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Background: Cancer stem cells (CSCs) have emerged as pivotal players in

tumorigenesis, disease progression, and resistance to therapies.

Objective: This comprehensive review delves into the intricate relationship

between CSCs and the cell-of-origin in diverse cancer types.

Design: Comprehensive review of thematically-relevant literature.

Methods: We explore the underlying molecular mechanisms that drive the

conversion of normal cells into CSCs and the impact of the cell-of-origin on

CSC properties, tumor initiation, and therapeutic responses. Moreover, we

discuss potential therapeutic interventions targeting CSCs based on their

distinct cell-of-origin characteristics.

Results: Accruing evidence suggest that the cell-of-origin, the cell type from

which the tumor originates, plays a crucial role in determining the properties of

CSCs and their contribution to tumor heterogeneity.

Conclusion: By providing critical insights into the complex interplay between

CSCs and their cellular origins, this article aims to enhance our understanding of

cancer biology and pave the way for more effective and personalized

cancer treatments.
KEYWORDS

cancer stem cells, cell-of-origin, tumorigenesis, tumor heterogeneity, cancer
therapeutics, therapy resistance, personalized medicine, tumor microenvironment
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Introduction

Cancer is a complex and multifactorial disease characterized by

uncontrolled cell proliferation and invasion (1). The concept of

cancer stem cells (CSCs) has revolutionized our understanding of

tumor initiation, progression, and therapeutic resistance. CSCs

possess self-renewal and differentiation capabilities, contributing

to tumor heterogeneity and therapeutic resistance (2, 3). Recent

studies suggest the cellular origin of cancer impacts CSC properties

and behavior (4, 5). This review explores the relationship between

CSCs and cell-of-origin across cancer types. We analyze

mechanisms driving CSC formation, examine how cell-of-origin

influences CSCs and tumor progression, discuss implications for

cancer therapy, and suggest future research directions to enhance

understanding of this complex interplay.

The notion of CSCs challenges the traditional view of cancer as

a homogeneous mass of rapidly dividing cells, and instead,

emphasizes the presence of a hierarchical organization within

tumors (6). According to this model, CSCs serve as the “seeds” of

the tumor, while the non-tumorigenic, differentiated cancer cells

constitute the “bulk” or “bulk tumor” (7). This hierarchical

organization implies that the eradication of CSCs is crucial for

achieving long-term tumor remission and preventing relapse, as

CSCs have the capacity to regenerate and drive tumor regrowth

even after initial therapy-induced tumor regression (8).

Notably, recent research has illuminated a fascinating and nuanced

relationship between the cellular origin of cancer and the properties of

CSCs. The cell-of-origin refers to the normal cell type that accumulates

the initiating mutations and transforms into a cancerous cell (9).

Evidence suggests that the cell-of-origin exerts a profound influence on

CSC behavior, dictating their characteristics, tumorigenic potential,

and response to therapeutic interventions (10, 11).

In conclusion, the relationship between CSCs and the cell-of-

origin represents a compelling and intricate area of cancer research.

Understanding the impact of the cellular origin of cancer on CSC

phenotypes has the potential to unlock novel therapeutic avenues

and advance precision medicine in oncology. By elucidating the

molecular and cellular underpinnings of this relationship, we aim to

contribute significantly to the growing body of knowledge in cancer

biology and ultimately pave the way for more effective and

personalized cancer treatments.

Cancer stem cells origin
and properties

CSCs, a small subset of tumor cells possessing stem cell

properties, including self-renewal and multipotent differentiation

capacity, are the root cause of tumor initiation, therapeutic

resistance, metastasis, and relapse (12, 13). Though functionally

defined by their tumor-propagating ability, their cell-of-origin and

relationship to normal stem cells is debated (14).

CSCs were initially thought to arise from normal tissue stem

cells that accumulate mutations enabling aberrant self-renewal (15).

Evidence now suggests that more committed progenitors or

differentiated cells may acquire self-renewal capacity through
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dysregulation of embryonic stem cell programs (14). Regardless of

origin, CSCs are defined by expression of stem cell markers and

pathways regulating self-renewal and survival (7). Well-studied

CSC markers include CD44, CD133, and aldehyde dehydrogenase

(ALDH), but their specificity is context-dependent (4). Intrinsic and

microenvironmental factors all contribute to generate CSC

populations with heterogeneous phenotypes and plasticity (16).

CSCs’ increased tumorigenicity upon limiting dilution

xenotransplantation reflects their self-renewal capacity (17). CSCs

propagate tumors long-term and recapitulate intratumor

heterogeneity, differentiating into non-CSC bulk tumor cells (18).

Beyond initiating tumor growth, CSCs mediate metastasis and

therapeutic resistance through quiescence, enhanced DNA repair,

drug efflux pumps, anti-apoptotic signaling, and immunosuppressive

effects (19).

However, CSCs exhibit plasticity, readily interconverting

between stem and non-stem states (20). The variability in

intratumoral proportion of CSCs, coupled with the non-CSCs’

capacity to dedifferentiate into CSCs, especially post-therapy,

questions proposed CSC rarity (11, 16). This plasticity enables

dynamic maintenance of CSC populations, challenging efforts to

definitively isolate stable CSC subsets.

The presence of CSCs within tumors has critical implications

for cancer therapy. Conventional cytotoxic treatments, such as

chemotherapy and radiation, target rapidly dividing cells, which

primarily constitute the non-CSC tumor bulk population, leading to

initial shrinkage of tumor size, and often temporary tumor

regression (21). However, CSCs upregulate pro-survival signaling

pathways and overexpress ATP-binding cassette (ABC) drug efflux

transporters, conferring resistance to chemotherapeutics, survival

advantage, metastasis, and recurrence (4, 22, 23). These intrinsic

resistance mechanisms allow CSCs to evade conventional

treatments, survive initial therapy and eventually repopulate the

tumor, leading to recurrence and metastasis (5). For instance,

glioblastoma CSCs expressing Hedgehog, Notch, and angiogenic

pathways were found to persist after temozolomide chemotherapy,

reconstituting recurrent tumors (24). Therefore, understanding the

properties and behaviors of CSCs is vital for developing tailored

strategies, like combination therapies or inhibitors targeting specific

resistance pathways, to eradicate these resilient cell populations and

improve long-term treatment outcomes (25).
Cell-of-origin and its influence on
cancer stem cells

The cell-of-origin concept proposes that stemness properties

are largely shaped by the normal cell type from which CSCs arise

(11). Extensive evidence now indicate that the specific cellular

context in which cancer-initiating mutations occur influences

downstream CSC behavior, including tumorigenicity ,

differentiation capacity, and therapeutic vulnerability (4, 14).

