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Background: Multiple myeloma (MM), a malignant disease of plasma cells

originating in the bone marrow, is influenced significantly by genetic factors.

Although plasma liposomes have been linked to MM, the nature of their potential

causal relationship remains to be elucidated. This study aims to explore this

relationship using Mendelian randomization (MR) analysis.

Methods: Liposome-associated genetic instrumental variables (IVs) were

identified from plasma lipidomics data of 7,174 Finnish individuals within a

Genome-Wide Association Study (GWAS) pooled database. A MM pooled

dataset was sourced from a GWAS meta-analysis encompassing 150,797

individuals, including 598 MM patients and 218,194 controls. These IVs

underwent MR analysis, adhering to strict criteria for correlation,

independence, and the exclusion of confounders. The inverse variance

weighted (IVW) method, MR-Egger method, weighted median (WM) method,

and simplemedian were utilized for MR analysis assessment, alongside Cochran’s

Q test, MR-Egger intercept, MR-Pleiotropy Residual Sum and Outlier (MR-

RESSO) method, and leave-one-out analysis for evaluating heterogeneity,

multiplicity, and instrumental bias.

Results: The study identified 88 significant, independent single nucleotide

polymorphisms (SNPs) as IVs for MR analysis, each with an F-statistic value

above 10, indicating robustness against weak instrument bias. IVW analysis

revealed associations between six plasma liposome components and MM risk

(p < 0.05). Phosphatidylinositol (16:0_18:1) serum levels (odds ratio [OR] = 1.769,

95% confidence interval [CI]: 1.132-2.763, p = 0.012) and triacylglycerol (56:4)

levels (p = 0.026, OR = 1.417, 95% CI: 1.042-1.926) were positively correlated

with the risk of multiple myeloma development. Phosphatidylethanolamine

(18:0_20:4) (p = 0.004, 95% CI: 0.621-0.916, OR = 0.754), phosphatidylcholine

(18:2_20:4) (p = 0.004, OR = 0.680, 95% CI: 0.519-0.889), sterol ester (27:1/18:3)

levels (p = 0.013, OR = 0.677, 95% CI: 0.498-0.922), and phosphatidylcholine (O-

18:2_20:4) levels (OR = 0.710, 95% CI: 0.517-0.913, p = 0.033) were negatively

associated with the risk of developing multiple myeloma. The Cochran’s Q test

did not detect statistical method heterogeneity, nor did the MR-RESSO test or

the MR-Egger intercept detect horizontal pleiotropy; leave-one-out analyses

confirmed the absence of bias from individual SNPs
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Conclusions: Our findings suggest a complex relationship between plasma

liposome components and MM risk. Elevated serum levels of triacylglycerol

and phosphatidylinositol are positively associated with MM risk, while certain

phospholipids and sterol esters offer a protective effect. This study provides

valuable insights into the clinical relevance of liposomes in the pathology of

multiple myeloma.
KEYWORDS
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1 Introduction

Multiple Myeloma (MM) is a malignancy of plasma cells

originating in the bone marrow, characterized by the abnormal

proliferation of monoclonal plasma cells and associated

hematological and skeletal complications (1). Despite its rarity,

accounting for 1% of all cancers, MM ranks as the second most

prevalent hematological malignancy following lymphoma. Current

estimates suggest that nearly 230,000 individuals globally will be

diagnosed with MM over the next five years (2). The disease’s

hallmark includes the overproduction of immunoglobulins, leading

to a spectrum of complications such as anemia, bone degradation,

renal insufficiency, and hypercalcemia (3). MM’s pathogenesis is

attributed to a combination of genetic and environmental factors,

resulting in the malignant transformation of plasma cells and

excessive monoclonal immunoglobulin production (4). Recent

advancements in treatment, including proteasome inhibitors,

immunomodulatory drugs (IMiDs), monoclonal antibodies, and

histone deacetylase inhibitors, have significantly improved

management outcomes. However, the relapse and mortality rates

remain high, underscoring the need for continued development of

novel therapeutic strategies to enhance long-term survival in MM

patients (5, 6).

