelet-

LLL_gldm_LargeDependenceHighGrayLevelEmphasis. The

feature weighting coefficients were obtained by LASSO-LR. The

weights and comparisons of each feature are shown in Table 2 and

Figure 3. In the training set, the above five radiomic features were

used to construct RM using LR classifier to predict the pathological

grade of lPA, and the radscore of each patient was calculated.
Radiological features selection and clinical-
radiological features model construction

The relationships between clinical-radiological features and IPA

pathological grade in the training set were shown in Table 3. Univariate

analysis showed statistically significant in seven variables between low/

intermediate-grade and high-grade. Multivariate analysis showed

pulmonary nodule density [odds ratio (OR) =1.165; 95% confidence

interval (CI)=1.108-1.225; p<0.001], margin (OR=1.454; 95%CI=1.076-

1.965; p=0.015), lesion location of LLL (OR=1.238; 95%CI= 1.038-

1.476;p=0.018), which were independently associated with IPA

pathological grade. The above three risk factors in the training set

were used to construct CRM using LR classifier. The expression of the

model was: Logit(P)=-0.263 + 0.153× nodule density +0.374 × margin

+0.214 × lesion location (left lower lobe).
Combined rad-score with radiological
features model construction

The relationships between rad-score and radiological features

and IPA pathological grade in the training set were shown in
frontiersin.org
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FIGURE 2

Representative cases of three different pathological grades. (A) Low grade, F, 55Y, T1b, a 1.16-cm lepidic predominant adenocarcinoma with no
high-grade patterns in the left upper lobe(LUL) manifesting as a pure ground glass nodule(pGGN). All three model classified the lesion as low/
intermediate-grade group; (B) Low grade, F, 72Y, T1b, a 1.64-cm lepidic predominant adenocarcinoma with 5% high-grade patterns in the right
upper lobe(RUL) manifesting as a sub-solid nodule(SSN). All three model classified the lesion as low/intermediate-grade group; (C) Intermediate-
grade, M, 57Y, T1c, a 2.59-cm papillary predominant adenocarcinoma with no high-grade pattern in the right upper lobe(RUL) manifesting as a pure
ground glass nodule(pGGN). All three model classified the lesion as low/intermediate-grade group; (D) Intermediate-grade, M, 61Y, T1b, a 1.73-cm
acinar predominant adenocarcinoma with 3% high-grade patterns in the left upper lobe(LUL) manifesting as a sub-solid nodule(SSN). CRM and
CRRM classified the lesion as low/intermediate-grade group, RM classified the lesion as high-grade group; (E) High-grade, M, 63Y, T1c, a 2.45-cm
acinar predominant adenocarcinoma with 20% high-grade patterns in the right upper lobe(RUL) manifesting as a solid nodule (SN). RM and CRRM
classified the lesion as high-grade group, CRM classified the lesion as low/intermediate-grade group; (F) High-grade, M, 73Y, T1c, a 2.85-cm solid
predominant adenocarcinoma with 80% high-grade patterns in the right upper lobe(RUL) manifesting as a solid nodule (SN). RM and CRRM classified
the lesion as high-grade group, CRM classified the lesion as low/intermediate-grade group.
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TABLE 1 The clinical and CT radiological features of patients in the training, validation and test set.

p Test set (n=66)

Low/intermediate-grade
(n = 49)

high-grade
(n = 17)

0.632

60.18 ± 8.50 62.29 ± 8.56 0.382

0.473 0.404

20 (40.82%) 5 (29.41%)

29 (59.18%) 12 (70.59%)

0.101 0.131

44 (89.80%) 12 (70.59%)

5 (10.20%) 5 (29.41%)

0.003 0.326

2 (4.08%) 0 (0.00%)

27 (55.10%) 8 (47.06%)

13 (26.53%) 5 (29.41%)

7 (14.29%) 4 (23.53%)

0.001 1.78 (1.43, 2.46) 2.07 (1.53, 2.76) 0.250

0.003 1.33 (0.99, 1.72) 1.76 (1.26, 2.03) 0.096

0.245 0.270

20 (40.82%) 5 (29.41%)

5 (10.20%) 1 (5.88%)

8 (16.33%) 3 (17.65%)

15 (30.61%) 5 (29.41%)

