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Introduction: Metabolic reprogramming is a hallmark feature of pancreatic

ductal adenocarcinoma (PDAC). A pancreatic juice (PJ) metabolic signature has

been reported to be prognostic of oncological outcome for PDAC. Integration of

PJ profiling with transcriptomic and spatial characterization of the tumor

microenvironment would help in identifying PDACs with peculiar vulnerabilities.

Methods: We performed a transcriptomic analysis of 26 PDAC samples grouped

into 3 metabolic clusters (M_CL) according to their PJ metabolic profile. We

analyzed molecular subtypes and transcriptional differences. Validation was

performed by multidimensional imaging on tumor slides.

Results: Pancreatic juice metabolic profiling was associated with PDAC

transcriptomic molecular subtypes (p=0.004). Tumors identified as M_CL1

exhibited a non-squamous molecular phenotype and demonstrated longer

survival. Enrichment analysis revealed the upregulation of immune genes and

pathways in M_CL1 samples compared to M_CL2, the group with worse
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prognosis, a difference confirmed by immunofluorescence on tissue slides.

Enrichment analysis of 39 immune signatures by xCell confirmed decreased

immune signatures in M_CL2 compared to M_CL1 and allowed a stratification of

patients associated with longer survival.

Discussion: PJ metabolic fingerprints reflect PDAC molecular subtypes and the

immune microenvironment, confirming PJ as a promising source of biomarkers

for personalized therapy.
KEYWORDS
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1 Introduction

Pancreatic ductal adenocarcinoma (PDAC) is one of the

deadliest cancers, with five-year survival at less than 10% (1).

Such poor prognosis is mostly due to the difficulty in diagnosing

PDAC at an early stage, as well as to its resistance to anticancer

therapies and the lack of biomarkers to predict treatment response.

Efforts to improve overall outcomes are focused on the search for

new biomarkers and personalized therapeutic approaches, both

requiring more granular characterization of the inter-

tumor heterogeneity.

Recent development in multi-dimensional analyses, particularly

genomic and transcriptomic, have led to the identification of

discrete PDAC subgroups (2–10), which classify PDAC into two

major transcriptomic subtypes, classical and squamous (basal-like),

characterized by distinct gene expression profiles, mutations, and

prognosis (4, 7, 10, 11). The squamous subtype is associated with a

worse prognosis and is defined by gene programs involved in

immuno-suppression and extensive metabolic reprogramming,

favoring glycolysis as the primary energy source (4, 7, 8).

Conversely, the classical subtype has a more favorable prognosis

and commonly presents a transcriptional signature associated with

immune infiltrate (immunogenic subtype) and a metabolism based

on the oxidation of fatty acids. The impact of molecular subtypes on

chemotherapy response is a subject of ongoing investigation in

multiple trials (12, 13). Preliminary results from the COMPASS

study (NCT02750657) suggest that patients with a classical subtype

signature generally respond better to chemotherapeutic

treatment (14).

Recent interest has emerged in the correlation between

molecular subtypes and metabolic alterations, for the

identification of new prognostic markers and the exploration of

potential drug-targetable vulnerabilities within tumors (9, 10, 15,

16). In this context, the composition of pancreatic juice (PJ)

emerges as a valuable source of tumor metabolic information. We

have shown that pancreatic juice of patients having PDAC presents

a high level of lactate compared to patients with other pancreatic

disorders (17). Moreover, the PJ metabolite composition was
02
heterogeneous among patients, and we could identify metabolic

profiles predictive of distinct oncological outcomes, including a

metabolic fingerprint prognostic for longer survival. Pancreatic

juice heterogeneity might reflect variations transcriptionally

determined as well as tumor metabolic characteristics, known to

be responsible for many of the alterations occurring in the tumor

microenvironment (TME) (18, 19). Immune cells infiltrating cancer

tissues are profoundly affected by metabolic alterations and we

found an increased density of PD-1+ T cells in highly glycolytic

tumors (17). To date, pancreatic cancer remains one of the cancers

most resistant to immunotherapy, including checkpoint inhibitors

(20). A key element of this low responsiveness is suspected to be the

low immunogenicity of pancreatic cancer, which could be linked to

a poor infiltration of both activated and immunosuppressive T cells

(21). On this line, molecular profiles, combined with multi-

dimensional analyses of the tumor immune microenvironment,

could be exploited to identify actionable alterations to be validated

as clinically relevant biomarker signatures.