Liposomes, artificial bimolecular membranes composed

primarily of phospholipids and cholesterol, are endogenous

substances inherent to living organisms. Their compatibility with

biological tissues and non-immunogenic nature makes them an

ideal medium for drug delivery (7). As a nanoscale drug delivery

system, liposomes have garnered interest for their capacity to

encapsulate drugs effectively, optimizing their distribution within

the body, enhancing targeting precision, and minimizing toxic side
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effects (8, 9). In the realm of MM therapy, liposome technology

emerges as a promising avenue for developing targeted therapeutic

strategies aimed at enhancing treatment efficacy while reducing

drug-induced toxicity (10, 11). Recent investigations suggest a

significant role for specific human serum liposome components

in MM pathogenesis. Notably, acidic sphingomyelinase activity is

markedly decreased in the blood of patients with MM (12), and

sphingolipids have been implicated in the disease’s etiology (13).

Additionally, serum triglyceride levels may correlate with MM

severity (14). Despite these insights, challenges such as limited

sample sizes, insufficient clinical evidence, study biases, and

confounding factors have resulted in inconsistent conclusions

regarding the causal relationship between liposome components

and MM.

Mendelian randomization (MR) employs genetic variations as

instrumental variables to ascertain the impact of environmental or

exposure factors on disease outcomes. This method capitalizes on

the principle that alleles are allocated to individuals before any

exposure, and their distribution is largely independent of potential

confounding factors encountered later in life, such as

environmental influences, socio-economic status, and personal

behaviors (15). Consequently, gene-disease associations deduced

through MR are not affected by these common confounders,

enabling the methodology to circumvent issues related to

confounding and reverse causality effectively. Therefore, the aim

of our study is to use Mendelian randomization to determine

whether there is a genetic causal relationship between liposomes

and MM.
2 Materials and methods

2.1 Methods

MR studies were conducted to elucidate the causal dynamics

between plasma liposomes and multiple myeloma, with a detailed

schematic of the study design depicted in Figure 1. For the MR

approach to yield valid conclusions, it must satisfy three critical
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conditions: (A) The selected genetic variant, serving as the

instrumental variable (IV), must exhibit a robust association with

plasma liposomes, ensuring its validity as a proxy for exposure. (B)

The genetic instrument should maintain independence from the

multiple myeloma outcome and not be confounded by other

variables, affirming its specificity and eliminating potential bias.

(C) The relationship between the genetic variant and multiple

myeloma must be mediated exclusively through plasma

liposomes, with no alternative pathways influencing the outcome,

thus ensuring the integrity of the causal inference.

2.1.1 Liposome data
The study leveraged comprehensive summary statistics from

the research conducted by Linda Ottensmann et al. (16), which

explored the genetic influences on human plasma liposomes. This

foundational data, drawn from the GeneRISK cohort encompassing

7,174 Finnish individuals, underwent rigorous quality control

before the initial genome-wide discovery analysis of single-

nucleotide polymorphisms (SNPs) in this population. The cohort

analysis identified 179 lipids across 13 lipid classes, encapsulating

the primary lipid categories: glycerolipids, glycerophospholipids,

sphingolipids, and sterols. The summary data from the plasma

liposomes genome-wide association study (GWAS) is accessible in

the GWAS catalogue (https://www.ebi.ac.uk/gwas/), under the

accession numbers GCST90277238 to GCST90277416. For

detailed GWAS findings, refer to Supplementary Table S1.
2.1.2 Data on MM and confounders
Summary data for single nucleotide polymorphisms (SNPs)

linked to multiple myeloma were sourced from the IEU Open

GWAS database (https://gwas.mrcieu.ac.uk/), identified by the

dataset number finn-b-CD2_MULTIPLE_MYELOMA_

PLASMA_CELL. This data was compiled from a comprehensive

GWAS meta-analysis involving 150,797 individuals, including 598

patients diagnosed with multiple myeloma and 218,194 controls.

Diagnosis criteria for multiple myeloma patients adhered to the

International Classification of Diseases (ICD) versions 8, 9, and 10,

as specified by the Finnish Genetic Alliance. The statistical data

utilized in this study are publicly accessible, negating the need for

ethical approval. For further details on the outcome data, refer to

Supplementary Table S2.
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2.2 Instrumental variable selection

In our initial analyses, we identified SNPs exhibiting p-values

beneath the genome-wide significance threshold (5 × 10^-6) as IVs to

enhance the comprehensiveness of our results and increase sensitivity. To

mitigate the influence of correlated SNPs, all IVs underwent linkage

disequilibrium (LD) clustering with parameters set at r^2 = 0.001 and a

maximum distance of 10,000 kb. Furthermore, to detect any potential

pleiotropic effects, we employed Phenoscanner (http://

www.phenoscanner.medschl.cam.ac.uk/) to exclude SNPs linked to the

outcome, as detailed in Supplementary Table S3.

