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Current HRD assays in ovarian
cancer: differences, pitfalls,
limitations, and
novel approaches
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Laboratory of Preclinical Gynaecological Oncology, Department of Experimental Oncology, Istituto di
Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
Ovarian carcinoma (OC) still represents an insidious and fatal malignancy, and few

significant results have been obtained in the last two decades to improve patient

survival. Novel targeted therapies such as poly (ADP-ribose) polymerase inhibitors

(PARPi) have been successfully introduced in the clinical management of OC, but

not all patients will benefit, and drug resistance almost inevitably occurs. The

identification of patients who are likely to respond to PARPi-based therapies relies

on homologous recombination deficiency (HRD) tests, as this condition is

associated with response to these treatments. This review summarizes the

genomic and functional HRD assays currently used in clinical practice and those

under evaluation, the clinical implications of HRD testing in OC, and their current

pitfalls and limitations. Special emphasis will be placed on the functional HRD

assays under development and the use of machine learning and artificial

intelligence technologies as novel strategies to overcome the current limitations

of HRD tests for a better-personalized treatment to improve patient outcomes.
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1 Introduction

Ovarian cancer is a heterogeneous disease, including different subtypes. Depending on

the cells of origin, it can be classified into ovarian carcinomas (OC), sex cord-stromal

tumors, or germ cell tumors (1, 2). OC is the most common type, accounting for 90% of

tumors, and five different histological subtypes can be recognized (high-grade serous

(HGSOC), low-grade serous, clear cell, and mucinous) with different molecular features,

clinical characteristics, and response to therapy (2). The most prevalent histotype (75% of

the cases) is the HGSOC (2), which still has a poor prognosis due to the lack of effective

screening tests preventing its early diagnosis; in addition, even if it is very responsive to a

platinum-based therapy, most of the patients will eventually relapse with a much less

chemosensitive tumor (3, 4).
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In the last decades, the molecular studies behind HGSOC have

outlined that 50% of these tumors have defects in homologous

recombination (HR) repair (5). HR represents a relatively error-free

pathway that repairs the DNA double-strand breaks (DNA-DSBs),

the most cytotoxic cellular lesions when cells are in the S/G2 phases

of the cell cycle where sister chromatids are available, while the non-

homologous end joining (NHEJ) pathway occurs along all the cell

cycle to fix DSBs in a more rapid, even if low-fidelity manner (6).

The functional inactivation of HR repair, a condition known as

BRCAness or HR deficiency (HRD), is due to mutations and/or

epigenetic modification (i.e., promoter hypermethylation) in genes

involved in the HR pathway, including BRCA1, BRCA2, ATM,

BARD1,MRE11, RAD51, PALB2, Fanconi Anemia genes, and many

others [for an exhaustive review, please refer to (7)]. While a tumor

with a deficiency in HR has the probability to accumulate much

more DNA damage than a HR-proficient (HRP) tumor, this

characteristic can also be considered its “Achilles heel” as it

renders it very susceptible to the cytotoxic effects of platinum-

based drugs and to poly (ADP-ribose) polymerase inhibitors

(PARPi). Platinum drugs require HR for the repair of the

intrastrand cytotoxic lesions they induce in the DNA, so cells

with inactivation of HR are extremely sensitive to cisplatin (8, 9).

As regards PARPi, synthetic interaction has been shown to be

the basis of their activity on HRD cells [for a recent updated review,

please refer to (10)] and has revolutionized the therapeutic

approach in the last decade in OC.

In OC, the BRCAness or HRD phenotype identifies a subgroup

of tumors that are generally HGSOC, display high response rates to

first and subsequent lines of platinum therapy, have long

progression-free intervals between recurrences, and have a better

overall survival (OS) (8, 11). Recently, it has also become an eligible

criterion for treatment with PARPi, and its testing has been strongly

recommended by both the National Comprehensive Cancer

Network (NCCN) (12) and the European Society for Medical

Oncology (ESMO) guidelines (13).

We will here review the different types of genetic HRD tests

available, with a particular focus on the new academic ones, on the

functional HRD tests, and how the emerging role of artificial

intelligence (AI) can help in a better and more specific definition

of HRD in OC.
2 Clinically approved HRD tests:
description, applications,
and limitations

The functional inactivation of HR can be determined either by

looking for germline or somatic mutations in BRCA1/2 genes

(gBRCA1/2 and sBRCA1/2), as BRCA1/2 proteins play a pivotal

role in HR repair pathway and their loss causes a defective DNA-

DSB repair, or by assessing the presence of genomic alterations

deriving from unproperly repaired DSBs by low-fidelity repair

mechanisms like NHEJ or microhomology-mediated end joining

(MMEJ) (14). With the elucidation of the different genes involved in

HR, the mutational status of other genes beyond BRCA1/2 has also
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deriving from a defective/inefficient HR include insertions and

deletions, copy number alterations, and structural chromosomal

rearrangements. Their combination in specific patterns is detected

as a loss of heterozygosity (LOH), telomeric allelic imbalance (TAI),

and large-scale state transitions (LSTs), generally referred to as

“genomic scars”, since they remain as footprints in the genome of a

cell lacking HR (16). Specifically, LOH represents the loss of one

parent’s allele contribution at a specific locus, either by deletion or

deletion and simultaneous duplication of the remaining mutated

allele generating homozygosity (17). Abkevich et al. investigated the

association between HR defects and genomic patterns of LOH in

two cohorts of epithelial ovarian tumors, finding a highly significant

correlation between a HRD score defined as the number of LOH

regions of intermediate size (> 15 Mb, but shorter than the length of

the whole chromosome) and HR deficiency, measured by BRCA1/2

and RAD51C mutations (18). TAI refers to an allelic imbalance

extending from the break-point to the subtelomeric region without

including the centromere. It was found to predict sensitivity to

platinum treatment in HGSOC patients with wild-type (wt)

BRCA1/2 and proposed as a marker of impaired DSB repair (19).

LSTs are defined as chromosomal breaks between two adjacent

regions of at least 10 Mb in size by Popova et al. (20), who also

associated this genomic signature with BRCA1/2 inactivation in two

independent series of basal-like breast carcinomas.

A strong association of these three independent genomic

signatures with BRCA1/2 deficiency was found in 215 samples of

breast tumors, regardless of the cancer subtype, demonstrating that

they correlate with each other and that they all measure the same

genomic alteration (21). A combined HRD score, calculated as an

unweighted sum of the LOH, TAI, and LST scores, was also

produced and turned out to be a much more robust predictor of

HRD than the individual scores (21), and its predictive role was

assessed and validated in three neoadjuvant triple-negative breast

cancer (TNBC) trials (22).

The evaluation of these genomic alterations has been the basis

for the two currently Food and Drug Administration (FDA)-

approved genomic HRD tests that have been used as companion

tests in the clinical development of PARPi (23): the Myriad

MyChoice CDx and the FoundationOne CDx. The Myriad

MyChoice CDx (Myriad Genetics, Salt Lake City, UT, USA) assay

takes into account both the presence of mutations and

rearrangements in BRCA1/2 genes and a Genome Instability

Score (GIS), which is calculated by combining LOH, TAI, and

LST measurements deriving from single-nucleotide polymorphism

(SNP)-panel sequencing. The threshold > 42 was set to distinguish

HRD-positive and HRD-negative tumors (24, 25). The

FoundationOne CDx (Foundation Medicine, Boston, MS, USA)

test relies on the calculation of the percentage of LOH (%LOH) with

a cut-off of > 16% to discriminate between LOH-high and LOH-low

tumors and on the sequencing of an extensive panel of genes,

including BRCA1/2 and HR-related genes (26, 27).