Given the opportunity of pancreatic juice to serve as a source of

biomarkers, we aimed at integrating the PDAC metabolic

information, previously achieved through the analysis of the juice

(17) with tumor transcriptome and immune profiling. Integrating

different hi-resolution analyses (tissue transcriptome, metabolome,

and analysis of immune infiltrate) on matched pancreatic

biospecimens (tumor tissue and pancreatic juice), may help in

identifying PDACs with peculiar tumor vulnerabilities that might

respond differently to surgical and anticancer treatments,

including immunotherapies.
2 Materials and methods

2.1 Patients and study design

Twenty-six patients diagnosed with PDAC undergoing

pancreatic resection between 2015 and 2017 at Humanitas

Research Hospital were included in the study, after signing

informed consent. For all patients enrolled, tumor tissue and
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pancreatic juice were collected at the time of surgery according to

protocols approved by the Ethical Committee of the Institution

(protocol number n° 595 and 979/20). Patients median age at

surgery was 73 years (Min-Max 45–85), 15 (58%) were female.

All patients had a tumor in the head of the pancreas with upstream

main duct dilatation according to the inclusion criteria. Most of the

patients had a Whipple procedure (88,46%), whereas 3 patients

underwent total pancreatectomy. One patient (3.8%) received

neoadjuvant chemotherapy, following surgery, 13 (50%) patients

received adjuvant systemic treatment. On pathology, median tumor

size was 3,6 cm (Min-Max 1,4–6,0), 14 (53,84%) patients had R0

resection, 22 (85%) patients had nodal disease and 3 (11,5%) were

classified as metastatic for the presence of nodal disease in pericaval

lymph nodes (Supplementary Table S1). The median follow-up of

the study cohort was 38.5 months (Min-Max 7–51) (Supplementary

Figure S1A). Pancreatic juice was collected intraoperatively and

analyzed as previously described (17). Based on the metabolite

composition of the juice (17), the cohort of patients had been

grouped into 3 metabolic groups (M_CL), from now on referred to

as M_CL1 (n=8), M_CL2 (n=9) and M_CL3 (n=9). A second

cohort (cohort 2, Supplementary Table S2) was included to verify

whether patients with PDAC exhibit specific perturbations of

metabolites in PJ that differentiate them from patients with other

pancreatic/periampullary diseases. This second cohort included 70

patients who underwent pancreatic surgery for PDAC or other

diseases between 2015 and 2020 at Humanitas Research Hospital.

For all these patients, PJ was collected intraoperatively and

analyzed. All patients signed informed consent according to the

same protocols approved by the Ethical Committee of

the Institution.
2.2 RNA sequencing analysis

Transcriptomic analysis was conducted on FFPE PDAC

samples using a targeted, ligation-based Templated Oligo

Sequencing (TempO-Seq™) as previously described (22). Using

the guidance of the H&E slide (one slide/sample, 4 mm thickness),

the marked tumor area was excised from the replicate unstained

slide, lysed and analyzed using the Human whole transcriptome

panel v2.0 (Supplementary Figure S1B). In brief, the TempO-Seq

assay is based on the annealing of Detector Oligos consisting of a

sequence complementary to an mRNA target plus a universal

primer binding site, in immediate juxtaposition to each other on

the targeted RNA template such that they can be ligated together.

Ligated detector oligos were PCR-amplified using a primer set

(single-plex PCR reaction, with a single primer pair for each

sample), introducing both the adaptors required for sequencing

and a sample-specific barcode. The barcode sequences flanking the

target sequence were appropriately inserted into the standard

Illumina adaptors to permit standard dual-index sequencing of

the barcodes and deconvolution of sample-specific reads from the

sequencing data using the standard Illumina software. All the PCR-

amplified and barcoded samples were pooled into a single library

for sequencing. Sequencing reads were demultiplexed using the

standard sequencing instrument software for each sample, using the
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barcodes to give a FASTQ file for each. Read depth, evaluated as

average reads/probe, was 465. TempO-Seq sequence files were

analyzed using the Tempo-SeqR software package. Each FASTQ

file was aligned using the STAR algorithm to a pseudotranscriptome

corresponding to the gene panel used in the assay. The resulting raw

count matrix was processed in R environment (v4.1.1) (23) using

the average of the counts for the genes associated to multiple probes

and passed to DESeqDataSetFromMatrix() function from DESeq2

(v1.34, RRID: SCR_015687) (24) to be used as input for

downstream analyses. Genes expressed in less than 3 samples

with normalized counts lower than 5 were filtered out yielding to

a total of 16211 genes. Count data were normalized using DESeq2’s

median of ratios method by estimating normalization factor for

each sample with estimateSizeFactors() function prior running

counts() function with normalized=TRUE argument. Regularized

log (rlog) transformed counts of the first 500 genes with highest

variance were used to perform Principal Components Analysis

(PCA) on 26 PDAC samples. Differential expression analysis was

performed with DESeq() function and for each contrast the

resulting significant differentially expressed genes (pvalue < 0.05)

with a log2foldchange greater or equal to 1.5 in either direction were

highlighted in the Volcano Plots. Differential analysis across 3

clusters was performed by using the Likelihood Ratio Test (LRT).