The F-statistic formula [R^2(N-2)/(1-R^2)], where R^2 denotes

the proportion of variance explained by the genetic instrument and N

represents the effective sample size of the GWAS, was utilized to

evaluate the strength of each IV. Only SNPs with F-statistic values

exceeding 10 were included in subsequent MR analyses to ensure

reliable estimates of genetic variance.
2.3 Mendelian randomization analysis

To investigate the causal linkage between 179 liposomes and

multiple myeloma, we executed two-sample MR analyses

employing various models and tests. These included sum-

weighted models, inverse variance weighted (IVW) tests, with the

IVW method serving as the primary test in scenarios devoid of

horizontal pleiotropy or when such pleiotropy was neutralized,

thereby providing an unbiased estimation of the causal effects

between exposures and outcomes.

For sensitivity analyses, acknowledging the trade-off with

statistical power, we applied weighted median and MR-Egger

regression tests, which accommodate differing hypotheses. The

weighted median test permits up to 50% of the SNPs to be invalid

instruments or exhibit pleiotropy. Instrument heterogeneity was

evaluated using Cochran’s Q test. To address pleiotropy and

outliers, we utilized MR polytropic residuals (MR-pleiotropy) and

MR-PRESSO, setting a significance threshold of p < 0.05 to determine

statistical significance and infer potential causal relationships.

Statistical power was calculated using the mRnd efficacy calculator

(http://cnsgenomics.com/shiny/mRnd/), and results are detailed in the

corresponding table. All statistical analyses were conducted in R

software version 4.2.3, utilizing the TwoSampleMR and MRPRESSO

software packages for MR analysis. A graphical representation of the

MR research methodology is illustrated in Figure 2.
2.4 Reverse Mendelian randomization

The data sources utilized for the reverse Mendelian randomization

analysis were consistent with those employed for the forward

Mendelian randomization. MM served as the exposure, with SNPs

closely associated with multiple myeloma selected as the instrumental

variables for the exposure (p < 5 × 10-6). Similar to the forward

Mendelian randomization approach, instrumental variables

characterized by chain imbalance and F less than 10 were excluded

from the analysis. The six significant plasma liposomes identified in the
FIGURE 1

A comprehensive examination of the three assumptions of
MR study.
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forward Mendelian randomization analysis were chosen as the

outcome variables. Subsequently, a two-sample Mendelian

randomization analysis was conducted to ascertain the presence of

reverse causality between MM and these significant liposomes.
3 Results

3.1 Selection of IVs

In our study, we identified 88 significant and independent SNPs

as IVs for MR analysis. These IVs demonstrated no correlation with
Frontiers in Oncology 04
the outcome of interest, multiple myeloma, ensuring the validity of

our instrumental approach. The range of F-statistic values, spanning

from 20.81 to 1946.15, underscored the robustness of our selected

instruments by effectively mitigating the risk of weak instrumental

variable bias. For detailed insights into the plasma liposome-

associated SNPs, including b-values, standard errors, effector alleles,

and other allele data, refer to Supplementary Table S3.
3.2 MR analysis

The IVW analysis identified a significant association between

six plasma liposome components and the risk of multiple myeloma

(P < 0.05), namely Phosphatidylethanolamine (18:0_20:4),

Phosphatidylcholine (18:2_20:4), Sterol ester (27.1/18:3),

Phosphatidylcholine (O-18:2_20:4), Phosphatidylinositol

(16:0_18:1), and Triacylglycerol (56:4). These findings are visually

presented in Figure 3.

In our study, the serum level of phosphatidylethanolamine

(18:0_20:4) was negatively associated with the risk of multiple

myeloma (p = 0.004, 95% confidence interval [CI]: 0.621-0.916,

odds ratio [OR] = 0.754), indicating a 24.6% lower chance of

developing MM with elevated levels of phosphatidylethanolamine

(18:0_20:4). Phosphatidylcholine (18:2_20:4) serum levels were

negatively associated with the risk of developing multiple myeloma

(p = 0.004, OR = 0.680, 95% CI: 0.519-0.889), indicating a 32% lower

chance of developingMMwith elevated levels of phosphatidylcholine

(18:2_20:4). Sterol ester (27:1/18:3) levels (p = 0.013, OR = 0.677, 95%
FIGURE 3

The effect of various liposomes on multiple myeloma.
FIGURE 2

A flow-chart of MR study to explore the causal relationship between
liposomes and multiple myeloma.
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CI: 0.498-0.922) were negatively associated with the risk of

developing multiple myeloma, indicating a 32.3% lower chance of

developing MM with elevated levels of sterol ester (27:1/18:3).