Both Myriad MyChoice and FoundationOne tests have been

implemented in phase III clinical trials testing PARPi in OC and

have demonstrated an association with the response to therapy for

PARPi (28). The PRIMA trial evaluated niraparib maintenance vs.
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placebo in patients with newly diagnosed advanced OC after response

to platinum-based chemotherapy (29). The Myriad MyChoice test

clustered patients in HRD-negative and HRD-positive groups, with the

latter having BRCA1/2 alterations and/or a GIS ≥ 42 (22). The

niraparib effect vs. placebo was evaluated as progression-free survival

(PFS) in the overall population (13.8 months vs. 8.2 months), in the

HRD-positive subgroup with BRCA1/2 mutations (21.9 months vs.

10.4 months), in HRD-positive patients without BRCA1/2 mutations

(22.1 months vs. 10.9 months), and in patients without HRD (8.1

months vs. 5.4 months). All niraparib-treated subgroups showed

improvement of PFS, much more evident in HRD patients; however,

in HRP patients, niraparib treatment was effective, even if less than in

patients with defective HR, and regardless of BRCA1/2 mutational

status (29). These results led to niraparib approval by the FDA for

advanced OC in the maintenance setting after tumor response to first-

line chemotherapy, regardless of BRCA1/2 mutational status and HR

status. The PAOLA-1/ENGOT-ov25 phase III trial aimed at evaluating

the addition of olaparib to bevacizumab vs. olaparib plus placebo in

maintenance following chemotherapy and bevacizumab cotreatment in

newly diagnosed advanced OC (30). Again, based on the Myriad

MyChoice CDx cut-off of ≥ 42, patients were classified as having HRD

or HRP; the presence of BRCA1/2 mutations was also taken into

account. Olaparib-treated patients showed an increased median PFS

compared to placebo-treated patients in the overall population (22.1 vs.

16.6 months), in BRCA1/2-mutated patients (37.2 months vs. 21.7

months), in HRD-positive tumors having GIS ≥ 42 and/or BRCA1/2

alterations (37.2 vs. 17.7 months), and in HRD-positive tumors without

BRCA1/2mutations (28.1months vs. 16.6 months), leading to the FDA

approval of the combination of olaparib and bevacizumab in the

maintenance setting in HRD-positive advanced OC beyond BRCA1/

2mutations (30). The VELIA trial assessed the addition of veliparib to

carboplatin/paclitaxel chemotherapy (veliparib combination only

group) compared to veliparib addition both during chemotherapy

and in the maintenance setting (veliparib-throughout groups) in OC

patients (31). In this study, the threshold for determining HRD with

theMyriad test was lowered to 33 to try to improve the sensitivity of the

test for the identification of PARPi responders. However, no difference

between the control group (chemotherapy only) and the veliparib-

throughout approach could be appreciated in terms of PFS in the

BRCA1/2 wt subgroup between HRD-positive and HRD-negative

patients (31) in contrast with the previously cited results (29, 30).

The FoundationOne CDx test was adopted in the phase III

ATHENA-MONO trial, designed to evaluate rucaparib activity in

first-line maintenance after response to chemotherapy in advanced

HGSOC (32). Patients were stratified based on FoundationOne

CDx test results and BRCA1/2 status into wtBRCA1/2/LOH-high

(LOH ≥ 16%; HRD-positive), wtBRCA1/2/LOH-low (LOH < 16%;

HRD-negative), and wtBRCA1/2/LOH undetermined (32).

Rucaparib maintenance treatment significantly improved PFS vs.

placebo in patients regardless of BRCA1/2 mutations and HRD

status, as the median PFS in the HRD population was 28.7 months

vs. 11.3 months, 20.2 months vs. 9.2 months in the intention-to-

treat population, and 12.1 months vs. 9.1 months in the HRD-

negative population.

The implementation of these genomic HRD tests in phase III

clinical trials allowed to broaden the patient population benefiting
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their initial use in women with newly diagnosed advanced OC and

germline or somatic BRCA1/2 mutations (33, 34).

PARPi antitumor activity has also been investigated for recurrent

advanced OC, and in particular as maintenance therapy in platinum-

sensitive relapsed OC patients in Study 19 (35–37) and SOLO2 (38,

39) trials (olaparib), NOVA trial (40) (niraparib), and ARIEL3 study

(26, 27) (rucaparib). Based on Study 19 (35–37) and SOLO2 (38, 39)

results, where no HRD genomic tests were applied, the FDA

approved olaparib for this condition regardless of BRCA1/2

mutational status, as both mutated and wt tumors responded to the

treatment. In the NOVA phase III clinical trial (40), a gBRCA-

mutated cohort and a non-gBRCA cohort with platinum-sensitive

relapsed cancer were randomized to niraparib or placebo. All the

patients also underwent HRD testing with Myriad MyChoice CDx,

and the GIS cut-off of ≥ 42 was used to define HRD-positive tumors.

PFS with niraparib compared to placebo was 21 months vs. 5.5

months in the gBRCA cohort, 9.3 months vs. 3.9 months in the non-

gBRCA cohort, and 12.9 months vs. 3.8 months in the non-gBRCA

cohort with a HRD score ≥ 42 (inclusive of patients with somatic

BRCA1/2 mutations). An exploratory analysis on subgroups of the

non-gBRCA cohort showed an increase in PFS in tumors with the

sBRCA mutation (20.9 months vs. 11 months, niraparib-treated vs.

placebo, respectively), HRD-positive/wtBRCA1/2 tumors (9.3

months vs. 3.7 months), and HRD-negative/wtBRCA1/2 tumors

(6.9 months vs. 3.8 months) (40). Since the treatment resulted in

effectiveness regardless of the presence or absence of gBRCA1/2

mutations or HRD status, niraparib was approved for the

maintenance therapy of relapsed advanced OC in patients

previously treated with platinum chemotherapy and still responsive

to it regardless of specific biomarkers (40). However, more recently,

the FDA restricted niraparib indication only to patients with

gBRCA1/2 mutations, as in terms of median OS, there was no

difference between niraparib and placebo non-gBRCA1-mutated

patients (41).

The ARIEL3 phase III study was designed to evaluate the

rucaparib effect in maintenance after response to second-line or

later platinum-based chemotherapy, and the FoundationOne CDx

HRD test was used to identify HRDOC patients with a threshold of ≥

16% to define HRD cases. In ARIEL3, improvement of PFS of

rucaparib vs. placebo was observed in all subgroups of patients: in

BRCA1/2-mutated (deleterious germline or somatic) (16.6 months vs.

5.4 months), in patients with HRD tumor (defined as g/sBRCA1/2-

mutated or wtBRCA1/2 with high LOH) (13.6 months vs. 5.4

months), and in the intention-to-treat population (10.8 months vs.

5.4 months) (26). Within the BRCA1/2 wt cohort, both LOH-high (%

LOH ≥ 16%) and LOH-low (%LOH < 16%) groups benefitted from

rucaparib compared to placebo, although to a lesser extent than in the

LOH-low subgroup (9.7 months vs. 5.4 months for wtBRCA1/2/

LOH-high; 6.7 months vs. 5.4 months for wtBRCA1/2/LOH-low)

(26). Given the effects observed across all the groups, rucaparib was

FDA-approved for maintenance therapy in platinum-sensitive

recurrent OC, regardless of BRCA1/2 mutations or HRD status

(26, 27).

Two recent phase II clinical trials evaluating PARPi in the

recurrent setting also used these HRD tests to assess PARPi efficacy.
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The LIGHT study investigated olaparib treatment in patients with

platinum-sensitive relapsed ovarian cancer (who received at least

one prior cycle of chemotherapy). In total, 272 patients were

enrolled, and 259 were assigned, according to the presence of

BRCA1/2 mutations and the HRD status determined by the

Myriad MyChoice assay, to four predefined cohorts: gBRCA1/2-

mutated patients, sBRCA1/2-mutated patients, HRD-positive

(GIS ≥ 42) with no BRCA1/2 alteration patients, and HRD-

negative (GIS < 42) patients. Response to olaparib was observed

in all the cohorts, with BRCA-mutated patients showing the highest

overall response rates (ORR) (69% and 64% in the gBRCAm and

sBRCAm cohorts, respectively) and longest PFS (~ 11 months) (42).