Studies across cancer types show the relationship between cell-of-

origin and CSC properties. In glioblastoma, neural stem cell-derived

CSCs propagated more infiltrative, aggressive tumors compared to

CSCs from committed neural progenitors (24). In prostate cancer,
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basal cell-derived CSCs generated tumors with higher Gleason scores

and metastases than luminal cell-derived CSCs (26), and in colorectal

cancer, studies have demonstrated that colorectal CSCs derived from

intestinal stem cells exhibit a higher tumorigenic potential and

metastatic ability compared to those originating from more

differentiated cell types. Specifically, Lgr5+ intestinal stem cell-

derived CSCs preferentially metastasized to the liver and express

liver homing chemokine receptors, such as CCR6 (27).

In pancreatic cancer, the cell-of-origin plays a crucial role in

determining the characteristics of pancreatic CSCs (PCSCs). PCSCs

derived from pancreatic progenitor cells display enhanced self-

renewal and tumorigenic potential compared to those originating

from differentiated acinar or ductal cells (28, 29). Additionally, the

cell-of-origin influences the activation of specific oncogenic

signaling pathways in PCSCs, with progenitor-derived PCSCs

exhibiting aberrant Hedgehog pathway activation (30).

The cell-of-origin has been implicated in shaping the behavior

of lung CSCs (LCSCs). LCSCs derived from basal stem cells in the

airway epithelium exhibit increased invasiveness and metastatic

potential compared to those originating from other cell types (31,

32). Furthermore, the cell-of-origin determines the expression of

specific stem cell markers and the activation of distinct signaling

pathways in LCSCs, influencing their response to targeted therapies

(30, 32).

More so, mesenchymal stem cells (MSCs) have emerged as

potential cells-of-origin for CSCs in various cancer types, including

glioblastoma. Recent studies have suggested that MSCs may

contribute to the formation and maintenance of CSCs through

various mechanisms - In glioblastoma, MSCs have been implicated

as potential cell-of-origin for a CSC subset exhibiting mesenchymal

phenotype (33–35). These mesenchymal glioblastoma stem cells,

akin to their neural stem cell-derived CSCs counterparts, are

associated with increased invasiveness, resistance to therapy, and

poor prognosis (35). Emerging evidence suggests that the

transformation of MSCs may give rise to this aggressive

glioblastoma subpopulation (34, 35).

Aside glioblastoma, MSCs have been proposed as potential

cells-of-origin for CSCs in various other cancer types, including

breast cancer (36, 37), prostate cancer (38), and osteosarcoma (37,

39). The capacity of MSCs to differentiate into multiple lineages and

their inherent migratory and self-renewal properties may contribute

to their potential role in CSC formation and tumor progression (33,

34, 36, 37). The role of MSCs as cells-of-origin for CSCs is an active

area of research, and further investigation is needed to elucidate the

mechanisms underlying this potential relationship and its

implications for cancer development and therapeutic strategies.

Mechanistically, the cell-of-origin imprints durable epigenetic,

transcriptional, and signaling programs that shape CSC behavior

(40). The cell-of-origin dictates activation of distinct oncogenic

pathways, as basal breast CSCs upregulate EGFR while luminal CSCs

activate HER2 signaling (41). Additionally, the cell-of-origin

determines CSC differentiation trajectories, with mature cells

generating unipotent CSCs while early progenitors produce

multipotent CSCs (10).

Importantly, the cell-of-origin also modulates therapeutic

response. Breast CSCs from basal cells resist radiation but remain
Frontiers in Oncology 03
DNA damage-sensitive, whereas those from luminal cells

upregulate ABC drug transporters (42). In melanoma, CSCs

derived from blocked differentiated cells retain DNA damage

response mechanisms and are readily targetable, compared to

those from neural crest stem cells (43). Thus, personalized,

context-specific anti-CSC therapies are possible, but challenged by

intratumor heterogeneity and CSC plasticity. Integrating lineage

tracing, single-cell profiling, and functional validation is critical for

understanding these pivotal interactions.
Cell-of-origin based molecular
mechanisms driving cancer stem
cell formation

The cell-of-origin influences the molecular events that enable

normal cells transform into CSCs. This cellular context determines

the signaling pathways, epigenetic programs, and mutations that

confer aberrant self-renewal ability. Cells-of-origin shape mutations

arising during CSC formation. Different cells-of-origin possess

distinct DNA repair deficiencies that allow specific mutations. For

example, melanocyte stem cells have high levels of reactive oxygen

species and rely heavily on nucleotide excision repair (NER) (44).

Mutations in NER genes like ERCC2 in melanocyte stems cells

allow DNA damage accumulation, hypermutability, and formation

of melanoma CSCs (45). In contrast, mammary stem cells are

deficient in homologous recombination (HR) repair due to

epigenetic repression of BRCA1 (46). Hence, loss of BRCA1/2

occurs early during breast CSC formation, enabling genomic

instability through HR deficiency (47).

Several key signaling pathways involved in normal stem cell

biology become dysregulated in CSCs in a cell-of-origin dependent

manner. For instance, Wnt pathway mutations in intestinal stem

cells promote colorectal CSC formation, while Hedgehog activation

drives CSC properties in Sonic Hedgehog-responsive cerebellar

stem cells giving rise to medulloblastoma (48, 49). The cell-of-

origin also determines which signaling pathways are leveraged for

CSC formation. For example, normal hematopoietic stem cells

require FGF signaling but rely on BMP signaling for

differentiation (50). Mutations activating FGF signaling while

inhibiting BMP signaling promote aberrant self-renewal, allowing

hematopoietic stem cells to transform into leukemic stem cells (50).

A similar scenario occurs in glioblastoma, where mutations

activating growth factor signaling like EGFR/PDGFRa in neural

stem cells drive unrestrained proliferation during CSC genesis (51).

The epigenetic and metabolic states established by the cell-of-

origin play important roles in CSC reprogramming. Normal

intestinal stem cells exhibit an “open” chromatin landscape at

Wnt target gene loci which primes them for CSC formation when

APC mutations occur, enabling aberrant TCF/b-catenin
transcriptional activation of stemness signals (52, 53). Similarly,

mammary stem cells possess an epigenetic landscape suppressing

BRCA1 but permitting proliferation, which fosters CSC properties

when BRCA1 is mutated (46). Moreover, normal intestinal stem

cells rely heavily on oxidative phosphorylation, which is co-opted
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during colon CSC formation to sustain stemness, and mediated in

part by mutations in fumarate hydratase (54, 55).