Phosphatidylcholine (O-18:2_20:4) levels (OR = 0.710, 95% CI:

0.517-0.913, p = 0.033) were negatively associated with the risk of

multiple myeloma, indicating a 29% lower chance of developing MM

with elevated levels of phosphatidylcholine (O-18:2_20:4). The results

indicate that elevated levels of phosphatidylethanolamine (18:0_20:4),

phosphatidylcholine (18:2_20:4), sterol ester (27:1/18:3), and

phosphatidylcholine (O-18:2_20:4) are associated with a reduced

risk of developing multiple myeloma.

Our findings demonstrate that elevated serum levels of

Phosphatidylinositol (16:0_18:1) (OR = 1.769, 95% CI: 1.132–

2.763, p = 0.012) and Triacylglycerol (56:4) (OR = 1.417, 95% CI:

1.042–1.926, p = 0.026) are positively associated with an increased

risk of multiple myeloma, indicated a 76.9% greater chance of

occurring MM with elevated levels of Phosphatidylinositol

(16:0_18:1) and a 41.7% greater chance of Triacylglycerol (56:4).

This indicates that higher concentrations of these lipids correlate

with a greater relative risk for the disease. The intricate relationship

between various liposome components and multiple myeloma risk

is visually represented in the deep forest plot in Figure 4.
3.3 Heterogeneity test and pleiotropy test

Cochran’s Q test revealed no significant heterogeneity between

IVs effect estimates derived from the IVWmethod and the MR-Egger

method, as illustrated in Figure 5. Further exploration of pleiotropy

through MR pleiotropy and MR-PRESSO_Global analyses did not

identify any outliers, indicating an absence of significant pleiotropy in
Frontiers in Oncology 05
our study findings. Additionally, MR-Egger regression analyses

corroborated that pleiotropy did not influence the MR results. The

integrity of our findings was further supported by sensitivity analyses,

which demonstrated minimal or no impact of pleiotropy, as detailed

in Table 1. The findings from the ‘leave-one-out’ analyses

demonstrate that, upon exclusion of any individual SNP, the

outcomes for the remaining SNPs consistently fall on the same side

of the null line, as illustrated in Figure 6. This observation suggests

that each SNP was included to robustly establish the significance of

the causal relationship. The exclusion of any individual SNP does not

materially impact the overall findings, thereby reinforcing the

robustness of the MR results in this study.
3.4 Reverse MR analysis

Furthermore, an inverse MR analysis was conducted on the six

significant plasma liposomes to investigate potential causal effects of

multiple myeloma on these liposomes. This analysis adhered to the

methodology previously described. Our findings indicated no

evidence of reverse causality between multiple myeloma and any

of the six significant plasma liposomes, as illustrated in Figure 7.
4 Discussion

In this study, we utilized publicly available genetic datasets on

human plasma liposomes and multiple myeloma to explore the

causal relationships among 179 liposome components and multiple

myeloma. Our study marks the first Mendelian randomization

analysis to assess the connections between various liposome
FIGURE 4

The causal effect of six plasma liposomes on MM risk; GCST90277317: Phosphatidylcholine (18:2_20:4) levels; GCST90277247: Sterol ester (27:1/
18:3) levels; GCST90277344: Phosphatidylcholine (O-18:2_20:4); GCST90277348: Phosphatidylethanolamine (18:0_20:4); GCST90277358:
Phosphatidylinositol (16:0_18:1) levels; GCST90277410: Triacylglycerol (56:4) levels.
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components and multiple myeloma, revealing a causal link between

six liposome components and the disease.

Significantly, we observed a positive association between the serum

levels of Triacylglycerol (56:4) and the risk of multiple myeloma,

aligning with existing research that has documented alterations in

serum triglyceride levels in relation to multiple myeloma. For instance,

Małgorzata Kuliszkiewicz-Janus et al. reported a significant elevation in

serum triglyceride levels during the active phase of the disease (14).