The QUADRA phase II clinical trial was conducted to investigate

the role of niraparib in patients with recurrent OC after three or

more lines of therapy being sensitive, resistant, or refractory to

platinum. The Myriad MyChoice assay was used to discriminate

HRD-positive and HRD-negative tumors based on the cut-off of ≥

42. ORR and clinical benefits of niraparib were greater in platinum-

sensitive patients compared to the resistant and refractory

subgroups. Across all platinum subgroups, the ORR were 29% for

g-sBRCA1/2-mutated, 15% for HRD-positive tumors (including

BRCA1/2-mut and wt), and 3% for HRD-negative (wtBRCA1/2

and test score < 42) or unknown. Based on these data, niraparib was

FDA approved for patients treated with at least three chemotherapy

regimens whose cancer either harbored a deleterious BRCA1/2

mutation or was platinum-sensitive with evidence of HRD (43).

Myriad MyChoice and FoundationOne assays rely on different

molecular bases, and they are not equivalent. Indeed, Timms et al.

evaluated the correlation and the positive percentage agreement

(PPA) among the Myriad MyChoice (threshold scores of 42 and 33

were considered), the %LOH, and the presence of a pathogenic

mutation in an 11-HR gene panel (44). Whole-genome SNP

analysis was used to calculate the MyChoice HRD score and %

LOH in two cohorts of 3,278 and 248 patients. The mutations in 11

genes of the HR pathway (i.e., ATM, BARD1, BRCA1, BRCA2,

BRIP1, CHEK2, MRE11A, NBN, PALB2, RAD51C, and RAD51D)

were also evaluated for a subset of tumors from the second cohort.

HRD-positive tumors were defined based on either 42 or 33

threshold scores for the Myriad test, 16% cut-off for %LOH, as

well as the presence of a pathogenic variant in one of the 11 studied

HR genes. The correlation between positive results from %LOH and

the 11-gene panel was compared to the Myriad HRD test. Overall,

19%–61% of patients were identified as positive by Myriad HRD

and would have been missed by %LOH or by the 11-gene panel in

these two cohorts, suggesting these HRD tests are not equivalent

and should not be considered interchangeable in predicting PARPi

response. Nevertheless, it is evident how the application of HRD

genomic tests allowed the tailored use of PARPi in OC, improving

HGSOC patients’ prognosis (45).

The implementation of the Myriad MyChoice CDx and the

FoundationOne CDx in the clinic is favored by the fact that SNP-

sequencing and mutational analysis of BRCA1/2 and HR-related

genes are performed on DNA samples extracted from FFPE tumor

tissues, generally available after primary debulking surgery or from

tumor biopsies at diagnosis (14). However, their application has

some limitations, especially with regard to the preanalytical phase:
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paucity of tumoral cells, or poor quality of the specimen are all

factors strongly affecting the success rate of the HRD tests (46).

Also, fixation artifacts can compromise the quality of the tissue, and

so the quality of the extracted DNA and HRD test result, possibly

generating false-positive, false-negative, or inconclusive results

occurring in 10%–15% of the cases (47). In addition, because of

the intratumor heterogeneity, the same tumor could be defined as

HRD-positive or HRD-negative depending on the biopsy site (14).

Moreover, both Myriad MyChoice and FoundationOne CDxs are

performed in a centralized way, so the samples have to be sent

abroad to be analyzed, with no control over the parameters during

the analytical step and a with turnaround time of 18 days for the

MyChoice test (14).

Recent work from Denkert et al. (48) evaluated the transfer of

the Myriad MyChoice assay in an academic molecular pathology

laboratory through the parallel assessment of 514 OC samples in

both Myriad’s laboratory and a decentralized one. 498 samples out

of 514 provided an identical GIS status, determined with a

sensitivity of 94.6% and a specificity of 98.4%, resulting in a GIS-

status concordance of 96.9% between the two laboratories.

Similarly, the feasibility of HRD testing implementation in a

decentralized pathological department was demonstrated by Heitz

et al. (49), getting test results in 514 HGSOC with a 96.9% (p <

0.00001) concordance between Myriad and academic laboratories

for the GIS status, with a sensitivity of 94.6% and a specificity of

98.4%. In addition, the concordance for HRD status was even

higher at 97.1% (499 of 514 tumors) (49).

3 An overview of novel academic
genomic HRD tests (technical aspects,
advantages, and caveats)

The European Society of Gynecological Oncology (ESGO) and

the European Society for Medical Oncology (ESMO) have recently

recommended testing all patients diagnosed with nonmucinous

ovarian, tubal, and peritoneal cancers for BRCA1/2 mutations,

suggesting the two commercially available and clinically approved

HRD genomic tests as good predictive tools for PARPi benefits and

pointing out insufficient knowledge regarding no-BRCA/HRD-

related mutational signature-based predictive biomarkers (50, 51).

The decentered implementation of HRD tests would have the

advantage of reducing costs and logistic problems (extra-time

waiting to send samples and to receive the results from accredited

centralized laboratories); in addition, the development of high-

quality genomic assays based on the most advanced sequencing

technologies would provide accurate results on HR-related

mutational signatures and could eventually lead to harmonized

results (23, 30, 52). Trying to overcome the current limitations and

with the goal of having robust, feasible, closer to patients, less

expensive, and more sensitive HR tests, several research laboratories

have been actively involved in setting up new in-house HR tests.

The European Network of Gynecological Oncology Trial (ENGOT)

HRD Initiative (EHEI) is a large collaboration of European

academic research centers to find an academic alternative to
frontiersin.org

https://doi.org/10.3389/fonc.2024.1405361
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Guffanti et al. 10.3389/fonc.2024.1405361
commercially available HRD assays and novel, reliable HRD

biomarkers (53) (Table 1). The EHEI aims to correlate the

performance of different academic genomic and functional HRD

assays with the Myriad MyChoice test, evaluating the tumor

samples of patients enrolled in the phase III trial. Seven out of 20

research laboratories satisfied the inclusion criteria (tests mainly

based on non-BRCA/HR gene mutation panels or did not reach

capability, financial, or regulatory standards were excluded), and

data published until now seem encouraging (53).

In a recent study, two academic genomic tests and a functional

assay were compared to theMyriad test in a retrospective cohort of 100

untreated, randomly selected HGSOC patients participating in the

MITO16A/MaNGO-OV2 trial (54). These two NGS-based academic

methods evaluated genomic instability. Both tests showed good

concordance with Myriad MyChoice in terms of HRD assessment

and correlation with patients’ prognosis and platinum therapy outcome

in a multivariate analysis (54). The functional test, evaluating the basal

level of RAD51 foci, did not perform well as only a small sample size

could be evaluated and the concordance rate with Myriad was low

(37%). These results were corroborated by Scaglione et al., who

compared their shallow whole-genome sequencing HRD test (named

HRD-MITO assay) to another shallow NGS method and to the gold

standard Myriad MyChoice test in 20 retrospective HGSOC

chemotherapy-naïve clinical samples (66).
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Other academic groups within the EHEI developed DNA-based

HRD tests, relying on different technologies (Table 1). The Leuven

HRD test is based on a capture-based targeted NGS SNP panel and

has been shown to significantly correlate withMyriadMyChoice CDx

PLUS, and similar differences in PFS and OS were observed between

HRD-positive and HRD-negative populations as the reference test in

468 advanced OC samples from the PAOLA-1/ENGOT-ov25 trial

(56). The whole-genome CNV assay (Geneva HRD test) is based on

OncoScan plus a normalized large-scale transition (nLST) test (55);

the NOGGO test involves the LOH scarring (NOGGO test) (59); low

coverage Whole Genome Sequencing (WGS) for BRCA-like copy

number profile (BRCA-like Copy-Number Aberration Classifiers)

(58, 67), and low coverage WGS associated with a deep learning

algorithm (GIInger) (57). Very recently, the shallowHRDv2 test was

developed, based on the work of Eeckhoutte et al., who were the first

to describe a software tool named shallowHRD to detect HRD based

on WGS at low coverage (1×) (68). This test was validated in the 449

FFPE samples of the PAOLA-1/ENGOT-ov25 patients (60). The

ShallowHRDv2 test and Myriad MyChoice had substantial overall

agreement, but the first had a lower failure rate (3% vs. 11%) and

could also predict the PARPi benefit in terms of OS in patients treated

with olaparib and bevacizumab compared to bevacizumab and

placebo treatment. In addition, the test had positive results for

those patients who had inconclusive results with the MyChoice test
TABLE 1 Overview of current academic DNA-based HRD tests under investigation.