The normalized expression values of up- and down-regulated genes

in each sample were used to build a clustered heatmap based on

Pearson correlation distance matrix (average linkage) using

pheatmap package (RRID: SCR_016418). Furthermore, the lists of

the up-regulated genes in M_CL1 compared to, respectively,

M_CL2 and M_CL3 clusters were used as input for conducting

Gene Ontology over-representation analysis with enrichGO()

function from clusterProfiler (v4.2.2, RRID: SCR_016884) (25).

The enrichment results for the top 10 enriched terms were

visualized as dotplot. RNA-seq normalized counts were used to

derive immune and stromal cell types in FFPE samples from PDAC

patients by running the xCell pipeline (xCellAnalysis() R function)

(26). xCell scores of selected immune cell types and Immune

(combined score of immune cell types) and microenvironment

scores (combined score of immune and stromal cell types) were

tested for differential enrichment (Mann-Whitney U-test) between

each pair of metabolic clusters (M_CL). Patients were grouped in

xCellhi and xCelllo by performing hierarchical clustering based on

Euclidean distance with complete linkage. Signatures identifying

each cluster were designed by using the intersections of the

differential expression analysis results (Supplementary File 1).

Survival analysis of TCGA human PDAC dataset based on the

expression of M_CL1 M_CL2 M_CL3 gene signatures was

performed using GEPIA2 (http://gepia2.cancer-pku.cn/). Median

value of gene expression values was used as group cutoff.
2.3 Molecular profiling

Gene set enrichment was performed using the R package

‘GSVA’ (function gsva - arguments: method = “gsva”, mx.diff =

TRUE) (27). GSVA implements a non-parametric unsupervised

method of gene set enrichment that allows an assessment of the
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relative enrichment of a selected pathway across the sample space.

The output of GSVA is a gene-set by sample matrix of GSVA

enrichment scores that are approximately normally distributed.

GSVA was used to obtain a score for the classical genes and a

score for the squamous genes, as previously described in the ICGC

landmark study of pancreas cancer (4). If the squamous score >

classical score the sample was ‘Squamous’, if the classical score >

squamous score the sample was ‘Classical’ and if the difference

between these scores was < 0.3, tumor samples were classified

as ‘Intermediate’.
2.4 Multiplex immunofluorescence

For each metabolic group (n=2 samples each group), a 5mm
slide consecutive to the one used for the transcriptomic analysis was

stained with antibodies directed to tumor cells (pan cytokeratin,

PCK), T cell populations (CD8, CD4 and FoxP3), macrophages

(CD68) and dendritic cells (CD11c). We considered a fragment of

36mm2 for each slide and analyzed the whole slide.
2.5 Imaging analysis

The computational image analysis was performed by following the

Phenocycler Pipeline proposed by Akoya Bioscences. Cell segmentation

and phenotyping were performed with the QuPath (28) software by a

stepwise approach. Manually defined tumor regions were divided into

rectangular tiles of 1500x1500 µm (about 15 tiles/sample) to reduce the

computational load. Cell segmentation was performed with the pre-

trained deep-learningmodel StarDist (29). Cell phenotyping was done in

a supervised manner by training a cell classifier based on the manual

annotation of PCK+, CD68+, CD8+, FOXP3+, CD4+ and CD11+ cells

based on specific staining, adopting the Training Object Classifier tool

embedded in QuPath and an Artificial Neural Network-based algorithm.

Specifically, we annotated from 25 to 30 cells for each phenotype of

interest in one sample as a training set. The accuracy of the classification

was visually confirmed by an expert pathologist. For each sample, we

extracted the frequency of each cell population and the distance between

them. The spatial analysis software CytoMAP (v.1.4.21) (30) was used to

compute the Pearson Correlation matrix for each sample and investigate

which cell types correlated or avoided each other. To elucidate the role of

the surrounding pancreatic fibrosis on the PJ findings, we analyzed

digitalized FFPE slides of the pancreatic neck resection margin.