Triglycerides are the main form of fat stored in adipose tissue. Both

excessively high and low levels of triglycerides in the blood can be

associated with various health issues such as heart disease, diabetes, and

metabolic syndrome. Hypertriglyceridemia is a manifestation of
Frontiers in Oncology 06
hyperlipidemia, and numerous studies have reported its association

with an increased risk of multiple myeloma. Furthermore, evidence of

high triglyceride levels has been observed in patients with multiple

myeloma and benign monoclonal gammopathy (17, 18). The precise

mechanisms underlying the relationship between heightened

triglyceride levels and multiple myeloma risk remain to be fully

elucidated. However, we hypothesize that it may pertain to the

energy metabolism of tumor cells. Extensive literature suggests that

adipocytes can supply tumor cells with energy through lipids. Given

their role in energy storage and supply within adipose tissue and blood,

triglycerides are crucial liposomal components that might serve as a

readily accessible energy source for lymphoid tumor cells (19). The
TABLE 1 Results of multiplicity and sensitivity analyses of six liposomes.

Description
Liposome

MR-Egger MR-heterogeneity MR-pleiotropy
MR-
PRESSO_Global

Power

OR (95%Cl) p-value Cochran’s Q
p-
value

intercept
p-
value

RSS p-value

Phosphatidylethanolamine
(18:0_20:4)

0.48 (0.22-
1.03

0.08 13 0.978 0.055 0.345 5.740 0.96 1.00

Phosphatidylcholine (18:2_20:4)
0.89 (0.44-

1.82)
0.76 21 0.985 -0.035 0.435 10.350 0.97 0.99

Phosphatidylinositol (16:0_18:1)
0.69 (0.32-

1.46)
0.35 13 0.897 0.005 0.932 8.073 0.89 1.00

Sterol ester (27:1/18:3)
0.73 (0.46-

1.18)
0.22 15 0.974 0.008 0.897 6.789 0.98 1.00

Triacylglycerol (56:4)
2.12 (0.65-

6.88)
0.26 7 0.571 -0.025 0.755 7.464 0.60 0.84

Phosphatidylcholine (O−18:2_20:4)
0.83 (0.29

2.34)
0.73 12 0.802 0.073 0.312 9.457 0.77 0.91
fron
FIGURE 5

The funnel plot of the causal effect of six liposomes on MM risk. It’s almost symmetrical on both sides, which indicated no significant heterogeneity
between the effect estimates of the IVs in both the IVW method and MR-Egger method.
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triglyceride/free fatty acid (TG/FFA) cycle plays a pivotal role in

generating signals that regulate a variety of metabolic, physiological,

and signaling pathways in the cell (20). This cycle allows for the

transient uptake of free fatty acids derived from triglyceride catabolism
Frontiers in Oncology 07
by cancer cells, facilitating rapid proliferation and the synthesis of cell

membrane components. The oxidation of fatty acids within tumor cell

mitochondria transforms fatty acids into energy-rich molecules such as

NADH, NADPH, FADH2, and ATP, which are essential for the
FIGURE 7

The reverse MR analysis of MM on six plasma liposomes.
FIGURE 6

Leave-one-out analysis of the causal association between six liposomes and MM. The exclusion of individual SNPs did not result in substantial
differences in the combined effect estimates between the remaining SNPs and the overall results.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1404744
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhong et al. 10.3389/fonc.2024.1404744
growth and proliferation of cancer cells (21). Panaroni C et al. further

demonstrated that multiple myeloma cells could assimilate free fatty

acids from triglyceride catabolism through fatty acid transporter

proteins, participating in free fatty acid metabolism. This study also

revealed a dose-dependent effect of free fatty acids on multiple

myeloma cells, with low concentrations promoting cell proliferation

and viability, whereas high concentrations adversely affected cell

growth and survival (22).

It should be noted that although our study only observed a causal

relationship between triglycerides and MM, other manifestations of

hyperlipidemia, such as hypercholesterolemia, and even conditions

like chylomicron syndrome, are also closely associated with multiple

myeloma. Hyperlipidemia is another component of metabolic

syndrome and has been reported in patients with MGUS and MM,

particularly the immunoglobulin (Ig)-A subtype (23–25). Numerous

studies have identified paraproteins as a key factor in the onset of

hyperlipidemia associated with MM (26–28). This is thought to be

due to the interaction of paraprotein with serum lipoproteins, tissue

receptors, and lipoprotein lipase, resulting in decreased lipoprotein

clearance. Corsini et al. (28) described a MGUS patient with

autoantibodies against the LDL receptor, a finding supported by

Nozaki et al. (29), who demonstrated IgA binding at the LDL

receptor’s site in an MM patient with autoimmune hyperlipidemia.