Appreciating how the cell-of-origin-dependent genomic,

epigenetic, and metabolic states shape the specific mechanisms

enabling CSC formation is crucial for developing novel

approaches to prevent oncogenic transformation by targeting

these early vulnerabilities in a cell-context-specific manner.
Microenvironmental regulation of
cancer stem cell maintenance
and survival

The tumor microenvironment (TME) is now recognized as a

critical regulator of CSC fate and function (Figure 1). Rather than

acting in isolation, CSCs engage in dynamic crosstalk with

surrounding stromal, immune, endothelial, and ECM components

that maintain stemness properties and confer therapeutic resilience

(56). Elucidating these complex TME interactions offers exciting

opportunities for new anti-CSC therapies.
Hypoxia

Hypoxia, a characteristic feature of the tumor microenvironment

(TME) which is almost always coupled with chaotic vasculature and

rapid cell proliferation, has emerged as a critical regulator of CSC

maintenance and survival. Accruing evidence implicate hypoxia in

the upregulation of multi-drug resistance transporters, maintenance

of undifferentiated state, and enhancement of tumorigenic potential
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of CSCs (57, 58). Low oxygen tension stabilizes hypoxia-inducible

factors (HIFs), which transcriptionally activate genes involved in

stemness, self-renewal, and therapy resistance (59–62). Specifically,

HIF-1a and HIF-2a promote the expression of pluripotency factors

like Oct4, Nanog, and Sox2, as well as the upregulation of ABC drug

efflux transporters, contributing to the chemoresistance of CSCs (59,

60). Additionally, hypoxia induces the expression of CSC markers,

such as CD44 and CD133, and enhances the sphere-forming ability of

CSCs, indicative of their self-renewal capacity (13, 61, 62). Targeting

hypoxia-activated pathways thus represents a promising approach to

disrupt the CSC-promoting effects of hypoxic TMEs.
Inflammation

Beyond hypoxia, the TME is often characterized by chronic

inflammation, which plays a crucial role in shaping the CSC

phenotype. TME-derived inflammatory signals expand CSCs

through cytokine-mediated activation of NF-kB, STAT3, and

other critical stemness pathways (63). Inflammatory cytokines,

such as IL-6, IL-8, and TNF-a, secreted by tumor-associated

immune cells and stromal components, activate pro-survival

signaling pathways like NF-kB, STAT3, and Akt in CSCs (63, 64).

These pathways upregulate stemness-associated transcription

factors, including Oct4, Nanog, and c-Myc, promoting self-

renewal and therapy resistance (64, 65). Furthermore,

inflammation-induced EMT has been linked to the acquisition of

stem-like properties and the generation of CSCs from non-stem

tumor cells (66, 67). It is also notable that checkpoint blockade

elicits T cell production of inflammatory cytokines that may

inadvertently expand CSCs by stimulating these pathways (63).
FIGURE 1

A visual summary showing that normal tissue stem/progenitor cells give rise to CSCs, which then interact with and reshape the surrounding tumor
microenvironment. This illustrates the critical interplay between cell-of-origin, CSCs, and the TME in cancer.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1404628
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Bamodu et al. 10.3389/fonc.2024.1404628
Stromal cell interactions

The dynamic crosstalk between CSCs and non-malignant

stromal components of the TME, such as cancer-associated

fibroblasts (CAFs), endothelial cells, and mesenchymal stem cells

(MSCs), plays a pivotal role in regulating CSC behavior. Paracrine

signaling networks involving cytokines, growth factors, and

metabolites facilitate bidirectional communication between CSCs

and stromal cells (68–70). For instance, CAF-derived factors like

TGF-b, CXCL12, and IL-6 induce EMT, stemness, and therapy

resistance in CSCs, while CSC-secreted factors like IL-1b and IL-8

promote a pro-tumorigenic phenotype of CAFs, including EMT,

drug resistance, and metastasis (71–74). Similarly, endothelial cell-

derived factors stimulate CSC self-renewal and angiogenesis, while

MSCs contribute to the maintenance of CSC populations through

cytokine signaling and cell-cell interactions (71, 74). Targeting the

homeostatic mechanisms by which non-malignant stroma supports

CSC maintenance may offer new therapeutic inroads.
Extracellular matrix remodeling

The extracellular matrix (ECM) cues within the TME provides

crucial biochemical and biomechanical cues that regulate CSC

behavior and fate. The composition, organization, and stiffness of

the ECM influence CSC self-renewal, division patterns,

differentiation, plasticity, and therapy resistance (75, 76).

Adhesive ECM proteins like laminin induce symmetric division

that propagates the CSC pool, whereas fibrillar collagen I promotes

differentiation (77). Specific ECM components, such as laminin and

hyaluronic acid, have been shown to promote CSC self-renewal and

stemness, while others, like collagen I, induce differentiation (75–

77). Additionally, matrix metalloproteinases (MMPs) secreted by

CSCs and stromal cells remodel the ECM, releasing bioactive

fragments that modulate CSC signaling and promote invasion

and metastasis (76, 78, 79). ECM stiffness has also been

implicated in regulating CSC plasticity, with increased matrix

rigidity favoring the acquisition of a mesenchymal-like CSC

phenotype associated with enhanced invasiveness and therapy

resistance (78, 79). Manipulating ECM signals to silence self-

renewal and promote differentiation offers a promising approach

to deplete CSCs.
Cell-of-origin dynamics shaping
cancer stem cell-driven
tumorigenesis, invasion,
and metastasis

The cell-of-origin is a critical determinant of cancer

pathogenesis, shaping tumor initiation, growth rate, and

metastatic potential. Comparative studies exploring different cell-

of-origin scenarios within specific cancers have shed light on the

complexity of tumor heterogeneity and have implications for

personalized cancer therapies.
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Tumor initiation

Different cell types possess distinct genetic and epigenetic

susceptibilities, making some more prone to oncogenic

transformation (3). In glioblastoma, CSCs derived from neural

stem cells generate more rapidly expanding and invasive tumors

than CSCs from progenitor cells, reflecting greater self-renewal and

motility (24). This indicates cells-of-origin dictate the degree of

stemness and aggressiveness of resultant CSC populations.

Moreover, certain cell-of-origin contexts favor more aggressive

tumor initiation. For example, basal cell-derived prostate cancer is

more aggressive and associated with higher Gleason scores than

luminal cell-derived cancers (80). Similarly, in breast cancer,

mammary stem cells have been identified as a cell-of-origin that

gives rise to tumors with a basal-like phenotype, which typically

carries a poor prognosis (9). These findings underscore the

significant influence of cellular context on the initial

transformation events that set the stage for tumor development.
Tumor heterogeneity

The cell-of-origin controls CSC differentiation trajectories, thus,

influencing downstream heterogeneity. For instance, mature

luminal cells transformed into prostate CSCs produce unipotent

tumors composed predominantly of luminal cells (26). However,

multipotent basal stem cells yield heterogeneous prostate cancers

encompassing luminal, basal, and neuroendocrine cells via their

multipotent CSC derivatives (26).
Tumor growth rate

The cell-of-origin can also impact the growth rate of tumors.

