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Lung cancer persistently leads as the primary cause of morbidity and mortality

among malignancies. A notable increase in the prevalence of lung

adenocarcinoma has become evident in recent years. Although targeted

therapies have shown in treating certain subsets of non-small cell lung cancers

(NSCLC), a significant proportion of patients still face suboptimal therapeutic

outcomes. Neuregulin-1 (NRG1), a critical member of the NRG gene family,

initially drew interest due to its distribution within the nascent ventricular

endocardium, showcasing an exclusive presence in the endocardium and

myocardial microvessels. Recent research has highlighted NRG1’s pivotal role

in the genesis and progression across a spectrum of tumors, influencing

molecular perturbations across various tumor-associated signaling pathways.

This review provides a concise overview of NRG1, including its expression

patterns, configuration, and fusion partners. Additionally, we explore the

unique features and potential therapeutic strategies for NRG1 fusion-positive

occurrences within the context of NSCLC.
KEYWORDS

neuregulin-1 (NRG1) fusion, non-small cell lung cancer (NSCLC), treatment progress,
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1 Introduction

Lung cancer remains the leading malignancy in terms of global incidence and mortality.

Within this spectrum, non-small cell lung cancer (NSCLC) accounts for approximately

85% of cases (1). Despite advancements in targeted therapies for select NSCLC patients,

treatment outcomes remain unsatisfactory for a significant number of individuals.

In recent years, there has been a marked increase in the prevalence of lung

adenocarcinoma (2), necessitating an in-depth exploration of novel therapeutic

strategies. Neuregulin-1 (NRG1), a member of the NRG gene family (3), has emerged
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asa key player in tumorigenesis and cancer progression.

Initially identified in the nascent ventricular endocardium.

NRG1 is selectively expressed in the endocardium and myocardial

microvessels. Recent research has revealed its intricate participation

in various tumors, yielding molecular modifications across multiple

tumor-associated signaling pathways (4, 5). The intricate interplay

between NRG1 and tumorigenesis has garnered substantial

attention, particularly in the context of NSCLC. Notably, NRG1

gene fusions have been recognized as a critical molecular aberration

within a subset of NSCLC cases. Understanding the unique

characteristics and mechanisms associated with NRG1 fusion-

positive NSCLC is essential for the development of targeted

therapeutic strategies.

The primary objective of this review is to provide an exhaustive

overview of NRG1, exploring its expression patterns, structural

attributes, and fusion counterparts. The focus of this investigation is

to illuminate the specific traits and ongoing advancements in

managing cases of NRG1 fusion-positive NSCLC.
2 The expression of the NRG1 gene

NRG1 plays essential roles in cell signaling, proliferation,

differentiation, and survival. In normal tissues, the expression of

NRG1 is tightly regulated and occurs in various cell types. NRG1 is

especially prominent in developing tissues, where it influences

organogenesis and cell differentiation (6). During embryonic

development, NRG1 is essential for cardiac development and the

formation of the nervous system (7). In cancer, alterations in NRG1

expression can have significant implications for tumor growth and

progression (8). Moreover, overexpression of NRG1 has been

observed in several cancers, including lung cancer, breast cancer,

and pancreatic cancer (9–11). Increased NRG1 expression can

activate downstream signaling pathways, such as the ERBB2/

ERBB3 pathway, which promotes cancer cell proliferation,

migration, and survival (12). Notably, NRG1 expression can be

modulated by various factors, including growth factors, hormones,

and environmental stimuli (13–16). Dysregulation of NRG1

expression can occur through genetic alterations, epigenetic

changes, or altered transcriptional regulation, leading to its

involvement in cancer development and progression.

NRG1 gene fusion was initially identified in aggressive

mucinous lung adenocarcinoma in 2014 (17, 18). Notably, less

than 0.3% of the NRG1 gene encodes a protein, and it gives rise to

numerous isoforms (19). Due to this complexity, NRG1 is not easily

detectable by most DNA-based next-generation sequencing (NGS)

techniques. However, RNA-based assays have proven efficacy in

detecting NRG1 fusions (20).