1 (2.04%) 3 (17.65%)

<0.001 <0.001

2 (4.08%) 0 (0.00%)
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Features Training set (n =159) p Validation set (n=69)

Low/intermediate-grade
(n = 130)

high-grade
(n = 29)

Low/intermediate-grade
(n = 56)

high-grade
(n = 13)

Age (years) 0.038

Mean ± SD/M
(P25, P75)

60.00 (54.00, 66.00) 64.00 (58.70, 68.90) 62.07 ± 8.09 60.92 ± 6.01

Sex 0.111

Male 55 (42.31%) 17 (58.62%) 24 (42.86%) 7 (53.85%)

Female 75 (57.69%) 12 (41.38%) 32 (57.14%) 6 (46.15%)

Smoking history 0.806

No 97 (74.62%) 21 (72.41%) 45 (80.36%) 7 (53.85%)

Yes 33 (25.38%) 8 (27.59%) 11 (19.64%) 6 (46.15%)

Clinical stage 0.330

IA 1 7 (5.38%) 0 (0.00%) 2 (3.57%) 0 (0.00%)

IA 2 75 (57.69%) 16 (55.17%) 37 (66.07%) 3 (23.08%)

IA 3 39 (30.00%) 10 (34.48%) 14 (25.00%) 6 (46.15%)

IB 9 (6.92%) 3 (10.34%) 3 (5.36%) 4 (30.77%)

Long-axis
diameter (cm)

1.76 (1.41, 2.19) 1.84 (1.38, 2.67) 0.402 1.62 (1.27, 2.15) 2.69 (2.00-3.68)

Short-axis
diameter (cm)

1.37 (1.02, 1.75) 1.58 (1.12, 1.89) 0.124 1.26 (0.94, 1.58) 1.89 (1.34,2.33)

Lobe location 0.008

RUL 60 (46.15%) 5 (17.24%) 16 (28.57%) 6 (46.15%)

RML 5 (3.85%) 2 (6.90%) 3 (5.36%) 2 (15.38%)

RLL 26 (20.00%) 9 (31.03%) 14 (25.00%) 1 (7.69%)

LUL 30 (23.08%) 6 (20.69%) 17 (30.36%) 2 (15.38%)

LLL 9 (6.92%) 7 (24.14%) 6 (10.71%) 2 (15.38%)

Nodule density <0.001

pGGN 21 (16.15%) 0 (0.00%) 14 (25.00%) 0 (0.00%)
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TABLE 1 Continued

p Test set (n=66)

Low/intermediate-grade
(n = 49)

high-grade
(n = 17)

24 (48.98%) 1 (5.88%)

14 (28.57%) 3 (17.65%)

9 (18.37%) 13 (76.47%)

.135 1.000

49 (100.00%) 17 (100.00%)

0 (0.00%) 0 (0.00%)

.110 0.001

26 (53.06%) 1 (5.88%)

23 (46.94%) 16 (94.12%)

.090 0.809

2 (4.08%) 1 (5.88%)

3 (6.12%) 0 (0.00%)

44 (89.80%) 16 (94.12%)

0.001 0.009

16 (32.65%) 1 (5.88%)

29 (59.18%) 10 (58.82%)

4 (8.16%) 6 (35.29%)

.945 0.725

25 (51.02%) 11 (64.71%)

19 (38.78%) 2 (11.76%)

5 (10.20%) 4 (23.53%)

.001 0.013

1 (2.04%) 1 (5.88%)

2 (4.08%) 0 (0.00%)

27 (55.10%) 2 (11.76%)

(Continued)
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Features Training set (n =159) p Validation set (n=69)

Low/intermediate-grade
(n = 130)

high-grade
(n = 29)

Low/intermediate-grade
(n = 56)

high-grade
(n = 13)

mGGN 53 (40.77%) 4 (13.79%) 30 (53.57%) 2 (15.38%)

SSN 30 (23.08%) 0 (0.00%) 7 (12.50%) 1 (7.69%)

SN 26 (20.00%) 25 (86.21%) 5 (8.93%) 10 (76.92%)

Margin 0.043

Circumscribed 128 (98.46%) 26 (89.66%) 53 (94.64%) 10 (76.92%)