CSCs derived from highly proliferative and undifferentiated

progenitor cells may contribute to more rapidly growing tumors

(11), whereas, those originating from more differentiated cell types

with limited self-renewal capacity may exhibit slower growth rates

(5). The cellular background can imprint specific molecular

signatures on CSCs, influencing their proliferative capacity and

tumor growth dynamics (7).

Moreover, the cell-of-origin can influence the overall

aggressiveness and invasive behavior of the tumor. In glioblastoma,

for instance, tumors arising from neural stem cells tend to exhibit

more extensive infiltration into surrounding brain tissues compared

to those originating from neural progenitors (81). These distinctions

in growth rate and invasiveness emphasize the importance of cell-of-

origin in understanding tumor behavior and designing effective

therapeutic strategies.
Metastatic potential

The cell-of-origin shapes organotropism and patterns of

metastasis, by influencing migratory pathways activated in CSCs.
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Intestinal stem cell-derived colorectal CSCs preferentially metastasize

to liver due to expression of liver homing chemokine receptors like

CCR6 (27). Gastric stem cell-derived CSCs favor distant metastasis

through activation of a gastric carcinoma related protein CARP-1

(82). Similarly, luminal breast cancers have been shown to

preferentially metastasize to bone, while basal-like breast cancers

tend tometastasize to the brain and lungs (83). In essence, the cell-of-

origin has profound impacts on subsequent tumor evolution and

progression kinetics. This knowledge promises to elucidate the

molecular determinants of tumorigenesis and reveal actionable

differences between cancers arising from distinct cells-of-origin.
Epithelial-to-mesenchymal transition

The epithelial-to-mesenchymal transition (EMT) is a

fundamental process in embryonic development and tissue

remodeling, wherein epithelial cells lose their polarity and cell-cell

adhesion properties, acquiring a mesenchymal phenotype with

increased migratory and invasive capabilities (66, 67, 72, 78).

Emerging evidence suggests that EMT plays a crucial role in the

generation and maintenance of CSCs, and this process is closely

linked to the cell-of-origin. In epithelial cancers, such as breast and

prostate cancer, EMT has been implicated in the formation of CSCs

from more differentiated epithelial cells (84, 85). During EMT,

epithelial tumor cells acquire stem-like properties, including self-

renewal, increased expression of CSC markers (e.g., CD44, CD24,

and ALDH), and enhanced resistance to therapies (66, 67, 72, 78,

84, 85). The induction of EMT in these cells is often mediated by

transcription factors like Twist, Snail, Slug, and Zeb1, which

suppress epithelial markers like E-cadherin and upregulate

mesenchymal markers like vimentin and N-cadherin (85–87).

Importantly, the propensity for EMT and the subsequent

generation of CSCs is influenced by the cell-of-origin. In breast

cancer, basal-like or triple-negative breast cancer cells, which are

thought to originate frommore primitive mammary stem/progenitor

cells, exhibit a higher propensity for EMT and CSC formation

compared to luminal subtypes derived from more differentiated

epithelial cells (88). Similarly, in prostate cancer, basal cells are

more prone to undergoing EMT and acquiring stem-like properties

compared to luminal cells (89, 90). EMT not only contributes to the

formation of CSCs but also plays a critical role in metastasis, another

key feature of CSCs. EMT enables CSCs to disseminate from the

primary tumor site, invade surrounding tissues, and eventually

colonize distant organs, establishing metastatic lesions (89, 91). The

interplay between EMT and CSCs is bidirectional, as CSCs can also

induce EMT in neighboring tumor cells, further promoting

metastasis and therapy resistance (89, 90, 92, 93).
Metastatic cascades and organotropism

CSCs are pivotal drivers of metastatic dissemination and the

establishment of secondary tumors in specific distant organs, a

process known as organotropism. CSCs possess several
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characteristics that facilitate their ability to initiate and sustain

metastatic cascades. CSCs exhibit enhanced invasive and migratory

capabilities, enabling them to detach from the primary tumor,

invade the surrounding stroma, and intravasate into the

circulatory or lymphatic systems (89–93). This invasive behavior

is mediated by the activation of EMT programs, as discussed earlier,

and the expression of specific cell surface markers and proteases

that facilitate extracellular matrix degradation and cell motility (72,

78, 85–87). Once in the circulation, CSCs possess intrinsic

mechanisms that allow them to survive and evade immune

surveillance. These include enhanced expression of anti-apoptotic

proteins, increased DNA repair capacity, and the ability to enter a

quiescent or dormant state (94, 95). This dormancy enables CSCs to

withstand the harsh conditions of the circulatory system and later

reactivate their proliferative and self-renewal capabilities upon

reaching a suitable microenvironment. Upon extravasation into

distant organs, CSCs demonstrate remarkable adaptability to the

new microenvironment. They secrete factors that remodel the local

niche, promoting angiogenesis, immune evasion, and the

recruitment of supportive stromal cells (94, 95). This niche

formation creates a permissive environment for CSC self-renewal,

proliferation, and eventual establishment of metastatic lesions.

The preferential dissemination of CSCs to specific organs is

known as organotropism, and it is influenced by the interplay

between CSC-intrinsic factors and the unique microenvironmental

cues of distant organs (96, 97). For example, in gallbladder tumors,

CSCs expressing high levels of CXCR4 preferentially metastasize to

the liver, where its ligand CXCL12 is abundantly expressed (98).

Similarly, in pancreatic cancer, CSCs expressing the TEK receptor

tyrosine kinase and integrin a6b4 exhibit a propensity for liver and
lung metastasis, respectively (99, 100). In prostate cancer, CSCs

expressing the bone-specific chemokine receptor CCR3

preferentially establish bone metastases (101). Lung metastasis in

various cancers, including breast and colon cancer, has been linked

to the expression of specific adhesion molecules and chemokine

receptors on CSCs that facilitate their homing to the lung

microenvironment (102, 103).

Understanding the intricate mechanisms underlying CSC-

driven metastasis and organotropism, will help facilitate

identification of potential therapeutic targets and develop

strategies to disrupt these processes, ultimately improving

patient outcomes.
Epigenetic mechanisms in cancer
stem cells: influence of the cell-
of-origin

Epigenetic modifications, including DNA methylation, histone

modifications, and non-coding RNA regulation, play crucial roles in

shaping the behavior and properties of CSCs (104). Importantly, the

epigenetic landscape of the cell-of-origin can have a profound

impact on the epigenetic patterns observed in CSCs, influencing

their stemness, self-renewal, and tumorigenic potential.
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DNA methylation patterns and
CSC stemness

DNA methylation, the addition of methyl groups to cytosine

residues in CpG dinucleotides, is a key epigenetic mechanism that

regulates gene expression. Aberrant DNA methylation patterns,

including hypermethylation of tumor suppressor genes and

hypomethylation of oncogenes, are hallmarks of cancer and

contribute to the acquisition of stem-like properties in CSCs

(105–107).