Research
group

HRD
test name

Affiliation Concept and underlying technologies Reference

Mango IT n/a Humanitas University, Milan, Italy WES-scoring algorithm based on the presence of LOH (54)

SAKK Geneva test Hôpitaux Universitaires de
Genève, Switzerland

HRD phenotype score based on whole-genome CNV
(ThermoFisher Oncoscan SNP assay, Waltham,

MS, USA)

(55)

BGOG Leuven HRD test University Hospitals Leuven, Belgium Capture-based targeted NGS SNP panel (56)

GINECO GIInger Centre Léon BERARD, and University
Claude Bernard Lyon I, Lyon, France

HRD solution developed with SOPHiA GENETICS.
Targeted sequencing (28 genes) low coverage WGS.

Proprietary deep learning algorithm

(57)

AGO BRCA-like Copy-
Number

Aberration
Classifiers

Netherlands Cancer Institute, Amsterdam,
the Netherlands; University Hospital

Cologne, Cologne, Germany

BRCA-like copy number profile based on low
coverage WGS

(58)

NOGGO NOGGO Institut für Hämatopathologie Hamburg,
Germany; Charité-Universitätsmedizin

Berlin, Germany

LOH scarring (59)

– ShallowHRDv2 Institut Curie and Paris Sciences Lettres
Research University, Paris, France

Software tool trained on shallow WGS data (60)

Other academic HRD tests

Research group HRD test name Affiliation Concept and underlying technologies Reference

Department of
Medical Genetics;

Early Cancer Institute

HRDetect University of Cambridge, Cambridge UK WGS mutational signature-based HRD classifier (61–63)

– GIScar Centre François Baclesse, Caen, France Genomic Instability Score (64)

Department of
Laboratory Medicine

and Pathology

LOH score University of Washington School of
Medicine, Seattle, WA

Targeted, Hybridization capture and NGS of genome-
wide SNP sites to calculate LOH

(65)
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(60). Compared with other high-throughput WGS-based approaches

evaluating HRD, such as HRDetect (WGS 10×) (61, 62), shallow

WGS HRD tool is linear, time-saving, and low-cost.

Even if all these academic solutions are based on different

advanced sequencing technologies, they were similar or even

better than Myriad MyChoice, with lower failure rates, similar or

higher sensitivity, and a prognostic role in the retrospective analysis

of PAOLA-1/ENGOT-ov25 patients (54–57, 59, 60). These findings

support their clinical use since most of them can be easily integrated

into the laboratory routine, representing less expensive alternatives

to commercial tests. However, while testing the different academic

HRD biomarkers on an identical set of trial samples enabled the

elucidation of the strengths and limitations of each assay,

prospective validation studies are mandatory.

Outside the EHEI, other noteworthy in-house HRD tests have been

developed. The GIScar is an academic genomic instability score

developed through targeted sequencing of a 127-gene panel to

determine HRD status and has been compared with the standard

Myriad test in a subgroup of 469 DNA tumor samples from the

PAOLA-1/ENGOT-ov25 trial, and its predictive value for olaparib

maintenance therapy plus bevacizumab was evaluated (64). GIScar

demonstrated good feasibility and optimal concordance with the

reference test to classify HRD samples, with a lower rate of

undetermined results (1% vs. 9%). Both PFS and OS hazard ratios

with GIScar were similar to the standard test, but interestingly, tumors

identified as HRD by GIScar and determined as HRP by Myriad had

better PFS with olaparib (HR, 0.23; 95% CI, 0.07–0.72), indicating a

higher ability to identify patients who may benefit from olaparib

maintenance therapy (64).

The HRDetect score is based on a DNA mutational signature-

based algorithm and is a weighted model of six mutational

signatures associated with HRD, including microhomology-

mediated deletions, base substitutions, and rearrangement

signatures besides genomic scars (61). The HRDetect test showed

good performance in predicting BRCAness phenotypes in breast,

ovarian, and pancreatic cancer, identifying BRCA-deficient tumors

in FFPE samples with a narrow edge of error (61). Interestingly, this

assay also considers epigenetic alterations in the BRCA1 promoter,

and it has been able to identify a HRD phenotype in one-third of

BRCA wt tumors without known HR repair gene mutations (61).

The HRDetect assay has been tested in 43 triple-negative breast

cancer patients in the phase II RIO trial aimed at investigating the

activity of PARPis and has been shown to be more specific to

detecting HRD patients than a LOH/copy number-based HRD

score (62). In a cohort of OC samples, HRDetect displayed a

sensitivity of 100% in identifying BRCAness patients, as opposed

to 60% of the GIS (22). More recently, the HRDetect assay has also

been used to characterize OC patient-derived xenograft (PDX)

models, and the HRD status is correlated with low RAD51 foci

expression at the basal level in the PDXs (69). Mutational signature

analysis and HRDetect score identified a subgroup of ATRi

responders in a panel of 112 metastatic colorectal cancer

preclinical models, suggesting its feasibility in different cancers

and its potential as an HR biomarker (63).

Even these latter tests have some limitations, including the need

to set up and validate thresholds that may vary among different
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cancer types, differences among the SNP panels, and the analytical

pipeline adopted. For example, Krumm et al. LOH score cut-off of ≥

11% is lower than ≥ 16% of the FoundationFocus CDX assay (70),

which may be due to the different set of target SNPs used or

differences in bioinformatic pipelines.

There are, however, some more common technical issues

involving all the described tests: the need for minimum tumor

cellularity in the samples to be analyzed, which could be hard to get

in small bioptic samples; and the need to optimize and standardize

sample processing and preanalytical analyses (52). In addition, the

tumor heterogeneity, which could partially explain the differences

observed between experimental tests and the reference ones, needs

to be taken into account, and test validation on samples taken from

different metastatic sites of the same patient should also be carried

out. Nevertheless, the main limitation of these genomic assays is the

inability to give a read-out of the effective HR functionality and to

capture tumor evolution events. Indeed, the genomic scars

imprinted by the lack of a functional HR are not removed by the

subsequent restoration of HR (by a reversion mutation in HR

genes) that is associated with PARPi/platinum resistance,

hampering their ability to predict the development of resistance.
4 Functional methods to assess HR
repair status

HR functional assays represent a promising approach aiming at

identifying HRD tumors and providing a readout of the tumor’s HR

status in real time, independently from the upstream events leading

to HR dysfunction. These characteristics make functional tests

extremely appealing, especially in the clinical setting of acquired

resistance to DNA-damaging agents and PARPi. In fact, genomic

assays failed to identify an eventual HR-restored activity when

genetic reversions or secondary mutations occur in BRCA1, BRCA2,

or other HR genes, representing the most common clinical

mechanism of acquired resistance to PARPi (71, 72). We will

discuss two types of functional tests (Figure 1).
4.1 RAD51 foci tests

RAD51 is a nuclear recombinase playing a central role in HR and

in replication fork processing (73, 74). RAD51 is able to aggregate and

form long nucleoprotein filaments mainly driven by BRCA2 on single-

stranded DNA 3′ overhangs when a DSB occurs, which can be

visualized as local spots of protein accumulation when DSBs occur,

named foci. RAD51 foci are microscopically detectable after

immunofluorescence (IF) or immunohistochemistry staining, and

their formation is a downstream event in HR and occurs when the

sister chromatid is available, leading to strand invasion and the

homologous sequence of the intact sister chromatid being used to

repair DSBs in an error-free way (15, 75). Since the inability to form

RAD51 foci is a common feature of HRD, their detection is a suitable

functional biomarker of HRD (76). RAD51 foci formation was first

investigated in 2009 by Willers et al. in fresh ex vivo biopsies from

advanced breast cancer patients after ionizing radiation (IR) treatment,
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and they reported that lower RAD51 foci formation induction was

associated with a BRCA1-deficient phenotype (77). However,

Mukhopadhyay et al. were the first to analyze RAD51 foci induction

levels by IF assay in primary cultures from ascitic fluid in OC patients

and demonstrated that < 2-fold rise of RAD51 foci formation after

induction of DSBs in cancer cells correlated with functional HRD status

of the tumors, greater responsiveness to PARPi and platinum, as well as

a higher median survival in 50% of OC patients (78, 79). Greaser et al.