Speculated 2 (1.54%) 3 (10.34%) 3 (5.36%) 3 (23.08%)

Pleural indentation 0.008

No 71 (54.62%) 8 (27.59%) 31 (55.36%) 4 (30.77%)

Yes 59 (45.38%) 21 (72.41%) 25 (44.64%) 9 (69.23%)

Lobulation 0.141

No 5 (3.85%) 0 (0.00%) 4 (7.14%) 0 (0.00%)

Shallow lobulation 35 (26.92%) 4 (13.79%) 17 (30.36%) 1 (7.69%)

Deep lobulation 90 (69.23%) 25 (86.21%) 35 (62.50%) 12 (92.31%)

Spiculation 0.006 <

No 62 (47.69%) 8 (27.59%) 37 (66.07%) 2 (15.38%)

Short spiculation 13 (10.00%) 11 (37.93%) 4 (7.14%) 7 (53.85%)

Long spiculation 55 (42.31%) 10 (34.48%) 15 (26.79%) 4 (30.77%)

Bubblelike lucency 0.296

No 77 (59.23%) 15 (51.72%) 35 (62.50%) 8 (61.54%)

<3mm 36 (27.69%) 6 (20.69%) 13 (23.21%) 3 (23.08%)

>3mm 17 (13.08%) 8 (27.59%) 8 (14.29%) 2 (15.38%)

Bronchovascular <0.001

Irrelevant 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)

Attachment 17 (13.08%) 1 (3.45%) 2 (3.57%) 0 (0.00%)

Through/Convergence 91 (70.00%) 11 (37.93%) 49 (87.50%) 4 (30.77%)
0

0

0

0

0
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TABLE 1 Continued

p Validation set (n=69) p Test set (n=66)

Low/intermediate-grade
(n = 56)

high-grade
(n = 13)

Low/intermediate-grade
(n = 49)

high-grade
(n = 17)

5 (8.93%) 9 (69.23%) 19 (38.78%) 14 (82.35%)

0.959 0.623 0.764

17 (30.36%) 8 (61.54%) 8 (16.33%) 5 (29.41%)

23 (41.07%) 0 (0.00%) 19 (38.78%) 4 (23.53%)

13 (23.21%) 1 (7.69%) 6 (12.24%) 2 (11.76%)

3 (5.36%) 4 (30.77%) 16 (32.65%) 6 (35.29%)

0.086 0.188 1.000

56 (100.00%) 12 (92.31%) 49 (100.00%) 17 (100.00%)

0 (0.00%) 1 (7.69%) 0 (0.00%) 0 (0.00%)

0.332 1.000 1.000

56 (100.00%) 13 (100.00%) 48 (97.96%) 17 (100.00%)

0 (0.00%) 0 (0.00%) 1 (2.04%) 0 (0.00%)

, left lower lobe; pGGN, pure ground glass nodule; mGGN, mixed ground glass nodule; SSN, sub-solid nodule; SN, solid nodule.
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Features Training set (n =159)

Low/intermediate-grade
(n = 130)

high-grade
(n = 29)

Interruption 22 (16.92%) 17 (58.62%)

Bronchial change

No 52 (40.00%) 14 (48.28%)

Air bronchogram 38 (29.23%) 5 (17.24%)

Thickened 19 (14.62%) 2 (6.90%)

Stenosis/Interruption 21 (16.15%) 8 (27.58%)

Micro-calcification

No 129 (99.23%) 27 (93.10%)

Yes 1 (0.77%) 2 (6.90%)

Lymphadenopathy

No 129 (99.23%) 28 (96.55%)

Yes 1 (0.77%) 1 (3.45%)

RUL, right upper lobe; RML, right middle lobe; RLL, right lower lobe; LUL, left upper lobe; LLL
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Table 4. Multivariate analysis revealed pulmonary nodule density

(OR=1.079; 95% CI=1.012-1.149; p=0.019), margin (OR=1.387;

95% CI =1.037- 1.854; p=0.027), and rad-score (OR=1.335; 95%

CI=1.164-1.532; p<0.001), which were independently associated

with IPA pathological grade. The above three independent

predictors in the training set were used to construct CRRM using

LR classifier. The expression of the model was: Logit(P)

=0.024 + 0.076× nodule density + 0.327× margin +

0.289×Radscore, and visualized CRRM by nomogram (Figure 4).