Importantly, the cell-of-origin can impart specific DNA

methylation patterns that shape the behavior of CSCs. For instance,

in colorectal cancer, intestinal stem cells exhibit a distinct DNA

methylation landscape primed for the activation of Wnt signaling, a

critical pathway for stem cell self-renewal (108). When these cells

acquire mutations in genes like APC, the pre-existing methylation

patterns facilitate the aberrant activation ofWnt signaling, driving the

formation of colorectal CSCs (53, 108, 109).

Similarly, in breast cancer, mammary stem cells possess an

epigenetic landscape that represses the expression of the DNA

repair gene BRCA1 (46). Mutations in BRCA1 in this context

lead to genomic instability and the acquisition of stem-like

properties, contributing to the formation of breast CSCs (46, 47).

These examples illustrate how the cell-of-origin’s epigenetic

landscape can predispose certain cell types to CSC formation

upon accumulation of specific genetic alterations.
Histone modifications and gene regulation
in CSCs

Histone modifications, such as acetylation, methylation,

phosphorylation, and ubiquitination, regulate chromatin structure

and gene expression patterns. These modifications can influence the

stemness and self-renewal properties of CSCs, and their

dysregulation has been implicated in various cancers (110–112).

The cell-of-origin can contribute to the histone modification

patterns observed in CSCs. For example, in glioblastoma, the

histone methyltransferase G9a is markedly depleted in CD133+

neural stem cells, the proposed cell-of-origin for glioblastoma CSCs

(113). Upregulated G9a expression induces histone H3 lysine 9

methylation (H3K9me2), which in turn downregulates the

expression of stemness-associated genes. Conversely, aberrant

G9a activity in NSCLC CSCs leads to increased stemness and

tumorigenicity, potentially influenced by the epigenetic landscape

inherited from the lung epithelial cells-of-origin, also known as

tumor-initiating cells (107). In addition, in NSCLC, histone

ubiquitination patterns have been linked to the regulation of CSC

properties. The histone E3 ubiquitin ligase TRIM37 is highly

expressed in NSCLC CSCs and promotes stemness and metastasis

through the ubiquitination of histone H2A (114), suggesting a

potential link between the epigenetic landscape of the cell-of-

origin and the histone modification patterns observed in CSCs.
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Non-coding RNAs and CSC regulation

Non-coding RNAs, particularly microRNAs (miRNAs) and

long non-coding RNAs (lncRNAs), have emerged as critical

regulators of CSC properties and behavior. These non-coding

RNAs can modulate gene expression by targeting mRNAs for

degradation or translational repression, or by influencing

epigenetic mechanisms (106, 110).

The expression and function of non-coding RNAs in CSCs are

cell-of-origin-dependent. For instance, in glioblastoma, the lncRNA

NEAT1 is highly expressed in neural stem cells and contributes to

the maintenance of stemness and self-renewal (115). Conversely,

NEAT1 has been shown to suppress stem cell self-renewal and

leukemogenesis by inactivatingWnt signaling (116), consistent with

its role as a tumor suppressor, and as a direct transcriptional target

of the tumor suppressor gene p53 (117). Furthermore, NEAT1 has

been found to mitigate multidrug resistance in leukemia by

inhibiting the ABCG2 gene (118).

The long non-coding RNA MIR22HG is also upregulated in

glioblastoma CSCs, where it promotes stemness and therapy

resistance by regulating epigenetic changes and gene expression

programs (119). However, MIR22HG plays tumor-suppressive role

in various other types of cancer, including lung cancer,

hepatocellular carcinoma, endometrial cancer, gastric cancer, and

cholangiocarcinoma (120–122). Its low expression is associated

with poor prognosis in these cancers. MIR22HG exerts its tumor-

suppressive effects through various mechanisms, including the

suppression of proliferation, invasion, and metastasis, and the

attenuation of CSC-activating NOTCH2 signaling (120–123).

This indicates that the cell-of-origin’s lncRNA expression patterns

is retained in CSCs and contribute to their stemness properties.

Moreover, in breast cancer, the miRNA expression profiles of

CSCs have been shown to be influenced by the cell-of-origin. Basal-

like breast CSCs derived from more primitive mammary stem/

progenitor cells exhibit distinct miRNA signatures compared to

luminal breast CSCs derived from more differentiated cells (124,

125). These miRNA profiles can regulate key stemness-associated

pathways and contribute to the differences in CSC properties

observed between different breast cancer subtypes.

Increased understanding of the interplay between epigenetic

mechanisms and the cell-of-origin in shaping CSC behavior will aid

identification of potential therapeutic targets and develop

epigenetic-based strategies to disrupt CSC maintenance and self-

renewal, potentially leading to more effective cancer treatments.
Leveraging the integrative
understanding of cancer stem cell
biology and cell-of-origin effects in
cancer therapies

Deciphering the intricate relationship between CSCs and their

cell-of-origin provides unprecedented opportunities to transform
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cancer therapies through personalized, mechanism-based

approaches. However, to effectively leverage these paradigm-

shifting discoveries to conquer tumor heterogeneity, evolution,

and resistance necessitates deliberate integration of this

knowledge into complex therapeutic designs rooted in a deep

appreciation of cancer biology.

Cell-of-origin insights can guide predictive biomarker-driven

patient stratification to optimize chemotherapy regimens. For

instance, gene expression profiling of breast CSCs revealed

distinct chemotherapy vulnerability profiles based on the cell-of-

origin-linked intrinsic subtype, which facilitates predictive selection

of taxane versus anthracycline-based regimens to improve outcomes

(126, 127). Furthermore, rational co-targeting of activated

oncogenic drivers in CSCs through combinatorial chemotherapy

regimens, as demonstrated by EGFR blockade enhancing taxane

therapy in basal breast cancers, disables key survival pathways

perpetuating drug resistance (128). However, conquering acquired

resistance requires accounting for CSC plasticity and inevitable

clonal selection. Innovative adaptive designs that dynamically

adjust dosing in response to altered CSC composition show

promise in this context (129).

Regarding radiotherapy, the radiosensitivity phenotype of CSCs

strongly associates with cell-of-origin determinants. Compared to

CSCs arising from differentiated cells that retain residual DNA

repair capacity, those originating from undifferentiated stem/

progenitor cells upregulate robust pro-survival signaling and

display relative radioresistance (24). Targeted radiosensitization

through inhibitors disabling these radioprotective CSC programs,

informed by cell-of-origin insights, as with Chk1 inhibitors in

laryngeal and tongue CSCs, can dramatically improve therapeutic

index (130). However, the sequencing and schedule of radiotherapy

combinations warrants careful optimization to avoid potential

expansion of aggressive CSC subclones.