described the RAD51 foci detection in ex vivo breast cancer

organotypic biopsies collected one day after treatment with

anthracycline-based chemotherapy. Notably, in this study, RAD51

foci were quantified by IF, considering cells positive to both RAD51

foci and geminin, a marker of G2/S cell cycle phases, when the HR is

specifically activated (80, 81). The RAD51 score was defined as the

percentage of cells geminin-positive and expressing at least one RAD51

focus per nucleus (82). A RAD51 score < 10% was observed in 26% of

the cases, and this subgroup was significantly enriched in Triple

Negative Breast Cancer (TNBC) harboring HR defects and strongly

predicted response to chemotherapy (82). The analysis of RAD51 foci

expression in cancer samples after IR damage establishes the path for

the standardization of the REcombination CAPacity (RECAP) test

(83–88). The RECAP functional test mainly relies on RAD51 foci

formation quantification after IR on fresh tumor tissues within 2 h of

treatment. It was initially used on fresh primary breast cancer samples

whose BRCA status was known, and a strong correlation between

RECAP score and BRCA defects was found. Of the 23 RECAP HRD

tumors, 16 were BRCA1/2 mut or had BRCA1 promoter

hypermethylation or BRCA-associated large genomic rearrangements,

while seven scored HRD were non-BRCA related (84). When the

RECAP test was used on 44 metastatic breast cancer ex vivo biopsies,

the RECAP HRD tumors were 13, and five harbored germline BRCA

mutations. The RECAP test also identified three tumors as HRP,

correlating with post-treatment HR restoration after in vivo progressive

disease on platinum and PARPi treatment, which was explained in one

patient by a secondary BRCA1 revertant mutation (89). Meijer et al.

tested the RECAP method in parallel with two DNA-based tests to
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identify HRD cases in a cohort of primary and metastatic breast cancer

(85). Even though only 70% of concordance was reported for both

RECAP-Classifier of Homologous Recombination Deficiency

(CHORD) test and the RECAP-BRCA1/2-like classifier, RECAP

identified HRD tumors that DNA-based tests did not capture,

suggesting the need to compare these HRD tests in clinical trials

(85). The RECAP test was also used in HGSOC and endometrial

cancer samples (86, 90), and in these settings, the sensitivity of the test

in identifying HRD tumors was 100%, with no BRCAness phenotype

observed in the RECAP-HRP-defined samples (84, 86, 90). Its

prognostic potential has been assessed in two studies, where a trend

toward better OS in HGSOC patients with low RECAP scores treated

with platinum-based therapy has been reported (86, 91). Tumiati et al.

reported that specimens collected from omentum, ovary, or metastases

of the same ovarian cancer patient have different RAD51 scores,

supporting the idea that drug-resistance derives from the selection of

subclones and enforcing the role of intratumor heterogeneity as a

possible cause of platinum resistance (92). However, despite the

potential of RECAP as a HRD functional test, it is limited by the fact

that it needs IR treatment of fresh tumor tissues, hampering its use in

clinical practice.

To overcome these limitations, two seminal articles in 2018

reported that RAD51 foci expression could be quantified in FFPE

tumor samples at the basal level using a simple IF technique (93, 94)

(Figure 1). Cruz et al. set up a method to quantify RAD51 foci in

proliferative/geminin-positive cells in untreated breast cancer FFPE

samples and determined a RAD51 foci score able to discriminate

PARPi-sensitive (low score) from resistant (high score) tumors (93).

Specifically, a cut-off of ≤ 10% of RAD51/geminin-positive cancer cells

was evaluated in different areas of the FFPE tissue, associated with a

HRD phenotype (86). Similarly, Castroviejo-Bermejo et al.

demonstrated that a low basal expression of RAD51 foci in geminin-

positive breast cancer cells correlated with olaparib sensitivity in BRCA

wt tumors, thus identifying potential HRD/BRCA wt cases (94). The

RAD51 foci/FFPE test was validated in PDXmodels of OC, breast, and

prostate cancer, where a low RAD51 foci score (≤ 10%) was associated
FIGURE 1

Representation of the HRD functional tests under development. A schematic view of the immunofluorescent-based RAD51 foci tests. RAD51 foci can
be quantified after their formation following DNA-DSB induction (through radiation or pharmacological treatment) or at the basal level (without DSB
induction). Only proliferating (i.e., geminin positive) cancer cells in specimens are considered to evaluate nuclear RAD51 foci expression. Overview of
the DNA fiber assay technique. Nascent DNA is labeled with nucleotide analogs (CldU and IdU) in cancer cells (2D or 3D in vitro cultures). Cell lysate
solution for DNA spreading is spotted onto microscope slides and allowed to run the length of the slide. After spreading and fixation, the DNA fibers
are immunostained and images are acquired for analysis.
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with the PDXs’ HRD status response to PARPi, while association for

platinum-based therapy was contrasting (69, 95). While preclinical

works validated RAD51 foci as a robust HRD biomarker in breast and

HGSOC clinical samples (87, 88, 96–99), when compared with

approved Myriad MyChoice or other academic genomic tests in

HGSOC patients enrolled in the MITO16A/MaNGO-OV2 trial, its

performance was low, with a failure rate of 30% with respect to the 2%

of the DNA-based assays (54). These suboptimal results were explained

by the quality of the FFPE samples of ovarian surgical specimens (54),

requiring further validation and calibration of the method. Kramer

et al. assessed the validity and reproducibility of the IF-based RAD51

test in four different academic laboratories on 22 HGSOC samples

(100). They reported variable scoring in some samples, probably caused

by high signal-to-noise ratio and RAD51 heterogeneity, as the tumor

areas selected for quantification as well as the final scoring were

operator-dependent and suggested the importance of screening the

entire specimen and selecting multiple representative tumor tissue

areas when using this IF assay (100). While these data suggested that

the RAD51 score assessment did not yield statistical power for strong

conclusions on features impacting interobserver variability, they do

support its robustness.

Setting up an IHC-based RAD51 foci method would be interesting,

as IHC is routinely adopted in all pathology laboratories. Some

attempts have been made, but validation is still required (62, 101).

RAD51 heterogeneity within the same tissue or different biopsies of

the same patient can be particularly challenging when the variable

scoring surrounds the establishedHRD cut-off. A solution would be the

acquisition of an automated system to acquire the entire tissue image

for digital analysis. This would be crucial to avoid a lack of recognition

of HRP clones that have the potential to drive acquired resistance to

therapy. In fact, the RAD51 test is able to predict PARPi resistance by

recognizing RAD51-positive cells in BRCA1/2-mutated samples where

revertant mutations occur in BRCA1/2 genes (102). As already pointed

out, RAD51 test robustness can be impacted by the fixation method

and the amount of proliferating tumor cells, especially in small biopsies.