Notably, the incidence of NRG1 fusions is relatively low, with

the largest published series using RNA-based sequencing detecting

NRG1 fusions in only 41 out of 22,000 tumor specimens, resulting

in an incidence of 0.2%. Among these cases, NSCLC was the most

common tumor type, accounting for 25 cases with an incidence of

0.3% (25/9592) (21). Although subsequent studies have reported

NRG1 fusions at low frequencies in various tumor types, NSCLC
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still exhibits the highest number of cases, and currently, there are no

approved targeted therapies specifically designed for NRG1 fusion-

positive lung cancers (22–26). In solid tumors, research has found

that the frequency of NRG1 fusion tumors was 0.2% (7/3263). The

most common histological type was lung adenocarcinoma

(n=5) (27).

NRG1 expression plays a pivotal role in the progression of

cancer, especially in the context of KRAS mutations (28). In

pancreatic ductal adenocarcinoma (PDAC), cancer-associated

fibroblasts (CAFs) secrete NRG1, which activates ERBB2 and

ERBB3 receptor tyrosine kinases (29). This supports KRAS-

independent tumor growth and confers resistance against KRAS

inhibitors (30). Similarly, in lung cancer, the SLC3A2-NRG1 fusion

gene, often coexistent with KRAS mutations, is subject to

ADAM17-mediated cleavage, leading to the release of NRG1.

This shedding enhances the activation of the ERBB2-ERBB3

heterodimer and downstream signaling pathways, enhancing cell

proliferation and resistance to EGFR kinase inhibitors (31). These

findings highlight the significance of NRG1 signaling in oncogenic

processes and suggest that targeting the NRG1 pathway, alone or in

combination with MEK1/2 or ADAM17 inhibition, may represent a

promising therapeutic strategy for cancers with KRAS mutations

and NRG1 alterations.
3 Pathogenesis of NRG1 fusion-
positive NSCLC

NRG1 fusion-positive NSCLC constitutes a comparatively

uncommon molecular subtype within the spectrum of lung

malignancies, accounting for a small proportion of cases (32).

This fusion occurs when the NRG1 gene melds with another

gene, culminating in an aberrant fusion protein. This hybrid

protein possesses the capacity to incite specific cellular signaling

pathways, thereby contributing to the complex etiopathogenesis of

lung cancer (33). Although the precise mechanisms underlying the

pathogenesis of NRG1 fusion-positive NSCLC remain obscure,

several hypothesized mechanisms have come to light:

1) The fusion of NRG1 triggers the perpetual activation of select

growth signaling pathways, notably the ERBB family (ERBB1,

ERBB2, ERBB3, ERBB4) (34), alongside downstream cascades

such as PI3K-AKT and MAPK-ERK (35). NRG1 can interact

with ERBB4 resulting in ERBB2/ERBB4 heterodimers (36). The

interaction of NRG1 with ERBB 4 and ERBB 3 activates cellular

signaling pathways, promoting cell growth and differentiation.

NRG1 binds directly to the ERBB3 receptor, which is primarily a

dimerization partner due to its limited kinase activity. This binding

prompts ERBB3 to dimerize with another member of the ERBB

family, often ERBB 2 (HER2), which possesses strong kinase

activity. Unlike ERBB 3, ERBB 4 has intrinsic kinase activity.

NRG1 can bind directly to ERBB 4, leading to homodimerization

or heterodimerization with other ERBB receptors, including ERBB

2. These pathways stand as linchpins for cell growth, viability, and

proliferation. The derangement of these pathways can unleash

unchecked cell growth and culminate in tumorigenesis (37).
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2) The NRG1 fusion also infects the realm of cell adhesion and

migratory dynamics (38). The disruption of conventional cell

adhesion could potentially lend impetus to cancer cell

invasiveness and their capacity to metastasize to distant corners

of the body (39).

3) NRG1 fusion can lead to ERBB2/ERBB3 heterodimerization

and activation of downstream signaling pathways, such as PI3K-

AKT and MAPK-ERK. The MAPK-ERK signaling pathway induces

the expression of vascular endothelial growth factor (40–42).