We generated a random forest classifier for each H&E slide, using

tissue annotation and intensity feature extraction to differentiate between

normal pancreatic parenchyma, stromal component, and adipose tissue

in each case. To enhance the accuracy of the algorithm, smoothed

features at 25 and 50 mm radii were incorporated andmultiple rounds of

tissue classification review were performed.
2.6 Untargeted metabolomics profiling

Flow Injection Analysis High-resolution mass spectrometry

(FIA-HRMS) was used for untargeted metabolomics profiling of 70
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pancreatic juices (12 non PDAC, 58 PDAC) (31). Juice metabolites

from each subject were extracted using cold MeOH (1:4), incubated

20 minutes at -80°C, centrifuged at 13000 g for 15 min. A portion of

the metabolites extract (8 mL) was analyzed by -Orbitrap QExactive

Mass Spectrometer (ThermoFisher Scientific, Waltham, MA, USA)

equipped with an electrospray source operated in negative and

positive modes. Each run was carried out by injecting 8 mL of

sample extract at a flow rate of 50 mL/min (Agilent 1200 Series) of

mobile phase consisting of isopropanol/water (60:40, v/v) buffered

with 5 mM ammonium at pH 9 for negative mode and methanol/

water (60:40, v/v) with 0.1% formic acid at pH 3 for positive mode.

Reference masses for internal calibration were used in continuous

infusion during the analysis (m/z 210.1285 for positive and m/z

212.0750 for negative ionization). Mass spectra were recorded from

m/z 50 to 1000 with 60 000 resolutions. The source temperature was

set to 240°C with 25 L/min drying gas and a nebulizer pressure of 35

psig. MS/MS fragmentation pattern of the significant features was

collected and used to confirmmetabolite identity. All data processing

and analysis were done withMatlab R2016a (TheMathworks, Natick,

MA) using our in-house developed script (32). Web interface of

MetaboAnalyst (www.metaboanalyst.ca) was used to compute

multivariate analysis (OPLS-DA).
2.7 Statistical analysis

Disease characteristics were summarized using median and range

for continuous variables, and frequency and percentages for

categorical variables. Differences between metabolic cluster were

estimated by Fisher’s exact test and Kruskal-Wallis rank sum test,

as appropriate (R software, package: gtsummary). Overall survival

was calculated from the date of surgery until the date of death or last

follow-up, estimated using Kaplan-Meier methods and compared

between subgroups using log-rank test (R software, packages: ggplot2,

survminer). A Cox proportional-hazards model was used to study the

association between possible risk factors and OS, multiple

comparisons were adjusted using the Bonferroni method (R

software, package: gtsummary). All P values were based on 2-tailed

statistical analysis, and P < 0.05 was considered statistically

significant. All analyses were done using R software (R Core Team,

Vienna, Austria), and all software packages used were

publicly available.
3 Results

3.1 Integration of metabolic and
transcriptomic analysis of pancreatic
cancer biospecimens

To integrate information obtained from paired biospecimens,

we performed a transcriptomic analysis on the tumor slide from 26

patients, from whom we had investigated the metabolome of the

pancreatic juice collected intraoperatively (17) (Figure 1A). Median

follow-up among survivors was 38 months (95% CI 8–30 months)

(Supplementary Figure S1A). Based on the metabolite composition
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of the juice (17), the cohort of patients had been grouped into 3

metabolic groups (M_CL), from now on referred to as M_CL1

(n=8), M_CL2 (n=9) and M_CL3 (n=9). Patients of the 3 metabolic

profiles presented no significant differences in terms of clinical

staging parameters such as tumor size [median tumor size M_CL1
Frontiers in Oncology 05
(2.8 cm), M_CL2 (3.8 cm) and M_CL3 (4.4 cm)], stage and R status

(Supplementary Table S1). Nonetheless, at 48 months, the three

groups conserved distinct clinical outcomes, particularly

highlighting a metabolic profile associated with a favorable

prognosis (M_CL1, in which median survival was not reached)
B C

D E

F

G

A

FIGURE 1

Metabolic and transcriptomic analysis of PDAC paired biospecimens. (A) Schematic of the work. Transcriptomic analysis of 26 PDAC sections, on
whose pancreatic juice metabolomic analysis had been performed. Integration of multiomics information can improve patient profiling. (performed
with Biorender.com) (B) OPLS-DA score plot obtained from the metabolic profiling of 70 pancreatic juices (12 non PDAC, 58 PDAC). (C) Percentage
of stromal tissue, adipose tissue and pancreatic glands at the surgical resection margin in the three metabolic groups. Representative pictures of
Hematoxylin and Eosin (H&E) staining on tissue slides from M_CL1, M_CL2, M_CL3 residual pancreatic tissue (up). Scale bar: 2mm. Quantification of
the three tissue regions by imaging analysis in the three groups (bottom). P=ns by t test. (D) Principal component analysis projection of 26 PDAC
samples colored by Metabolic cluster assignment. (E) Gene set variation analysis (GSVA) of classical and squamous genes, in 26 PDAC samples,
according to the Moffitt molecular subtyping. Heatmap showing enrichment scores across 26 samples, color-coded by metabolic cluster and
molecular subtype. Samples with score difference lower than 3 are classified as intermediate. (F) Survival analysis of patients classified according to
the molecular profile. P=0.096 by log-rank test. (G) Pie charts showing proportions of molecular subtypes (classical, intermediate and squamous) in
the metabolic groups. p= 0.004 by Kruskal-Wallis rank sum test.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1405612
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Pulvirenti et al. 10.3389/fonc.2024.1405612
and two metabolic profiles characteristics of patients with worse

survival, i.e. M_CL2, with a median survival less than one year and

M_CL3, with an intermediate outcome (log-rank test p=0.0013)