Finally, the validation of the threshold able to cluster HRD from HRP

tumors remains challenging due to the lack of a reference method to

define HRD. An attempt to calibrate the method has been described by

Van Wijk et al., who analyzed two different tumor types (endometrial

and epithelial ovarian cancer) using FFPE-RAD51 and the HRD-

RECAP test (87). The authors established optimal parameters for

RAD51 foci number (≥ 2) and HRD threshold (15%) and found,

respectively, 90% and 87% test sensitivities (87).

Considering all the results obtained until now, the RAD51 foci

test is an attractive, low-cost alternative to DNA-based HRD tests.

Once validated and correctly integrated into clinical practice, the

RAD51 test will definitely help tailor personalized treatment.
4.2 DNA fiber assay

Besides HR restoration, several other determinants of resistance to

PARPi have been described, including alterations affecting the

replication fork protection machinery (103). PARP inhibition causes

dysregulation of replicative forks due to PARP-trapping, which, in

HRD cells, enhances replication stress, fork collapse, and eventually
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induces cell death (104). BRCA proteins and RAD51 have roles outside

HR, being involved in the protection of replication fork (RF) under

replicative stress conditions (105), preventing RF stalling and

uncontrolled RF degradation from DNA nucleases (105–107). These

mechanisms have been shown in in vitro experiments where, in BRCA-

deficient cells, RAD51 filaments are not stabilized and do not block the

nucleolytic activity of MRE11 nuclease, which degrades the ssDNA

with the formation of a shorter new strand, which causes RF collapse

and is associated with PARPi sensitivity. Alterations affecting the

recruitment of these nucleases to stalled RF or defective RF

degradation processes have been associated with platinum and

PARPi resistance in BRCA mutant cell lines (101, 103). RF dynamics

can be studied functionally with the DNA fiber assay (108). A fiber

assay visualizes the RF degradation process by an IF-based approach in

in vitro cultures after the incorporation of two different labeled

thymidine analogs: iododeoxyuridine (IdU) and chlorodeoxyuridine

(CldU) (Figure 1) (109). RF degradation has been associated with

sensitivity to chemotherapy in BRCA-deficient tumors, while RF

protection has been associated with acquired resistance (103). Using

different labeling schemes, it is possible to study several replication

parameters, such as the speed of RF, the frequency of replication fork

stalling, or the number of new firing origins (109). Hill et al. applied the

fiber assay to HGSOC organoids treated with hydroxyurea, a RF

stalling agent, and then evaluated whether tumor cells were able to

protect the stalled RF from degradation (101). They observed that 61%

of 33 HGSOC organoids studied had unstable RF, a condition

associated with lack of RF-protecting proteins (i.e., BRCA or

RAD51) and increased sensitivity to platinum drugs and PARPi.

They demonstrated that 13 out of the 17 RF unstable organoids were

responsive to carboplatin, and 10 out if 11 with stable RF were resistant.

Regarding olaparib, two olaparib-sensitive organoids had unstable RF,

while the other 15 olaparib-resistant also displayed an unstable RF but

were also positive to RAD51 foci test, suggesting an HRP phenotype

(101). These findings support RF instability may be a surrogate marker

for platinum, but not PARPi sensitivity (101).

Preclinical evidence suggests that PARPi favors an acceleration

of the RF speed and lowers the number of stalled RF in BRCA1-

mutated cells (110). The fiber assay can help in understanding the

possible mechanisms of PARPi resistance but relies on the use of

fresh material and requires an in vitro treatment, rendering its

clinical translatability difficult.
5 Machine learning and artificial
intelligence for HRD recognition

All women with HGSOC should get access to HRD screening

platforms regardless of their geographical localization and

socioeconomic condition, as recently suggested by different

guidelines (111). It has been reported that testing all the patients

and their first-degree relatives would respectively drop the risk of

breast and ovarian cancer by 20% and 55% (111). The main obstacle

is represented by the high costs of genetic HRD tests, which are in

most cases not refundable, thus prompting the development of

more affordable strategies.
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In recent years, AI has aided clinicians in improving diagnosis, i.e.,

by analyzing digital histopathological images (112). Indeed, AI can be

trained to recognize special properties of the images starting from a

large set of input data (113). Machine learning (ML) models, such as

random forest, support vector machines (SVM), and linear/logistic

regression, rely on supervised training, so both input data and

corresponding labels are provided for the model to learn

classification criteria, and the prediction of the model gets more

accurate as the internal parameters are iteratively updated. External

validation on a different dataset is required to determine the model’s

performance and generalizability across diverse settings (114). In the

case of pathology, images have to be previously annotated by expert

pathologists in a laborious and time-consuming process (115). In

contrast, deep learning (DL) models are trained in a nonsupervised

way, so image annotation is not required as the model is able to extract

specific patterns from the input dataset and use them to achieve sample

stratification (116). This is the case of convolutional neural networks

(CNNs), which are generally more powerful than ML models as they

can get much more information from a single histopathology image

but require a larger input dataset for the training. Also, as neural

networks come up with more complex classification criteria, they are

much harder to interpret, thus precluding the possibility of

understanding the reasons for sample stratification, which would be

important, especially in the oncology field (116). Features that AI is able

to extract from digital images are numerical values, which may be the

actual pixel values, edge strengths, variation in pixel values in a region,

or other values computable from pixels. Also, nonpixel information

such as age, gender, or test results can contribute to improve the

stratification performance (113).

ML and DL models could be trained to predict the HRD status,

as well as the presence of BRCA1/2 mutations, by providing an

input dataset including tumor samples and the related genomic test

results during the training process. As the prediction mainly relies

on hematoxylin and eosin (HE)-stained tumor slides, the

underlying idea is that both BRCA1/2 mutations and HR

deficiency have phenotypical consequences at a histological level

that can be detected from digital images (117). The major problem

with whole slide images (WSI) is that they are too large to be

directly processed by CNNs, so they are generally segmented into

smaller tiles of a defined resolution. After appropriate annotation,

the model learns and selects only those tiles containing tumoral

areas whose features are expected to correlate with the presence of

molecular alterations. This approach of multiple instance learning

(MIL) is usually coupled with an attention approach in which the

model learns how much a tile contributes to the final classification

so that the tiles are scored and eventually aggregated in a weighted

manner based on their contribution (115). Loeffler et al. explored

the possibility of predicting the tumor HRD status based only on

routine HE histology images in 10 cancer types by using an

attention-weighted MIL approach (118). HRD-positive samples

were conventionally designated by a GIS ≥ 42 according to

Myriad test criteria. The HRD prediction model was internally

validated only in three tumor types: endometrium, pancreas, and

lung, with an area under the receiver operating characteristic

[AUROC—a parameter indicating the accuracy of the predicting

model; the closer the AUROC is to 1, the better the performance of
Frontiers in Oncology 09
the model (119)] of 0.79, 0.58, and 0.66, respectively. Predictions

generalized well to an external cohort, providing AUROCs of 0.93,

0.81, and 0.73, respectively, for the different tumor types. In

addition, they used a HRD classifier trained on breast cancer

(yielding an AUROC of 0.78 in internal validation) for predicting

HRD in endometrial, prostate, and pancreatic cancer, providing

AUROCs of 0.87, 0.84, and 0.67, respectively, thus supporting that a

HRD-like phenotype is shared across different tumor entities (118).

Lazard et al. pointed out the difficulty of interpreting DL

classification criteria, which prevents the identification of possible

confounding factors leading to a biased stratification (117). These

authors used a large retrospective cohort of 714 luminal and TNBC

patients with a genomically defined HR status from a single cancer

center. The neural network was trained to predict HRD from HE

digital images using the MIL approach, and the model’s

performance was demonstrated to be higher than those models

trained on pan-cancer datasets (AUC = 0.88 vs. AUC = 0.71). By

applying the same classification model to a tile level, they were able

to obtain a morphological map of HRD throughout the whole tissue

slide and were able to detect specific morphological patterns related

to HRD-positive areas of the tumor (117).