Moreover, integrative genomic and single-cell profiling can help

identify cell-of-origin-associated neoantigens for personalized

vaccines or CAR-T cells targeting CSCs, as demonstrated against

EGFRvIII-expressing glioblastoma CSCs of neural stem origin (131,

132). However, mitigating the immunosuppression conferred by the

protective CSC niche remains crucial, highlighting opportunities for

immunomodulators blocking inhibitory ligands like PD-L1 in CSCs

(133). Cell-of-origin insights also empower selection of targeted

therapies, such as KRAS wild-type status in intestinal crypt-derived

colon CSCs, predicting sensitivity to EGFR blockade (53).

Nevertheless, acquired resistance is inevitable due to subclonal

evolution; single-cell genomic monitoring of CSC dynamics

during therapy facilitates real-time adjustment of targeted

regimens to overcome resistance emergence (134).

Further, cell-of-origin-associated CSC biomarker panels can

enhance early detection and therapeutic monitoring. Longitudinal

tracking of circulating CSCs expressing normal mammary stem cell

markers may signal occult metastases, while shifting to

mesenchymal markers can indicate early treatment failure (135).

Liquid biopsy assessing CSC dynamics thereby enables personalized

surveillance strategies.
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Therapeutic targeting of cancer stem
cells based on cell-of-
origin vulnerabilities

The cell-of-origin concept provides a framework for developing

more precise therapies tailored to the unique vulnerabilities of CSCs

based on their cellular origin.
Small molecule inhibitors

Small molecule inhibitors designed against oncogenic drivers

and signaling pathways activated preferentially in CSCs based on

cell-of-origin are a promising therapeutic approach. In basal breast

cancers enriched in mammary stem cell-derived CSCs, EGFR

tyrosine kinase inhibitors like neratinib suppress pro-survival

signaling in the CSCs (136). Wnt-targeting porcupine inhibitors,

including LGK974, selectively inhibit Wnt-dependent intestinal

stem cell-derived colorectal CSCs (137). Sonic Hedgehog (SHH)

inhibitors vismodegib and glasdegib demonstrate activity against

cerebellar stem cell-derived medulloblastoma CSCs exhibiting

aberrant SHH pathway activation (138). Ongoing research aim to

expand the repertoire of targeted CSC inhibitors informed by cell-

of-origin (see Tables 1, 2).
Monoclonal and bispecific antibodies

Antibodies targeting surface antigens and pathways selectively

enriched in CSCs based on cell-of-origin are another promising

approach. Glembatumumab vedotin targets glycoprotein NMB

overexpressed on CSCs across cancer types including breast cancers

of basal/myoepithelial origin (184). Additionally, antibodies against

the epithelial cell adhesion molecule (EpCAM) preferentially

expressed on liver CSCs derived from hepatic progenitor cells, and

anti-CD47 antibodies blocking “don’t eat me” signaling in leukemia

CSCs arising from hematopoietic stem cells have entered clinical

testing (185, 186). Ongoing research aims to identify novel cell-

origin-associated CSC antigens amenable to antibody targeting.
Gene therapies

Leveraging knowledge of genetic drivers and dependencies

based on cell-of-origin offers opportunities for gene therapy.

Delivering mutant KRAS-targeted CRISPR constructs

preferentially suppresses acinar cell-derived pancreatic CSCs

exhibiting aberrant KRAS activity (187). Additionally, suicide

gene strategies using a herpes simplex virus thymidine kinase

transgene and ganciclovir prodrug show promise against

glioblastoma CSCs derived from neural stem cells (188).

Enhancing selective targeting of gene therapies against cell-origin-

defined CSC populations is warranted.
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TABLE 1 Novel preclinical therapies targeting CSCs based on cell-of-origin to resolve chemotherapy resistance in solid tumors.

Cancer Type CSC Markers Therapies Route Side Effects Models References

Breast Cancer
ALDH+,
CD44+/CD24-

Disulfiram Oral Nausea, neuropathy PDX (139)

Oncolytic virus MG1MAGEA3
Intratumoral
injection

Fever, fatigue PDX (140)

Colorectal Cancer
Lgr5+, CD44+,
CD166+

LGK974 Oral Well tolerated PDX (141)

Napabucasin Oral GI toxicity PDX (142)

Glioblastoma
CD133+, Nestin+,
A2B5+

WP1066 Intraperitoneal No data
Intracranial
xenografts

(143)

GDC-0449 Oral Muscle spasms
Intracranial
xenografts

(144)

Cervical Cancer CD44+, CD133+ Salinomycin Intraperitoneal No data Xenografts (145)

Ovarian Cancer ALDH1+, CD117+ Disulfiram Oral Nausea, neuropathy Xenografts (146)

ATRA Oral Headache, dry skin Xenografts (147)

Pancreatic Cancer CD44+/CD24+/ESA+ LDE225 Oral Well tolerated PDX (148, 149)

Neuroblastoma CD114+, ALK+ ALK inhibitors (Crizotinib) Oral
Vision
changes, edema

Xenografts (150)

mTOR inhibitors
(Rapamycin, Everolimus)

Oral Stomatitis, rash Xenografts (151)

Bladder Cancer
CD44+, 67LR+,
ALDH1A1+

EF24 Intravesical No data Xenografts (152, 153)

Prostate Cancer
CD44+/a2b1
+/ALDH1A1+

Niclosamide Oral GI toxicity Xenografts (154)

Kidney Cancer CD105+, CD133+
mTOR inhibitor (WYE-687,
CC-115)

Oral
Stomatitis,
hyperglycemia

PDX (155–157)

NSCLC
ALDH+, CD133+,
MRP1+

Disulfiram Oral Nausea, neuropathy PDX (139)

Oncolytic virus ZD55-TRAIL
Intratumoral
injection

Fever, fatigue
Orthotopic
models

(158)

Lung Cancer APN/CD13+
Aminopeptidase
inhibitor (Tosedostat)

Oral No data Xenografts (159)

ATRA Oral Headache, dry skin Xenografts (160)

Hepatocellular
Carcinoma

CD90+, CD44
+, EpCAM

GSK126 Intraperitoneal No data Xenografts (161)
F
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NSCLC, non-small cell lung cancer; ATRA, all-trans retinoic acid; PDX, patient-derived xenografts.
TABLE 2 Key clinical trial-based therapeutic advances in targeting cancer stem cells based on cell-of-origin between 2015 and 2023.

Cancer
Type

Cell-
of-Origin

CSC
Markers

Therapeutic Advances Mechanism Clinical Trials References

Breast Cancer
Luminal
progenitor cells

CD44+, CD24-,
ALDH+

Anti-CD44 antibody drug conjugates
with Trastuzumab emtansine
(T-DM1)

Targets CSC
surface markers

Phase I trial of anti-
CD44-T-DM1

(162, 163)

Glioblastoma Neural stem cells CD133+, Nestin+ Oncolytic virus therapy

Targets CSC
self-
renewal
pathways

Phase I trial of oncolytic
adenovirus Delta-
24-RGD

(164, 165)

(Continued)
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Combination strategies

Given the marked heterogeneity of CSCs, concurrently

targeting bulk tumor cells and CSC subpopulations dependent on

their unique cell-of-origin are under active evaluation. For example,

simultaneously targeting HER2 and EGFR or PIK3CA signaling

using trastuzumab and lapatinib in HER2+ progenitor-derived

luminal breast CSCs shows synergistic activity (189, 190).