And the pathological grade of patients can be predicted individually

through the nomogram. The higher the calculated value, the greater

the possibility of higher pathological grade of IPA.
Validation and evaluation of the
model performance

Finally, three models were constructed to predict pathological

grade, including RM, CRM, and CRRM. The ROC curves, AUC,

95% CI-AUC, accuracy, sensitivity, and specificity for each model in

the training, validation and test set are shown in Figure 5, Table 5.

The AUC of CRRM was the highest in both training, validation and

test set (AUC=0.888,95%CI=0.819-0.957;AUC=0.922,95%

CI=0.835-1.000;AUC=0.860,95%CI=0.755-0.964), and there was

statistically significant among the training set (Delong test: RM

vs. CRRM, p= 0.028; CRM vs. CRRM, p=0.013). The AUC of CRM

was slightly higher than RM in both training, validation and test set
Frontiers in Oncology 09
[AUC=0.849(95%CI=0.772 - 0.925) vs. AUC=0.825(95%CI=0.735 -

0.916); AUC=0.888(95% CI =0.794-0.982) vs. AUC=0.879(95%

CI=0.734-1.000); AUC=0.849(95% CI =0.750-0.948) vs.

AUC=0.814(95% CI=0.674-0.954)], the difference was not

statistically significant (Delong Test, p>0.05). The calibration

curve showed that the predicted probability of pathological grade

by RM, CRM, and CRRM were highly consistent with the observed

probability, as shown in Figure 6.
Discussion

Our study showed that the AUCs for three models—radiomics

model (RM), clinical-radiological model (CRM), and combined

radiomics-radiological model (CRRM)—ranged from 0.825 to

0.888 in the training set, 0.879 to 0.922 in the validation set and

0.814 to 0.860 in the test set, all indicating well prediction

performance. Notably, the AUC of CRRM was the highest across

all sets, with AUC = 0.888 (95% CI = 0.819-0.957) in the training

set, AUC = 0.922 (95% CI = 0.835-1.000) in the validation set, and

AUC = 0.860 (95% CI = 0.755-0.964) in the test set. Furthermore,

the nomogram based on the rad-score and radiological features, can

be used as an intuitive and non-invasive tool for predicting the

preoperative pathological grade of early IPA.

Because the sample size of preoperative needle biopsy is small, it

cannot fully reflect all pathological pattern of IPA, so it usually

cannot meet the pathological grade diagnosis of IPA. In addition,

biopsy techniques may not be appropriate for small nodules. In

contrast, preoperative CT-based radiomics model is not affected by

sampling bias, it can reflect the overall characteristics of the nodule,

offer more detailed differential grading information before surgery,

facilitate histopathological diagnosis, and is non-invasive, making it

particularly suitable for patients who are unable or unwilling to

have surgery. Numerous studies have demonstrated that the

presence of high-grade pattern is associated with poor prognosis,

even if it is not the predominant subtype, it will increases the risk of

lymph node metastasis and local recurrence (5, 6, 24). Therefore,

lobectomy and systemic lymph node dissection should be

considered for these patients with a high-grade pattern≥20% (25,

26). Additionally, previous studies have indicated that patients with

high-grade pattern may benefit from adjuvant chemotherapy and
TABLE 2 Name and weighting coefficient of five optimal
radiomic features.

Radiomic features Weighting
coefficient

log-sigma-4-0-mm-3D_ngtdm_Complexity 0.092813

original_firstorder_Median 0.147805

original_glcm_ClusterShade -0.128176

wavelet-LLL_glcm_Autocorrelation 0.117018

wavelet-LLL_gldm_LargeDependenceHighGrayLevelEmphasis 0.126366
ngtdm, neighborhood gray-tone difference matrix; glcm, gray level co-occurrence matrix.
FIGURE 3

Intra-group distribution and inter-group analysis of the five optimal radiomic features in training set.
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improve disease-free survival (11, 13). Conversely, the lepidic

predominant subtype is associated with the best prognosis, with

low incidence of lymph node metastasis and rare recurrence. Jung

et al. found that the median volume doubling time of the lepidic

predominant subtype was over 1000 days, suggesting it may be

more suitable for conservative surveillance (27). For the acinar/

papillary predominant subtype, the prognosis is intermediate, with
Frontiers in Oncology 10
the possibility of positive surgical intervention and regular

reexamination. Therefore, CT-based radiomics model can help

determining the pathological grading of IPA, potentially guiding

personalized treatment options, such as conservative surveillance,

appropriate surgical approaches, or adjuvant chemotherapy.