Several studies suggest that blocking the activation of PI3K-AKT

andMAPK-ERK signaling pathways can inhibit tumor angiogenesis

(43, 44). In addition, inactivation of ERBB3 in cancer cells

attenuates tumor growth and angiogenesis (45, 46). NRG1 fusion

might thus promote angiogenesis, providing tumors with essential

nutrients and oxygen, which in turn supports their growth and

survival (47).

4) Research indicates that NRG1 fusion-positive tumors express

negative or low levels of programmed death ligand (48). This

implies the potential for NRG1 fusion-positive tumors to employ

immune evasion strategies, thereby evading immune surveillance.

Such evasion may facilitate unchecked tumor progression (49).

5) The existence of NRG1 fusion alterations in NSCLC has

significant therapeutic implications. Identifying these fusions

through molecular profiling is crucial, as it can render the tumor

susceptible to targeted therapeutic therapies. The potential strategy

involves the use of tyrosine kinase inhibitors (TKIs) targeting the

ERBB receptor family, which has demonstrated efficacy in certain

cases of NRG1 fusion-positive NSCLC (50–52).

Besides, the oncogenic mechanism in NRG1 fusion-positive

NSCLC involves the formation of chimeric genes resulting from

chromosomal translocations or inversions, which lead to the

constitutive activation of the ERBB family receptors,

predominantly HER3 and HER2 (53). NRG1 fusion-positive

tumors often exhibit a low tumor mutation burden and low PD-

L1 expression, potentially contributing to resistance against

immune checkpoint inhibitors (54). Targeted therapies, including

bispecific antibodies like Zenocutuzumab (Zeno; MCLA-128) that

block HER2/HER3 signaling, are being developed to exploit the

dependency of these tumors on the NRG1-driven signaling

pathways. In a Korean patient cohort, NRG1 fusion-positive

tumors were identified in 0.27% of 8,148 solid tumor cases,

with a prevalence of 0.72% in lung cancer patients. The

pathological characteristics of these tumors were predominantly

adenocarcinomas (55). Notably, the presence of low or absent PD-

L1 expression and a low tumor mutation burden (TMB) in these

tumors may influence their response to immunotherapies and other

targeted treatments.
4 Characteristics of NRG1 gene
fusion-positive NSCLC

First, NRG1 gene fusion is more commonly observed in lung

adenocarcinoma, with invasive mucinous adenocarcinoma (IMA)

and acinar adenocarcinoma being the most prevalent pathological
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subtypes in cases with NRG1 fusions (56). Second, the common

fusion partners for NRG1 gene fusion in NSCLC are CD74 and

SLC3A2. However, there are several rare fusion partners, including

SDC4, FGFR1, ATP1B1, CADM1, DIP2B, F11R, FLYWCH1,

ITGB1, KRAS, MDK, MRPL13, PLCG2, RBPMS, TNC, VAMP2,

and VAPB (57). Among these, the NRG1-CD74 fusion is the most

prevalent (58). Third, CD74-NRG1 fusion has been associated with

cancer stem-like properties in immature progenitor-like cells (59).