Combined inhibition of MEK and Bcl-2 selectively suppresses

intestinal crypt stem cell-derived colorectal CSCs exhibiting co-

activation of MAPK and anti-apoptotic pathways (191). Moving

forward, high-dimensional mapping of cell-origin CSC

vulnerabilities using single-cell omics promises to inform rational

combination therapies (192). Combining personalized and multi-

modal approaches holds great promise for achieving long-term

remissions and overcoming therapy resistance, which requires

extensive research efforts focused on precision targeting of

heterogeneous and adaptable CSC populations (Figure 2).
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Precision targeting of chemoresistant
cancer stem cells in solid tumors
based on cell-of-origin

Eradicating chemoresistant CSCs is critical to improve

outcomes in solid tumors. This section discusses emerging

strategies against cell-origin-defined CSCs across diverse

cancer types.
Breast cancer

In triple negative breast cancer (TNBC), CSCs arise from basal/

myoepithelial progenitors and are marked by ALDH+ and CD44

+/CD24- (193). Overexpression of ALDH1A3 isoform in these

CSCs contributes to chemoresistance. Accordingly, the ALDH

inhibitor disulfiram preferentially inhibits ALDH1A3 activity,

reduces CSC populations, and re-sensitizes TNBC models to
TABLE 2 Continued

Cancer
Type

Cell-
of-Origin

CSC
Markers

Therapeutic Advances Mechanism Clinical Trials References

Colorectal
Cancer

Intestinal
stem cells

Lgr5+,
CD44+

Wnt signaling inhibitor (Porcupine
inhibitor CGX1321)

Blocks CSC
maintenance
pathways

Phase I and 1b trials of
porcupine
inhibitor CGX1321

(166)

Cervical
Cancer

Cervical
epithelial
stem cells

CD44+, ALDH1+ Histone deacetylase inhibitors
Epigenetic
modulation
of CSCs

Phase I trial of PCI-
24781 and MS-
275 (Entinostat)

(167)

Ovarian
Cancer

Ovarian epithelial
stem cells

CD133+, CD117+ Anti-CD133 CAR T-cell therapy
Targets
CSC antigen

Phase I trial of CD133
CAR T cells

(168)

Lung Cancer
Bronchioalveolar
stem cells

CD166+,
EpCAM+

DNA methyltransferase
inhibitor (Gemcitabine)

Epigenetic
regulation
of CSCs

Phase I/II trials
of gemcitabine

(169, 170)

Hepatocellular
Carcinoma

Hepatic
progenitor cells

CD90+, CD133+,
EpCAM+,
ALDH+

Sorafenib
Inhibits CSC
signaling
pathways

Approved for advanced
HCC in 2007

(171, 172)

Pancreatic
Cancer

Pancreatic
epithelial
progenitor cells

CD133+, CD44+ Metformin
Targets
CSC metabolism

Phase I/II trials (169 173, 174)

Neuroblastoma
Neural crest
stem cells

CD114+, CD56+ Anti-GD2 immunotherapy
Targets CSC
surface antigen

Phase III trials
of dinutuximab

(175, 176)

Bladder
Cancer

Bladder epithelial
stem cells

CD44v6+, CK14+ Mytomycin-C
Selective
CSC toxicity

Phase II trial (177)

Prostate
Cancer

Prostatic
epithelial
stem cells

CD44+, TROP2+ Androgen deprivation therapy
Targets CSC
signaling
pathway

Standard of care for
advanced prostate cancer

(178, 179)

Kidney Cancer
Renal
progenitor cells

CD105+, CD133+ VEGF inhibitors
Anti-angiogenic
against CSCs

Phase III trial of
bevacizumab + IFN-a

(180, 181)

Acute
Myeloid
Leukemia

Hematopoietic
stem cells

CD34+, CD38- DOT1L inhibitors
Disrupts CSC
epigenetic
regulation

Phase 1b/II trial
of pinometostat

(182, 183)
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taxanes (139). Additionally, oncolytic viruses like MG1MAGEA3

specifically target MAGE-A3 expressed on ALDH+ TNBC CSCs,

diminishing these cells and enhancing chemotherapy efficacy (140).

Colorectal cancer

Colorectal CSCs marked by Lgr5 and CD44 arise from intestinal

crypt base stem cells and drive chemoresistance via Wnt pathway

activation (53). Porcupine inhibitor LGK974 suppresses Wnt

signaling specifically in Lgr5+ CSCs, potentiating oxaliplatin

therapy (141). Napabucasin inhibits STAT3-NANOG signaling

preferentially activated in Lgr5+/CD44+ CSCs, reducing this

subset and sensitizing to irinotecan (12, 142).
Glioblastoma

Glioblastoma CSCs expressing CD133 and Nestin originate from

neural stem cells and utilize aberrant Hedgehog pathway signaling

(144). Hedgehog inhibitor GDC-0449 selectively antagonizes SHH

ligands in Nestin+ CSCs, decreasing these cells, enhancing

chemoradiation response, and delaying recurrence (144). STAT3

inhibitor WP1066 suppresses stemness transcription factors like

NANOG in CD133+ CSCs, improving temozolomide efficacy (143).
Cervical cancer

Cervical CSCs marked by ALDH1A1 and CD133 arise from

transformed cervical epithelial progenitors and upregulate oxidative
Frontiers in Oncology 11
stress response pathways (194). Salinomycin selectively inhibits stress

response enzymes highly expressed in CD133+/CD44+ CSCs,

reducing this subset and re-sensitizing tumors to docetaxel (145).
Ovarian cancer

Ovarian CSCs expressing ALDH1 and CD117 originate from

transformed fallopian tube epithelia and exhibit platinum resistance.