Several previous studies have used radiomics to predict the

pathological grade of pulmonary adenocarcinoma. Bae et al.

predicted the pathological grading of 91 patients with stage I-II

pulmonary adenocarcinoma using a dual-energy CT radiomic

signature (28). Patients were classified into three grades according

to the architectural grading system, the AUC of the prediction

model was 0.9307, 0.8610, and 0.8394, respectively. Park et al. used

CT radiomic signature to differentiate the predominant subtypes

based on Sica’s grading system, achieving model AUCs of 0.892 and

0.895 in the training and validation sets, respectively (29). The

studies mentioned above were based on the older pathological

grading system. Currently, there are few radiomics studies

focusing on the new pathological grading system. Tang et al.

investigated multiparametric MRI-based radiomic signature for

preoperative prediction of histological grade in patients with non-

small cell lung cancer, demonstrating that the radiomics-clinical

nomogram had the potential to distinguish histological grade in

non-small cell lung cancer, with AUCs of 0.814 and 0.767 in the

training and validation sets, respectively (30). Their results were

comparable to ours, suggesting that radiomics can be used to non-

invasively predict the pathological grade of IPA.

In our study, the rad-score of CRRM was calculated from the

five optimal radiomic features. According to the feature definitions

provided by the Image Biomarker Standardization Initiative (IBSI)

(31), complexity is a Gaussian-transformed NGTDM feature that

measures both macroscopic and local perivoxel changes.

Autocorrelation is a wavelet-transformed GLCM feature that

assesses image texture roughness. These two features reflect

tumor heterogeneity. Our findings indicate that voxel complexity

and image texture roughness are greater in high-grade IPA

compared to low/intermediate-grade IPA, because the cell’s

morphological characteristics of high-grade IPA under the

microscope will be poorly differentiated, and the tumor

heterogeneity will be higher. Median is a first-order feature that

represents the median intensity of the gray level histogram. Cluster

Shade is a GLCM feature that reflects the asymmetry of pixel

distribution. Large Dependence High Gray Level Emphasis is a

wavelet-transformed GLDM feature that indicates the image high-

intensity voxels are more concentrated. These three features are

closely related to the nodule density of the tumor. In our study, the

median gray value and the concentration of high intensity voxels in

high-grade IPA were found to be higher than those in low/

intermediate-grade IPA, whereas the asymmetry was lower. This

difference is primarily due to the fact that high-grade IPA are

mainly manifested as SN on CT images, low/intermediate-grade

IPA are mainly manifested as mGGN. Consequently, the mean

asymmetry of entire SN was lower than that of nodules mixed

ground-glass and solid density, while the median gray value and

high-intensity voxel concentration were higher than mGGN.

In CRRM, two radiological features of pulmonary nodules

density and margin were independent predictors. Our findings
TABLE 3 Relationships between clinical-radiological features and IPA
pathological grade in the training set.

characteristics

Univariate analysis
Multivariate
analysis

OR
(95% CI)

p
OR

(95% CI)
p

Age (years)

1.007
(1.001-1.013)

1.001
1.001
1.001
1.001
)

0.034 NA

Lobe location

RUL reference reference

RML
1.114

(0.830-1.495)
0.471

RLL
1.101

(0.952-1.273)
0.195

LUL
0.980

(0.848-1.132)
0.782

LLL
1.328

(1.092-1.614)
0.005

1.238
(1.038-1.476)

0.018

Nodule density
1.183

(1.124-1.244)
<0.001

1.165
(1.108-1.225)

<0.001

Margin
1.539

(1.096-2.162)
0.013

1.454
(1.076-1.965)