(Supplementary Figure S1C). On univariable Cox regression

analysis, the metabolic group (M_CL) was the only predictor of

survival (Ref: M_CL1, M_CL 2 HR 10.9 95%CI 2.23–53.5, p=0.045,

Supplementary Tables S1, S3). This updated analysis confirmed a

correlation between metabolite composition in the juice and

survival, extending prognostic insights beyond conventional

parameters such as stage and tumor size. Furthermore, in a

distinct second cohort (cohort 2, n=70) comparing PDAC with

non-PDAC samples, the diagnostic value of the metabolite content

of the juice was confirmed by a mass spectrometry-based

metabolomic approach (see Supplementary Methods) in which

the OPLS-DA (orthogonal partial least squares discriminant

analysis) score plot showed segregation between PDAC and non-

PDAC juices (Figure 1B). Lactate and valine were among the

metabolites that contributed to this difference, confirming

previous findings (17) (Supplementary Figure S2).

To exclude that histopathological features (such as the presence

of pancreatic fibrosis due to the neoplastic obstructive chronic

pancreatitis or atrophy) could have contributed to differences in the

pancreatic juice metabolic composition, we analyzed the upstream

pancreatic tissue (Supplementary Figure S1D) using digital pathology

tools. This analysis showed that the proportions of fibrosis, adipose

tissue, and pancreatic glands at the surgical resection margin were

consistent across the metabolic groups, confirming the absence of

correlation between histological characteristics of the surrounding

gland and the metabolic signature (Figure 1C).

On the same cohort of 26 patients, we performed a

transcriptomic analysis of the paraffin-embedded tissue slide from

the corresponding primary tumor. We used the TempO-Seq

technology (22), a targeted sequencing-based RNA expression

analysis, and we deployed to an excised tumor area identified

with the guidance of an H&E slide, thus allowing us to include

samples with low-tumor content (Supplementary Figure S1B),

which has represented an issue in previous transcriptomic studies

using bulk tissue analysis (33). At PCA visualization there was no

clear segregation of the samples previously classified according to

their metabolome (M_CL1, M_CL2, M_CL3), suggesting a higher

level of complexity of their transcriptome (Figure 1D). We then

used the transcriptional profile to classify the patient tumor samples

as classical or squamous (basal-like), according to the Moffitt

molecular subtyping (3–7, 9, 10). Of the 26 samples 10 (38%)

resulted in classical and 8 (31%) resulted in the squamous subtype,

while 8 (31%) samples presented an intermediate/mixed

transcriptome (Figure 1E). In line with what was already

reported, patients with a squamous molecular subtype had

shorter OS (log-rank test, p=0.096) (Figure 1F). Integrating the

metabolic information with the molecular subtypes, M_CL1, which

had the best prognosis presented a higher frequency of intermediate

[n = 6 (75%)] and classical [n = 2 (25%)] subtypes with no

squamous subtype observed. Conversely, M_CL2, having the

worst survival, had a higher frequency of squamous [n = 3 (33%)]
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and no intermediate subtype; M_CL3 had a mixture of all three

subtypes. Differences in subtype distribution among different

metabolic clusters were statistically significant (p= 0.004 by

Fisher’s exact test) (Figure 1G), suggesting a consistency of the

molecular subtypes and metabolic profiles.
3.2 Transcriptional differences of PDAC
tissues between metabolic clusters identify
immunologically distinct profiles

We then compared the transcriptome of patients belonging to

M_CL1, the metabolic cluster with the most favorable prognosis,

with the transcriptome of M_CL2 and M_CL3. Differential gene

expression (DEG) analysis yielded 182 upregulated genes (M_CL1

compared to M_CL2) (Figure 2A, top) and 194 upregulated genes

when compared to M_CL3 (Figure 2A, bottom). Based on the

differentially expressed genes, all the samples clustered according to

the metabolic group (Figure 2B), confirming that the variations

detected in the juice correlate with the transcriptome of the

corresponding tumor tissue. Among the top 10 pathways

enriched in M_CL1 compared to M_CL2 samples by gene

ontology enrichment analysis, many immune pathways emerged,

including positive regulation of the immune response, leukocyte

migration and T-cell activation (Figure 2C), consistent with the up-

regulation of genes encoding for lymphoid chemokines (such as

CXCL13, CCL19, CXCL12) and genes related to T-cell biology

(CRTAM, IL7R and NFATC2) (Figure 2D). The comparison with

M_CL3 evidenced tissue-specific processes, such as regulation of

secretion and response to hormones (Supplementary Figure S1E).