Additionally, the conversion of IDL to LDL and LDL receptor

binding are impaired in MM patients due to immunoglobulin-

lipoprotein complexes.

Our research has pinpointed phosphatidylinositol (16:0_18:1) as

another liposome component potentially linked to an elevated risk of

multiple myeloma. Phosphatidylinositol (PI), a critical constituent of

cellular membranes, plays a pivotal role in various biological processes,

including intracellular signaling, membrane transport, and cytoskeletal

regulation. The involvement of PI and its signal transduction pathways

is significant in the pathogenesis of multiple myeloma, with evidence

suggesting that its activation is a hallmark of the disease and its

inhibition can trigger apoptosis (30). In vitro studies lend further

support to the relationship between PI and multiple myeloma risk. The

application of phosphatidylinositol-3 kinase inhibitors, such as

LY294002 and Wortmannin, has been shown to suppress the

phosphorylation of key signaling proteins including Akt, FKHRL-1,

and p70S6K, thereby markedly reducing the proliferation of multiple

myeloma cells (31). Additionally, Tang et al. documented the potent

anti-myeloma effects of C96, a phosphatidylinositol-3-kinase (PI3K)

inhibitor, in a mouse model of the disease. This study highlighted that

C96 curtailed PI3K activation and downregulated the activity of

mTOR, p70S6K, and 4E-BP1 in both a time- and concentration-

dependent manner, culminating in the apoptosis of multiple myeloma

cells (32). These findings indirectly corroborate our observation that

phosphatidylinositol is positively correlated with the risk of developing

multiple myeloma, underscoring the potential mechanistic link

between PI signaling pathways and the progression of this malignancy.

Our analysis identified four liposome components—

phosphatidylethanolamine (18:0_20:4), phosphatidylcholine

(18:2_20:4), sterol esters (27:1/18:3), and phosphatidylcholine (O-

18:2_20:4)—that are potentially associated with a reduced risk of

multiple myeloma. Phosphatidylethanolamine (PEA) and

phosphatidylcholine are phospholipids integral to cell
Frontiers in Oncology 08
membranes. While large-scale studies directly linking PEA and

phosphatidylcholine to MM risk are lacking, preliminary research

suggests a potential role in MM development. For instance, Wilson

I. Gonsalves et al. discovered significantly lower serum levels of PEA

and phosphatidylcholine in multiple myeloma patients compared to

those with monoclonal gammopathy of undetermined significance

(MGUS), highlighting potential differences in lipid metabolism

between these conditions (33).

Hematological cancer cells, characterized by their rapid

proliferation, necessitate ongoing synthesis of phospholipids and

sterols for membrane formation. From the perspective of complex

lipids, phosphatidylethanolamine and phosphatidylcholine are

crucial structural elements of cell membranes. Notably, elevated

levels of these phospholipids are associated with a diminished risk

of multiple myeloma, implying that such cells might exhibit enhanced

utilization of membrane biosynthesis for tumor proliferation.

Alternatively, this phenomenon could be attributed to an immune

response mechanism. Specifically, natural killer cells and T-

lymphocytes, which recognize phosphatidylethanolamine and

phosphatidylcholine, may facilitate T-lymphocyte proliferation and

augment protein kinase C activity (PKC) in various cell lines (34, 35).

Research indicates that elevated levels of phosphatidylethanolamine

and phosphatidylcholine can markedly enhance the effects of the

immune system through various mechanisms. Initially, these

phospholipids interact with membrane-associated signaling

pathways, directly influencing the activation and proliferation of T

cells (36). The increase in phospholipids not only improves

membrane fluidity but also enhances the organization of receptors

on the membrane. This optimization facilitates the interaction

between cell surface receptors and their ligands, promoting a rapid

response and expansion of immune cells (37, 38). Additionally,

phosphatidylethanolamine and phosphatidylcholine play a crucial

role in the activation of PKC, a key signaling molecule that governs

cell proliferation, differentiation, and survival. In T cells specifically,

activation of PKC leads to the migration of transcription factors, thus

inducing the expression of immune response genes. Consequently,

PEA and PC significantly bolster the immune cells defensive

capabilities against infections by regulating PKC activity (35).