0.015

Pleural indentation
1.175

(1.044-1.322)
0.007 NA

Spiculation
1.151

(1.061-1.250)
0.001 NA

Bronchovascular
1.251

(1.135-1.380)
<0.001 NA
RUL, right upper lobe; RML, right middle lobe; RLL, right lower lobe; LUL, left upper lobe;
LLL, left lower lobe.
NA, not applicable.
TABLE 4 Relationships between rad-score and radiological features and
IPA pathological grade in the training set.

characteristics Multivariate analysis

OR 95%CI p

Lobe location. LLL NA

nodule density 1.079 1.012- 1.149 0.019

Margin 1.387 1.037- 1.854 0.027

Radscore 1.335 1.164- 1.532 <0.001
LLL, left lower lobe.
NA, not applicable.
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FIGURE 4

Nomogram of CRRM based on the training set.
FIGURE 5

ROC curves for RM, CRM and CRRM in the training set (A), validation set (B) and test set (C).
TABLE 5 Comparison between the training, validation and test set models.

Models Sets AUC 95%CI Accuracy Sensitivity Specificity

RM Training 0.825 0.735-0.916 80.5% 0.724 0.823

Validation 0.879 0.734-1.000 87.0% 0.769 0.893

Test 0.814 0.674-0.954 77.3% 0.882 0.735

CRM Training 0.849 0.772-0.925 84.9% 0.310 0.969

Validation 0.888 0.794-0.982 84.1% 0.308 0.964

Test 0.849 0.750-0.948 77.3% 0.118 1.000

CRRM Training 0.888 0.819-0.957 84.3% 0.793 0.854

Validation 0.922 0.835-1.000 90.0% 0.769 0.929

Test 0.860 0.755-0.964 78.8% 0.706 0.816
F
rontiers in Oncology
 11
RM, radiomics model; CRM, clinical-radiological features model; CRRM, combined rad-score with radiological features model.
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indicate that the nodule density is closely associated with the degree

of tumor differentiation. Specifically, when the lesion is solid, the

pathological grade of the tumor tends to be lower, which was

consistent with the findings of Fujikawa et al (32). Low-grade IPA is

characterized by slow growth, which serves as the pathological basis

for the circumscribed tumor margin. Conversely, as tumor

differentiation decreases, high-grade IPA may present as a solid

nodule with a speculated margin. This phenomenon can be
Frontiers in Oncology 12
attributed to several factors: first, the tumor exhibits a crab-like

growth pattern, infiltrating and interlacing with the normal lung

parenchyma; second, there is a degree of inflammatory reaction in

the peritumoral lung parenchyma; third, there is tumor thrombus

formation in the peritumoral small blood vessels and lymphatic

vessels. While the primary reason for these observations is the

tumor’s growth pattern, the latter two factors serve as

supplementary explanations.
FIGURE 6

Calibration curves for RM, CRM and CRRM in the training set (A, C, E) and validation set (B, D, F).
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This study has several limitations. First, it is a retrospective

analysis, which may introduce bias in the data collection process.

Specifically, our study only focused on patients with stage I IPA

from a single medical center. It is important to note that we

conducted our analysis using 500 random samples at a ratio of

7:3 and assessing the performance of the models through an

independent test set. Despite these limitations, we believe that our

retrospective study still holds potential application value. In further

study, it is necessary to include patients with stage II-IV IPA and

carry out multi-center cooperation to enhance the generalization

and robustness of the models. Second, the regions of interest (ROIs)

in this study were manually contoured by two radiologists

concurrently, ensuring that the radiomic features had an

intraclass correlation coefficient (ICC) of ≥0.75. Nonetheless,

some degree of subjective error may still be present. Third, the

clinical information included into the study was not comprehensive,

lacking details such as blood tumor markers and driver mutations.

Future multi-dimensional omics studies could enhance precision

medicine for the diagnosis and treatment of non-small cell lung

cancer. Finally, in addition to distinguishing the pathological grade

of early-stage IPA, CT-based radiomic parameters can also

differentiate between radiation pneumonitis and immune

pneumonitis, as well as predict PD-L1 expression and CD8

expression levels. We will continue to carry out further research

to explore other applications of CT radiomics in the

thoracic oncology.

In conclusion, the models based on radiomics, clinical-

radiological features, and radiomics combined with radiological

features had well performance in predicting pathological grade of

early-stage IPA, especially the combined model, which was expected

to be used as a supplementary method for preoperative non-

invasive evaluation.
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