The transcriptional differences corresponded to a modified tumor

microenvironment as assessed by multiplex immunofluorescence

on FFPE slides (Figure 2E), as immune cells, particularly CD8+ and

CD4+ T cells, infiltrated PCK+ tumor tissue considerably in M_CL1,

while very few were present in M_CL2 samples (Figure 2E).

Notably, differential analysis across the 3 groups overlapped with

the comparison between M_CL1 and M_CL2.
3.3 Spatial assessment of metabolically
distinct PDAC tissues

Having shown a deep-level classification of PDAC tissues, by a

metabolic classification based on the PJ and a molecular and immune

classification based on the transcriptome, we aimed at integrating this

information by quantitative multiparametric immunofluorescence on

whole slides (Figure 3A). This analysis would indeed contribute to a

better understanding of immune cell infiltration in the tumor

microenvironment (TME), elucidating their spatial relationships

and potential interactions between cells. A significant higher CD8+

and CD4+ T cell density in M_CL1 andM_CL3 compared to M_CL2

samples emerged (Figure 3B), and a lower density in FOXP3+ T cells

and CD68+ macrophages in M_CL1 (Figure 3B). Of note CD11c+

dendritic cells were almost absent in M_CL2 and M_CL3 samples,
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FIGURE 2

Transcriptional differences of metabolically distinct PDAC tissues. (A) Differential gene expression analysis on M_CL1 and M_CL2 (top) and M_CL1
and M_CL3 (bottom) transcriptomes. Volcano plots of differentially expressed genes (DEGs) highlighting genes having log2(fold change)>|1.5 and p-
value<0.05). (B) Scaled normalized expression values of upregulated and downregulated DEGs in M_CL1 versus M_CL2 samples (right panel) and
M_CL1 versus M_CL3 samples (left panel). Gene expression is color-coded from blue (lower) to red (higher). Columns represent samples, rows
represent genes. The color codes in the upper part of the heatmap indicate the metabolic group identity of each sample. Hierarchical clustering is
shown as dendrogram over the columns. (C) Enrichment pathway analysis of M_CL1 versus M_CL2 samples. Dot-plot shows top 10 enriched GO
terms in M_CL1, ordered by gene ratio (percentage of DEGs in the GO term) and color-coded by p-value. The size of the dot represents the count
of the genes in the GO term. (D) Violin plot showing the log2 normalized counts of selected genes from the T-cell pathways in M_CL1 and M_CL2
samples (p-value by Mann-Whitney U-test). (E) Immune contexture in metabolically distinct samples. Representative pictures of M_CL1, M_CL2 and
M_CL3 samples stained by multiplex immunofluorescence with antibodies directed against Pan-cytokeratin (yellow), CD8 (magenta), CD4 (cyan),
CD11c (white), CD68 (red), FoxP3 (green), nuclei (blue). Scale bar= 100 mm. Insets show CD8+ T cells (magenta) and PCK+ tumor cells (yellow).
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compared to M_CL1. These differences were better evidenced when

considering all the immune variables together (Figure 3C), suggesting

that a general adaptive immune infiltration, rather than single

populations, was characteristic of M_CL1, the group with the better

survival. Spatial analysis of the distance among different immune cells

evidenced that CD8+ T cells and CD4+ T cells were significantly

closer in M_CL1 samples, compared to the other 2 groups

(Figures 3D, E). Moreover, Pearson’s correlation coefficients

between cells, evidenced colocalization of all the immune types

with PCK+ tumor cells in M_CL1 while negative coefficients

showed avoidance in M_CL2 and M_CL3 samples (Figure 3F).
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3.4 Transcriptional immune profiles with
prognostic significance in PDAC

Immune genes and pathways have been shown to contribute to

the classification of PDAC into clinically relevant profiles (6). We

took advantage of xCell, a signature-based tool that performs

enrichment analysis based on gene expression data, to further test

whether the transcriptome encoded clinically relevant information.