The analysis of digital pathological images could also allow

prognosis stratification. Wu et al. applied a DL model to all the

samples from The Cancer Genome Atlas Program (TCGA)-ovarian

cancer cohort obtaining a risk-score, that eventually correlated with

tumor HRD status, tumor response to platinum-based

chemotherapy, and patients’ overall survival (112).

AI can be used to develop improved algorithms to predict

tumors’ HRD status based on genomic data. This is the case of

GIInger, a cost-effective and easy-to-implement method to identify

HRD tumors (57). The authors developed a deep learning-based

model able to extract valuable information from low-pass WGS

(lpWGS), whose depth of sequencing (1×) allowed them to detect

mainly LST, compared to much deeper WGS approaches, but also

TAI and LOH were needed to determine the GI score. However, the

deeper the coverage of the sequencing, the more expensive the

process, and so the harder could be its broad implementation in

oncology patients.

Pozzorini et al. (57) validated GIInger using lpWGS data from

fresh frozen breast cancer samples and found a strong correlation

between the HRD status predicted by the model and the HRDetect

score of the samples. They also evaluated GIInger’s analytical

performance on FFPE OC samples in a multicenter setting,

obtaining robust and reproducible results across different

laboratories and high concordance with the reference method (57).

GIInger was also tested in a subset of PAOLA-1/ENGOT-ov25 trial

patients (EHEI), and predicted HRD status and drug response with

higher accuracy than alternative tests, suggesting GIInger clinical

utility (57). Albitar et al. (120) trained their ML model based on copy

number alteration (CNA) identification on a panel of 434 genes

aimed at distinguishing BRCA1/2mutated from BRCA1/2 wt tumors.

The model was used to stratify a dataset composed of 31 ovarian or

breast cancers with confirmed BRCA1/2 mutations and 84 cases

negative for mutations in BRCA1/2 or any of the 12 selected genes

implicated in HR, providing an AUROC of 0.984, a sensitivity of 90%,

and a specificity of 98%. Interestingly, since the presence of BRCA1/2
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mutations is the major cause of HRD, they used their ML model to

predict the HRD status of 124 ovarian or breast cancers without

mutations in any of the HR genes and 114 cancers with mutations in

one of the genes involved in HR. They observed that in both groups,

the system defined HRD-positive tumors, suggesting a shared

BRCAness phenotype. Unfortunately, a clinical correlation with

treatment and survival of the patients was missing (120).

Deep learning also provides the opportunity to integrate multi-

omics data to better predict HRD, not only on genetic alterations

but also on transcriptional and epigenetic levels. Zhang et al. (121)

developed a Multi-Omics Integrative Deep-learning framework to

better predict HRD-positive tumors based on information from

RNA-seq, miRNA-seq, DNA methylation, and somatic mutations

(121). The model was trained on a dataset comprising 551 samples,

including 351 true samples (204 HRD and 147 HRP) from TCGA-

OV cohort and 200 samples (100 HRD and 100 HRP) from data

augmentation to avoid overfitting caused by insufficient training

dataset. The MODeepHRD was trained to predict HRD status from

single omics, then combined to get the final prediction probability

for HRD-positive phenotype (AUC of 0.88, accuracy of 0.88,

sensitivity of 0.85, and specificity of 0.9). Interestingly, when the

model was trained on coupled omics, e.g., transcriptome/mutation

or transcriptome/methylation, either its sensitivity or specificity

increased. A good correlation between MODeepHRD prediction

and OS and DFS in TCGA-OV cohort was found (121). Model

validation was performed using 2,070 OC samples from 21

microarray datasets combined, where both platinum-based

chemotherapy response and survival were improved in HRD-

positive predicted tumors compared to HRD-negative tumors.

The predicting performance of the model was compared with

already existing ML models as well as previously reported HRD

detection methods, yielding a higher AUC and showing higher

sensitivity in predicting HRD based on mutations in HR-related

genes in different TCGA cohorts, supporting the feasibility and

superiority of the MODeepHRD model to predict HRD phenotype

in gynecological cancers. These data support the MODeepHRD
Frontiers in Oncology 10
model as a reliable tool for accurately screening HRD phenotype

and guiding therapeutic decisions (121).

In conclusion, AI is becoming fundamental for the computer-

based biomarker discovery field as it allows for the management and

processing of huge amounts of data coming from either digital images

and/or molecular omics approaches. Further improvement and

adoption of more sophisticated ML and DL models show great

promise for the future of biomarker discovery (116).
6 Conclusions/future perspectives

The HRD phenotype is characterized by the functional

inactivation of HR and the inability to repair DNA-DSBs in an

error-free manner. Indeed, HR repairs the DNA-DSBs using the

sister chromatid as a template, with no modification/loss of the

genetic material (122). The lack of inactivation of the pathway due

to genetic and epigenetic events that disable the function of HR

genes leads to the repair of DNA-DSBs by error-prone pathways

(i.e. NHEJ, MHEJ) with the accumulation of genetic damages

(named scars), favoring genetic instability and tumorigenesis

(123, 124). Recently, the synthetic lethal interaction between HRD

and inhibition of PARP has been shown to have therapeutic value in

a clinical setting. These considerations are important in HGSOC,

half of which have been reported to be HR-deficient. Indeed, both

the National Comprehensive Cancer Network (NCCN) and the

ESMO guidelines recommend HR testing of somatic and germline

mutations in BRCA1/2 and in HR-related genes, and/or genomic

scars (12, 13) to identify HR deficiency. Functional tests have been

developed, but they still require to be validated in the clinical

setting (Figure 2).

In this review, the different HRD tests developed over the last

decade were summarized, and their potential as well as their limits were

discussed. The implementation of these tests in the real world is and

will be a real challenge in the next future. While robust implementation

studies have been done with BRCA germline and somatic mutations, as
FIGURE 2

Assessing HRD in the clinical setting. Graphical summary of HRD testing solutions to assess cancer HRR phenotype in order to predict response to
platinum chemotherapy and PARPi-based therapy.
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these were first available, much still has to be done with genomic scar

assays. Some of these have been companion diagnostics, instrumental

in the clinical development of PARPi, but their wide implementation

has not yet occurred due to several reasons, including economic aspects

(i.e., national health policies that do not provide reimbursement for

testing), centralization of testing, and long lead times. Among new

genomic tests, the most promising are the ones deriving from

researchers from the EHEI, based on new in-house HRD tests based

on mutational signatures and patterns of genomic scars (53).

Interestingly, these tests showed high concordance with Myriad

MyChoice CDx in the PAOLA-1/ENGOT-ov25 trial tumor samples

and low failure rates, but require validation studies in new patients’

cohorts. The role of AI is increasing in the diagnostic and therapeutic

journey of oncologic patients and will likely play a fundamental role in

the definition of tumor HR status (HRD or HRP), as recent literature

suggests (125, 126). HRD functional tests hold great promise, being

able to capture not only the tumor history (genomic scar) but possibly

its actual HR status (127). In addition, these latter tests will likely

predict and/or anticipate the resistance to both platinum drugs and

PARPi due to the reacquisition of a functional HR repair, the most

diffused mechanism of resistance reported in the clinic (128).