Moreover, research also suggests that phosphatidylethanolamine

may induce apoptosis in tumor cells by activating the ferroptosis

pathway in multiple myeloma cells. This effect is mediated as

oxygenated phosphatidylethanol interacts with Toll-like receptor 2,

facilitating the phagocytosis of iron-rich cells (39).

Sterol esters, formed through the esterification of sterols with

fatty acids, are vital lipid components in both plants and animals,

playing a crucial role in cell membrane composition. These esters

significantly influence the structure and fluidity of cell membranes,

thereby impacting cellular interactions (40). Given that sterol

components of the cell membrane are crucial for signal

transduction, a reduction in sterol ester levels may adversely affect

the lipid components within the membrane, thereby influencing the

activity of cell surface receptors. Such an alteration in receptor

activity could disrupt growth factor-dependent signaling pathways,

ultimately promoting the proliferation and survival of myeloma

cells (41). Additionally, in the bone marrow microenvironment, the

interplay among various cell types, such as osteoblasts, myeloid
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cells, and immune cells, is critical for maintaining its integrity. A

reduction in sterol esters could impair these cellular interactions,

potentially destabilizing the bone marrow microenvironment and

fostering the onset of hematological malignancies (42).

Furthermore, the regulation of the cell cycle may also be influenced

by changes in sterol ester levels. Abnormalities in cholesterol

metabolism have been linked to the regulation of cell cycle

checkpoints, which can lead to the rapid division of malignant cells

by affecting the expression and activity of key cyclins (41, 43).

Additionally, a reduction in sterol ester levels may trigger an increase

in cellular stress responses, such as oxidative stress or endoplasmic

reticulum stress; the latter is often caused by improper protein

folding and is particularly pronounced in multiple myeloma cells

that secrete large amounts of monoclonal proteins. These cellular

responses are pivotal in enabling myeloma cells to adapt to harsh

microenvironments, thereby enhancing their survival capabilities (44,

45). Moreover, the modulation of signaling pathways by sterol esters

plays a crucial role in the activation and proliferation of B lymphocytes,

key precursors in multiple myeloma development (46). However,

further research is essential to elucidate the specific mechanisms by

which low levels of sterol esters might trigger multiple myeloma.

This study boasts several notable strengths. Primarily, it represents

the inaugural MR analysis to scrutinize the causal relationship between

179 liposome components and multiple myeloma, marking a

pioneering effort in this research domain. Unlike prior studies that

merely correlated lipid components with increased risk of multiple

myeloma, our MR design inherently mitigates confounding variables,

enhancing the reliability of our findings. Additionally, the employment

of instrumental variables, combined with a robust sample size and

GWAS data, furnishes our study with ample statistical power to

ascertain causality, thereby bolstering its credibility. Nevertheless, the

study is not without limitations. The dataset primarily encompasses

individuals of European descent, and the potential for participant

overlap across datasets exists, which might inflate the estimated

effects. Furthermore, as is inherent in all MR analyses, our study

cannot completely rule out the influence of unobserved pleiotropy,

which may skew the results. Ultimately, relying on datasets from a

single database can lead to several potential issues, including data

redundancy and potential biases. Moving forward, we aim to access

additional databases and conduct further analyses. This will allow us to

validate and possibly expand our findings, enhancing the external

validity and impact of our research.
5 Conclusion

In conclusion, our study sheds light on the relationship between

liposomes and MM, presenting a detailed exploration of the causal

links between specific liposomal components and the disease

through MR analysis. We identified a positive association between

multiple myeloma and the serum levels of triacylglycerol and

phosphatidylinositol. Specifically, heightened serum concentrations of

triacylglycerol (56:4) and phosphatidylinositol (16:0_18:1) were linked

to an elevated risk of developing multiple myeloma. Conversely,

increased levels of phosphatidylethanolamine (18:0_20:4),

phosphatidylcholine (18:2_20:4), sterol esters (27:1/18:3), and
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phosphatidylcholine (O-18:2_20:4) were associated with a reduced

risk of the disease. This research contributes valuable insights into

the clinical relevance of the relationship between liposomes and

multiple myeloma, enhancing the potential for incorporating

liposomal components into the assessment of patients with

this condition.
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