We considered 39 immune signatures, inclusive of main immune

types (T, B, NK cells, myeloid cells, stromal and immune signatures)

and we computed the signature enrichment score for each sample of
B C
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FIGURE 3

Spatial assessment of PDAC tissues identifies immunologically distinct profiles. (A) Multiparametric immunofluorescence on whole slides of PDAC
sections, stained for Pan-cytokeratin (yellow), CD8 (magenta), CD4 (cyan), CD11c (white), CD68 (red), FoxP3 (green). Nuclei in (blue). One representative
image for each metabolic group (M_CL1, M_CL2 and M_CL3), showing borders of the tissue analyzed (red line), segmentation of the tissue in quadrants
(tiles, grey line) and cell phenotyping (inset). Scale bar= 1mm. (B) Quantification of main populations in the three groups. Violin plot represents
percentage of cells in each tile, dot-lines are first and third quartiles, dashed line represents the median. n=2 samples each group, n=14 tiles in M_CL1
and n=16 tiles in M_CL2 and M_CL3. P value by student t test. (C). Bubble plot showing percentage of CD68+ Mj (circle color), CD11c+ DCs (circle size),
CD8+ T cells (position on X) and of CD4+ T cells (position on Y). (D) Spatial analysis of the distance between CD8+ and CD4+ T cells in PDAC tissues.
Representative pictures of sections from M_CL1, M_CL2 and M_CL3 samples. CD8 (magenta), CD4 (cyan), PCK+ tumor cells (yellow). Scale bar= 100
mm. (E) Quantification of the distance between CD8+ and CD4+ T cells in PDAC tissues. Dots represent distance in mm between each CD8+ T cell and
CD4+ T cells in each tile. n=2 whole slides each metabolic group, n=14 tiles in M_CL1 and n=16 tiles in M_CL2 and M_CL3. (F) Pearson’s correlation
coefficients between cells, allowing to understand the colocalization rather than avoidance among different cell types. * p<0.05; ** p<0.01;
***p<0.001; ****p<0.0001.
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our cohort (Figure 4A, only significant signatures are shown). The

analysis confirmed that samples belonging to M_CL2, the metabolic

group with the worst prognosis, presented a marked decrease in the

overall immune and microenvironment signatures (Figure 4A), in

line with the low-grade infiltration of these tumors (Figure 2E). Both

the T, B and NK cell compartments, alongside activated DC

signatures, accounted for the decreased enrichment in M_CL2

compared to M_CL1, while M_CL3 were less homogeneous. This

group instead, presented a significant enrichment in macrophage and
Frontiers in Oncology 09
T-regulatory signatures (Figure 4A). Of note, the stratification of

patients into 2 groups, according to the xCell enrichment score

(xCellhi and xCelllo) was significantly associated with longer

survival (Figures 4B, C). TCGA survival analysis on PDAC

indicated a significant correlation between high expression of

M_CL1 signature and favorable prognosis (p=0.015 by LogRank).

The opposite was observed for M_CL2 andM_CL3 signatures, which

correlated with a negative clinical outcome (p=0.0094 and 0.095 by

LogRank, respectively) (Figure 4D).
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FIGURE 4

Transcriptional immune profiles are prognostically significant in PDAC. (A) Enrichment score of stromal and immune cell types in distinct metabolic groups
using the xCell tool. Boxplots show xCell types significantly differentially enriched in M_CL1 (n=8), M_CL2 (n=9) and M_CL3 (n=9) PDAC samples (Mann
Whitney U test). Box plots give median, lower and upper quartile by the box and minimum and maximum by the whiskers. (B) Heatmap showing xCell
scores across 26 PDAC samples, color-coded by metabolic cluster and divided into two groups (xCellhi and xCelllo) based on the hierarchical clustering
results. Columns represent samples, rows represent cell types. xCell score is color-coded from green (lower) to violet (higher). (C) Survival analysis of patients
stratified into 2 groups, according to the xCell enrichment score (xCellhi and xCelllo). p=0.04 by log rank test. (D) Overall survival curves on TCGA human
PDAC data based on median expression of gene signatures from M_CL1, M_CL2 and M_CL3. Dotted lines show 95% CI. HR, hazard ratio.
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4 Discussion

Pancreatic ductal adenocarcinoma (PDAC) is characterized by

extensive metabolic reprogramming, which is specific to distinct

molecular subtypes and has a profound impact on the anti-tumor

immune response (4, 8, 18, 34).

Our previous research has suggested a link between the

composition of pancreatic juice (PJ) and the metabolic

rearrangements occurring in PDAC tumors. Specifically, we

found that the metabolic profile of PJ from PDAC patients is

enriched in lactate, which mirrors the tumor-increased glycolytic

activity. Furthermore, PJ metabolic signatures identified in PJ are

predictive of clinical outcomes, including prolonged survival (17).