Interestingly, the recent advancements in proteomics technologies,

including mass spectrometry and protein array analyses, will be

valuable complementary methods to study HR in the near future

and could help not only in patient stratification to tailor treatment but

also to study adaptive response to therapy and potentially intercept

drug resistance (129, 130).
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Çubukçu HC, et al. ISO 15189 is a sufficient instrument to guarantee high-quality
manufacture of laboratory developed tests for in-house-use conform requirements of
the European In-Vitro-Diagnostics Regulation. Clin Chem Lab Med. (2023) 61:608–26.
doi: 10.1515/cclm-2023-0045

53. Pujade-Lauraine E, Christinat Y, D’incalci M, Schouten P, Buisson A, Heukamp
L, et al. Homologous recombination deficiency testing in advanced ovarian cancer:
description of the ENGOT HRD European initiative. Ovarian Cancer. (2021), A208–8.
doi: 10.1136/ijgc-2021-ESGO.356

54. Capoluongo ED, Pellegrino B, Arenare L, Califano D, Scambia G, Beltrame L,
et al. Alternative academic approaches for testing homologous recombination
deficiency in ovarian cancer in the MITO16A/MaNGO-OV2 trial. ESMO Open.
(2022) 7:100585. doi: 10.1016/j.esmoop.2022.100585

55. Christinat Y, Ho L, Clément S, Genestie C, Sehouli J, Cinieri S, et al. Normalized
LST is an efficient biomarker for homologous recombination deficiency and olaparib
response in ovarian carcinoma. JCO Precis Oncol. (2023) 7:e2200555. doi: 10.1200/
PO.22.00555
frontiersin.org

https://doi.org/10.1016/j.annonc.2023.11.015
https://doi.org/10.3390/jpm13020284
https://doi.org/10.1093/jnci/djy085
https://doi.org/10.3390/genes15020162
https://doi.org/10.1038/s41467-020-16399-y
https://doi.org/10.1038/bjc.2012.451
https://doi.org/10.1158/2159-8290.CD-11-0206
https://doi.org/10.1158/0008-5472.CAN-12-1470
https://doi.org/10.1158/0008-5472.CAN-12-1470
https://doi.org/10.1186/s13058-014-0475-x
https://doi.org/10.1186/s13058-014-0475-x
https://doi.org/10.1158/1078-0432.CCR-15-2477
https://doi.org/10.1016/j.esmoop.2021.100144
https://doi.org/10.1158/1541-7786.MCR-18-0034
https://doi.org/10.1136/esmoopen-2018-000480
https://doi.org/10.1136/esmoopen-2018-000480
https://doi.org/10.1016/S0140-6736(17)32440-6
https://doi.org/10.1016/S1470-2045(20)30061-9
https://doi.org/10.3390/ijms241511890
https://doi.org/10.1056/NEJMoa1910962
https://doi.org/10.1056/NEJMoa1911361
https://doi.org/10.1056/NEJMoa1909707
https://doi.org/10.1200/JCO.22.01003
https://doi.org/10.1056/NEJMoa1810858
https://doi.org/10.1016/S1470-2045(21)00531-3
https://doi.org/10.1016/S1470-2045(21)00531-3
https://doi.org/10.1056/NEJMoa1105535
https://doi.org/10.1016/S1470-2045(14)70228-1
https://doi.org/10.1016/S1470-2045(14)70228-1
https://doi.org/10.1002/cncr.29995
https://doi.org/10.1016/S1470-2045(17)30469-2
https://doi.org/10.1200/JCO.2020.38.15_suppl.6002
https://doi.org/10.1200/JCO.2020.38.15_suppl.6002
https://doi.org/10.1056/NEJMoa1611310
https://doi.org/10.3390/ph16091261
https://doi.org/10.1016/j.ygyno.2022.06.017
https://doi.org/10.1016/S1470-2045(19)30029-4
https://doi.org/10.1200/JCO.2020.38.15_suppl.1586
https://doi.org/10.1002/gcc.22939
https://doi.org/10.3390/cancers14051132
https://doi.org/10.3390/jpm11070612
https://doi.org/10.1016/j.jmoldx.2022.09.004
https://doi.org/10.3390/cancers15030818
https://doi.org/10.3390/cancers15030818
https://doi.org/10.1093/annonc/mdz062
https://doi.org/10.1016/j.annonc.2020.08.2102
https://doi.org/10.1515/cclm-2023-0045
https://doi.org/10.1136/ijgc-2021-ESGO.356
https://doi.org/10.1016/j.esmoop.2022.100585
https://doi.org/10.1200/PO.22.00555
https://doi.org/10.1200/PO.22.00555
https://doi.org/10.3389/fonc.2024.1405361
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Guffanti et al. 10.3389/fonc.2024.1405361
56. Loverix L, Vergote I, Busschaert P, Vanderstichele A, Venken T, Boeckx B, et al.
PARP inhibitor predictive value of the Leuven HRD test compared with Myriad
MyChoice CDx PLUS HRD on 468 ovarian cancer patients from the PAOLA-1/
ENGOT-ov25 trial. Eur J Cancer. (2023) 188:131–9. doi: 10.1016/j.ejca.2023.04.020

57. Pozzorini C, Andre G, Coletta T, Buisson A, Bieler J, Ferrer L, et al. GIInger
predicts homologous recombination deficiency and patient response to PARPi
treatment from shallow genomic profiles. Cell Rep Med. (2023) 4:101344.
doi: 10.1016/j.xcrm.2023.101344

58. Schouten PC, Richters L, Vis DJ, Kommoss S, van Dijk E, Ernst C, et al. Ovarian
cancer-specific BRCA-like copy-number aberration classifiers detect mutations
associated with homologous recombination deficiency in the AGO-TR1 trial. Clin
Cancer Res. (2021) 27:6559–69. doi: 10.1158/1078-0432.CCR-21-1673

59. Willing E-M, Vollbrecht C, Vössing C, Weist P, Schallenberg S, Herbst JM, et al.
Development of the NOGGO GIS v1 assay, a comprehensive hybrid-capture-based
NGS assay for therapeutic stratification of homologous repair deficiency driven tumors
and clinical validation. Cancers (Basel). (2023) 15:3445. doi: 10.3390/cancers15133445

60. Callens C, Rodrigues M, Briaux A, Frouin E, Eeckhoutte A, Pujade-Lauraine E,
et al. Shallow whole genome sequencing approach to detect Homologous
Recombination Deficiency in the PAOLA-1/ENGOT-OV25 phase-III trial. Oncogene.
(2023) 42:3556–63. doi: 10.1038/s41388-023-02839-8

61. Davies H, Glodzik D, Morganella S, Yates LR, Staaf J, Zou X, et al. HRDetect is a
predictor of BRCA1 and BRCA2 deficiency based on mutational signatures. Nat Med.
(2017) 23:517–25. doi: 10.1038/nm.4292

62. Chopra N, Tovey H, Pearson A, Cutts R, Toms C, Proszek P, et al. Homologous
recombination DNA repair deficiency and PARP inhibition activity in primary triple
negative breast cancer. Nat Commun. (2020) 11:2662. doi: 10.1038/s41467-020-16142-7

63. Durinikova E, Reilly NM, Buzo K, Mariella E, Chilà R, Lorenzato A, et al.
Targeting the DNA damage response pathways and replication stress in colorectal
cancer. Clin Cancer Res. (2022) 28:3874–89. doi: 10.1158/1078-0432.CCR-22-0875

64. Leman R, Muller E, Legros A, Goardon N, Chentli I, Atkinson A, et al.
Validation of the clinical use of GIScar, an academic-developed genomic instability
score predicting sensitivity to maintenance olaparib for ovarian cancer. Clin Cancer
Res. (2023) 29:4419–29. doi: 10.1158/1078-0432.CCR-23-0898

65. Krumm N, Khasnavis NS, Radke M, Banda K, Davies HR, Pennil C, et al.
Diagnosis of ovarian carcinoma homologous recombination DNA repair deficiency
from targeted gene capture oncology assays. JCO Precis Oncol. (2023) 7:e2200720.
doi: 10.1200/PO.22.00720

66. Scaglione GL, Pignata S, Pettinato A, Paolillo C, Califano D, Scandurra G, et al.
Homologous recombination deficiency (HRD) scoring, by means of two different
shallow whole-genome sequencing pipelines (sWGS), in ovarian cancer patients: A
comparison with myriad myChoice assay. Int J Mol Sci. (2023) 24:17095. doi: 10.3390/
ijms242317095

67. Hakkaart C, Pearson JF, Marquart L, Dennis J, Wiggins GAR, Barnes DR, et al.
Copy number variants as modifiers of breast cancer risk for BRCA1/BRCA2 pathogenic
variant carriers. Commun Biol. (2022) 5:1061. doi: 10.1038/s42003-022-03978-6
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