Cancer stem cells are linked to tumor recurrence, metastasis,

chemotherapy resistance, and poor prognosis (60, 61). Fourth,

regarding overall survival, patients with NRG1 fusions, especially

those with mucinous lung adenocarcinoma, have been shown to

have reduced survival times compared to those without NRG1

fusions (62). Fifth, NRG1 fusions and KRAS mutations have been

considered to be mutually exclusive in IMA. However, recent

research suggests that there may be cases with both NRG1 fusions

and KRAS mutations, challenging the absolute exclusivity, Il lung

IMA KRAS is the only marker that was observed in co-occurrence

with NRG1 fusions (63). Sixth, patients with IMA who test positive

for NRG1 fusions are predominantly female and have a history of

never smoking (64, 65). Finally, tumors with NRG1 fusions

frequently exhibit overexpression of ERBB2, ERBB3, and

pERBB3 (66).
5 Treatment strategy for NRG1 fusion-
positive NSCLC

Currently, there are no approved targeted agents specifically

designed for NRG1 fusion-positive NSCLC. However, researchers

have been exploring various treatment strategies to address this

specific molecular subtype. The dysregulation of the NRG1/ERBB3

axis has been implicated in NSCLC progression and therapy

resistance, making NRG1 fusion a potential prognostic marker for

targeted therapy (67). Targeting ERBB2 Kinase: Blocking the

activation of the upstream components of the NRG1 activation

pathway, such as ERBB3 and ERBB2, has been a primary focus of

therapeutic exploration. Drugs that effectively target ERBB2 kinase,

such as afatinib, have shown promise in NRG1 fusion NSCLC (68).

Clinical reports have demonstrated significant and durable

responses to afatinib in patients with NRG1 fusion-positive

NSCLC (69, 70). In patients with NRG1 gene fusions positive

NSCLC, afatinib has demonstrated potential therapeutic efficacy.

In a retrospective, multicenter, non-comparative cohort study, 40

NSCLC Patients were included; 29 received afatinib. Among

NSCLC patients treated with afatinib, the objective response rate

(ORR) was 48.3%, with a median duration of response (DOR) of 6.8

months (71). Afatinib provides clear clinical benefits in patients

with NRG1 fusion-positive NSCLC, particularly in earlier lines of

therapy. However, the study also noted tolerability issues with

afatinib treatment, including adverse drug reactions (ADRs) such

as diarrhea, which are consistent with the known ADR profile of

afatinib. MTOR Pathway Inhibition: Transcriptomic analysis of

lung cancer with NRG1 gene fusion has revealed activation of the

MTOR pathway. In vitro and in vivo models have suggested that
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blocking the MTOR pathway with drugs like rapamycin may be a

potential therapy for NRG1 fusion-positive lung adenocarcinoma

(72). Pyrotinib: Pyrotinib is an oral, irreversible, pan-ERBB tyrosine

kinase inhibitor targeting ERBB1, ERBB2, and ERBB4. It has shown

good antitumor activity in ERBB2-mutant NSCLC patients

receiving chemotherapy and has been used in combination

therapies to target NRG1 fusions (73, 74). Zeno, a bispecific

HER2/HER3 antibody, and seribantumab, a monoclonal anti-

HER3 agent, have demonstrated promising activity against

NRG1-rearranged solid malignancies, including NSCLC (75–77).

Current phase II clinical trials are evaluating their efficacy

(NCT02912949, NCT04383210) (78, 79). Global eNRGy1

Registry: The establishment of a global registry for NRG1 fusion-

positive lung cancer has provided valuable data on treatment

outcomes. The registry showed that current chemotherapy,

immunotherapy, and targeted therapies are not highly effective

for NRG1 fusion-positive NSCLC, highlighting the need for further

exploration and development of new treatment strategies (63). It is

essential to continue research and clinical trials to identify effective

and targeted therapies for NRG1 fusion-positive NSCLC (Table 1).
6 Future prospects and outlook

The understanding of NRG1-mediated activation of ERBB3 and

its role in promoting asymmetric dimerization with ERBB1, ERBB2,

and ERBB4 has provided valuable insights into the molecular

mechanisms of NRG1 fusion-positive malignancies. Targeting

ERBB2-ERBB3 signaling has emerged as a promising therapeutic

approach for patients with NRG1 fusion-positive cancers.

Seribantumab (MM-121) is a fully human IgG2 mAb that can

compete with NRG1 for binding to ERBB3 and antagonize receptor

signaling. Researchers have designed new cell lines and patient-

derived xenograft models with NRG1 fusion, and the results showed

that Seribantumab blocks the activation of 4 ERBB family members

and downstream signaling. Seribantumab blocks growth and
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induces apoptosis in NRG1 fusion models of lung cancer in vitro