Building upon this, here we combined analyses of paired PJ and

PDAC biospecimens to provide a comprehensive understanding of

the relationship between PJ metabolic composition, PDAC

molecular subtypes, and the immune tumor contexture.

By molecular analysis of the PDAC transcripts, the cohort was

classified into classical and squamous (basal-like) samples, the two

molecular profiles on which most of the transcriptional analyses have

converged so far (7). About one-third of tumor samples presented an

intermediate or mixed profile, which is in line with a non-binary

molecular classification. In fact, despite the existence of distinct

transcriptional subtypes of PDAC being documented (3–7, 9, 10),

high-resolution analyses have shown that some PDAC tumor tissues

consist of a mixture of classical and squamous cells (35, 36). These

mixed subtypes also showed intermediate survival (33, 37). The

analysis of PJ metabolic signature in the light of PDAC molecular

classification showed that the PJ fingerprint identifying patients with

the best prognosis was mostly found in those with intermediate

subtypes and classical tumors, with no squamous subtypes observed.

Conversely, the PJ signature characterizing patients with worse

survival was found in squamous and classical tumors only, with no

intermediate molecular subtype tumors. This observation aligns with

other molecular classifications of pancreatic cancer that incorporate

microenvironmental elements, demonstrating a correlation between

metabolic profiles and molecular subtypes. Specifically, glycolytic

tumors have been linked with squamous subtype, while lipogenic

profiles exhibit correlations with classical subtype 14.

Nevertheless, factors beyond molecular subtypes may contribute

to the differences in survival among PJ metabolic clusters. The

pathway enrichment analysis of tumor transcriptomes has

highlighted significant distinctions between PDACs identified by

the M_CL1 and M_CL2 signatures. PDACs associated with

M_CL1 were enriched in genes related to immune pathways and

an increased infiltration of both adaptive and innate immune cells,

along with a decrease of T-regulatory cells. Previous studies have

demonstrated that a more favorable survival in pancreatic cancer is

strongly associated with a high infiltration of CD4+ effector and

cytotoxic T cells, along with a low level of Tregs, rather than a high

total T-cell population (38, 39). In M_CL1 all types of T cells,

particularly CD8+ and CD4+ cells, were closer, which suggests an

increased interaction between them. In addition, CD8+ cytotoxic T

cells were found in proximity to tumor cells, which is thought to favor

their antitumor activity (38). Together, these findings suggest that the

tumors identified by M_CL1 PJ signature exhibit a highly cytotoxic
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and immune-rich microenvironment, which is also a hallmark of the

classical molecular subtype of PDAC, consistent with our molecular

classification showing the absence of squamous tumors in theM_CL1

subtype (4, 40). Ultimately, the stratification of patients according to

the tumor xCell enrichment score, which classifies patients according

to immune pathway expression was prognostic of survival.

The immune contexture of pancreatic cancer is known to play a

critical role in determining the prognosis of PDAC patients (17, 38,

41, 42). Despite deep analyses of PDAC immune contexture in large

patient cohorts have helped categorize patients into prognostic

groups, the fine immune description achieved has provided limited

clinical utility in PDACmanagement decisions. Improved knowledge

of what correlates with the immune contexture (i.e. the metabolic

signature of the pancreatic juice) may ultimately leverage its

applicability and the introduction of immunotherapeutic

approaches. Our study suggests that pancreatic juice holds promise

as a tool for identifying potential biomarkers and understanding

changes that occur in PDAC, TME, and tumor immune contexture.

Pancreatic juice collection through endoscopic techniques has

been demonstrated to offer a viable method for molecular analysis

in patients undergoing screening for familial predisposition to

pancreatic cancer (43–46). The same techniques could be

potentially used for the evaluation of PJ metabolic signatures

before surgery or chemotherapy, to test its association with

response to treatments. It is therefore crucial to integrate

pancreatic juice analysis into future prospective and randomized

studies before considering its adoption in clinical practice.

This is the first study integrating metabolic and transcriptomic

changes in PJ as a surrogate for pancreatic cancer, however, this

investigation is limited by the relatively small, single-institution

cohort of patients. Future studies integrating the assessment of

metabolic signatures with clinical data on a broader scale are

therefore needed. This will allow for the evaluation of preoperative

collection safety, validation of the prognostic role of metabolic

signatures, as well as the determination of its clinical relevance for

treatment selection. In conclusion, our study highlights the potential of

PJ as a valuable resource for understanding the metabolic and

molecular characteristics of PDAC, as well as its immune tumor

contexture. The metabolic signatures identified in PJ exhibit

associations with PDAC molecular subtypes, clinical outcomes, and

immune pathways, indicating their potential as prognostic biomarkers.
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