and in vivo (80). Moreover, Seribantumab monotherapy was well

tolerated and safe at all dose levels (81). Zeno, an IgG1 subtype

antibody targeting the extracellular structures of ERBB2 and

ERBB3, has shown potential in inhibiting phosphorylation of

ERBB3 and downstream oncogenic signaling. Phase I studies have

confirmed its safety and tolerability (82). A case study reported by

Schram et al. demonstrated that a patient with NRG1 fusion-

positive NSCLC achieved significant tumor shrinkage with Zeno

treatment (83). This promising outcome suggests that Zeno holds

potential as a targeted therapy for NRG1 fusion-positive lung

cancer. The eNRGy trial, a global multi-center phase I/II clinical

trial for NRG1 fusion-positive cancers, including lung cancer, has

been initiated (NCT02912949) (79). The efficacy of Zeno was

evaluated, with 78% of patients experiencing a reduction in target

lesions. Zeno provides robust and durable efficacy in advanced

NRG1+ NSCLC, coupled with a favorable tolerability profile. The

results of this trial could provide crucial information regarding the

potential of Zeno as a targeted therapy for NRG1 fusion-positive

malignancies. Continued research and clinical trials are essential to

validate the potential of drugs like Zeno and to explore other

targeted approaches to improve outcomes for patients with NRG1

fusion-positive tumors. As our knowledge of the molecular

mechanisms underlying NRG1 fusions continues to expand, the

hope is that targeted therapies will emerge, providing more effective

and tailored treatment options for patients with this specific

molecular alteration.
7 Conclusion

In summary, the involvement of NRG1 in promoting ERBB3-

mediated signaling and the formation of oncogenic heterodimers

with ERBB1, ERBB2, and ERBB4 highlights the significance of

NRG1 fusions in driving abnormal cell proliferation and tumor

progression. Furthermore, the association of NRG1 fusions with
TABLE 1 Demonstrates the activation of signaling pathways by NRG1 and identifies potential therapeutic inhibitors.

Signaling Pathway Activation by NRG1 Inhibitors Potential Therapeutic
Targets

PI3K/AKT/FOXO NRG1 binds to ERBB receptor, activating PI3K,
which phosphorylates and activates AKT, leading
to FOXO inactivation by phosphorylation and
nuclear exclusion.

PI3K Inhibitors (Wortmannin, LY294002), AKT
Inhibitors (MK-2206, Perifosine), mTOR
Inhibitors (Sirolimus, Everolimus, Temsirolimus)

PI3K, AKT, FOXO, mTOR

JAK/STAT NRG1 binds to ERBB receptor, leading to
phosphorylation of JAK, which then
phosphorylates and activates STAT proteins,
promoting gene transcription for cell survival
and proliferation.

JAK Inhibitors (Ruxolitinib, Tofacitinib), STAT
Inhibitors (Stattic)

JAK, STAT

ERK/MAPK NRG1 binds to ERBB receptor, activating the Ras-
Raf-MEK-ERK cascade, leading to ERK
phosphorylation and activation, which promotes
cell proliferation and differentiation.

MEK Inhibitors (Trametinib, Cobimetinib), ERK
Inhibitors (SCH772984)

MEK, ERK

mTOR NRG1 activates mTOR pathway via PI3K/AKT
signaling, promoting protein synthesis, cell growth,
and survival.

mTOR Inhibitors (Rapamycin,
Everolimus, Temsirolimus)

mTOR
frontiersin.org

https://doi.org/10.3389/fonc.2024.1405380
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2024.1405380
adverse clinical outcomes, such as tumor recurrence, metastasis,

chemotherapy resistance, and poor prognosis, emphasizes the

urgent need for targeted therapeutic approaches. Although there

are currently no approved targeted agents specifically designed for

NRG1 fusion-positive NSCLC, ongoing research has explored

potential treatment strategies. Drugs like afatinib, pyrotinib, and

Zenocutuzumab have shown promise in preclinical and clinical

settings, offering hope for improved therapeutic options in the

future. However, more in-depth studies are essential to fully

comprehend the molecular mechanisms underlying NRG1 fusions

and their impact on tumor development and treatment response. In

conclusion, NRG1 fusions represent a promising therapeutic target

for the development of antitumor strategies. By unraveling the

complexities of NRG1 fusion-positive NSCLC and conducting

further research, we can advance the field of precision medicine

and ultimately improve patient outcomes.
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