All-trans retinoic acid (ATRA) binds retinoic acid receptors on

ALDH1A1+/CD117+ CSCs, inducing differentiation and re-sensitizing

tumors to platinum therapy (147). ALDH inhibitor disulfiram decreases

ALDH1A1+ CSCs, abrogating taxane resistance (146).
Lung cancer

Lung CSCs marked by CD133 and ALDH derive from

transformed lung epithelial cells and drive platinum resistance

(195). ATRA induces differentiation of ALDH+ CSCs, reducing

these cells and sensitizing tumors to cisplatin (160). Oncolytic

adenovirus ZD55-TRAIL targets SOX2highNANOGhighMRP1high

lung CSCs via CAR/integrin receptors, diminishing these cells and

augments doxorubicin, vinblastine, cisplatin, and 5-FU efficacy (158).
Hepatocellular carcinoma

Hepatocellular carcinoma CSCs marked by CD90 originate

from hepatic progenitor cells and exhibit sorafenib resistance
FIGURE 2

Origin and therapeutic targeting of CSCs. Normal tissue stem cells accumulate genetic and epigenetic alterations over time leading to dysregulation
of signaling pathways such as Wnt, Hedgehog (HH), STAT3, and AKT. This results in aberrant stem cell processes and the transformation into CSCs
with acquired self-renewal and tumor-initiating capabilities. CSCs drive tumor heterogeneity, metastasis, chemotherapy resistance, and relapse.
Targeting dysregulated CSC signaling pathways provides a potential therapeutic approach to eliminate this tumorigenic population and improve
patient outcomes.
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mediated by H3K9 methylation and stemness genes (196). Histone

methyltransferase inhibitor GSK126 suppresses aberrant H3K9

methylation in CD90+/EZH2+ CSCs, impairing stemness and

sensitizing to sorafenib (161, 196).
Pancreatic cancer

Pancreatic CSCs expressing CD44 and ESA derive from

transformed pancreatic progenitors and utilize hedgehog signaling

to maintain stemness and confer gemcitabine resistance (148).

Hedgehog inhibitor LDE225 blocks SMO-mediated hedgehog

pathway activation specifically in CD44+/ESA+ CSCs,

diminishing these cells and sensitizing tumors to gemcitabine

(148, 149).
Neuroblastoma

Neuroblastoma CSCs marked by CD114 and ALK originate

from neural crest progenitors and exhibit chemotherapy resistance

(197). ALK and mTOR inhibitors like crizotinib and everolimus

preferentially target ALK and mTOR-driven survival pathways

upregulated in ALK+ and CD114+ CSCs respectively, re-

sensitizing tumors to chemotherapy (150, 151).
Bladder cancer

Bladder CSCs enriched in CD44 arise from transformed basal

urothelial progenitors and drive cisplatin resistance viaNF-kB, Wnt

and Notch signaling (152). Curcumin analog EF24 potently inhibits

these pathways preferentially activated in CD44+ CSCs, reducing

these cells and re-sensitizing tumors to cisplatin (153).
Prostate cancer

ALDH1A1+ castration-resistant prostate CSCs originate from

transformed basal epithelial progenitors and exhibit aberrant

STAT3/AKT signaling (154). Niclosamide suppresses STAT3 and

AKT signaling specifically in ALDH1A1+ CSCs, augmenting tumor

response to androgen deprivation (154).
Kidney cancer

CD105+ Kidney CSCs derive from nephron progenitors in clear

cell renal carcinoma and confer radioresistance via mTOR and

Chk1 signaling (198). The combination of mTOR and Chk1

inhibition, demonstrating cytotoxic and anti-proliferative effects,

with potential translational value for treatment, has been shown to

effectively target oncogenic pathways in CD105+ renal CSCs,

leading to increased radiosensitivity in ccRCC (155–157).

Additionally, the inhibition of PLK1, a cell-cycle-related kinase,

has been identified as a potential therapeutic target in clear cell renal
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cell carcinoma, further supporting the potential of combined

mTOR and Chk1 inhibition in this context (199).

Despite advances in CSC-targeting therapies based on cell-of-

origin properties, several challenges remain. The intratumoral and

intertumoral heterogeneity of CSCs presents significant challenge to

identifying universal CSC-specific targets, thus, identifying robust

and universal cell-origin-based CSC-specific markers remains an

ongoing area of research (Tables 1, 2). The dynamic interplay

between CSCs and the TME further complicates therapy

responses and necessitates consideration. Preclinical models that

accurately depict the cell-of-origin context and TME are essential

for evaluating therapeutic interventions (Table 1). Additionally,

Biomarker discovery and patient stratification based on cell-of-

origin characteristics are critical for implementing personalized

CSC-targeting therapies in clinical settings (Table 2). Overcoming

these challenges requires integrative advanced omics technologies,

preclinical models that mimic the TME, and well-designed

clinical trials.

Personalized and multi-modal cancer treatments using small-

molecule inhibitors, monoclonal antibodies, gene therapies, and

combination approaches offer promising avenues for improving

cancer treatment outcomes. Continued research on the complex

interactions between CSCs and their cell-of-origin is essential for

developing transformative anticancer therapeutic strategies and

achieving lasting remissions (Figure 3). Overall, despite lingering

challenges including tumor heterogeneity, dynamic CSC plasticity,

and resistance mechanisms, unraveling cell-origin allows tailored

targeting of chemoresistant CSC subsets across diverse

solid tumors.
Critical appraisal and controversy
surrounding cancer stem cells, cells-
of-origin, and their clinical/
therapeutic utility

The concepts of CSCs and cell-of-origin have transformed and

advanced our understanding of tumor biology, but their intricacies

have also sparked debate and exposed critical gaps in knowledge

(14). CSCs are characterized by their ability to self-renew and

recreate the full heterogeneity of the original tumor, but isolating

pure CSC populations and identifying immutable CSC markers has

proven extremely challenging (200). Several candidate CSC markers

have been proposed, but demonstrating specificity and

reproducibility has been difficult.

Against initial propositions that CSCs are exceptionally rare

within tumors, accounting for <5% of cells, mounting evidence

indicate non-CSC differentiated tumor cells can readily de-

differentiate and acquire stem-like behavior, questioning the rarity

of CSCs (201). This plasticity allows non-CSCs convert into CSCs,

especially in response to therapies targeting the differentiated tumor

bulk. Furthermore, CSCs exhibit inherent plasticity, dynamically

transitioning between stem-like and non-stem cell states, enabling

CSC flexibility and adaptability which consequently complicates

therapeutic efforts to permanently eliminate them (20). In
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summary, CSCs demonstrate plasticity, context-dependency, and

resistance to rigid definitions, creating complex challenges in

isolating, studying, and targeting these shifting cells.

The cell-of-origin concept refers to the normal cell type,

whether a stem cell, progenitor cell, or mature differentiated cell,

that initially acquires the first cancer-causing mutations and

undergoes transformation to give rise to full malignancy.

However, it is difficult to definitively determine the cell-of-origin

retrospectively due to limitations and challenges (9). After a tumor

has developed, reconstructing the initiating events to pinpoint the

cell-of-origin is difficult, if not impossible, in many cases. Moreover,

different potential cells-of-origin, including progenitor or stem cells,

can ultimately converge on very similar tumor phenotypes after

accumulating mutations. Emerging evidence indicates that

combined mutations occurring simultaneously across multiple cell

types within a tissue may be required for full malignant

transformation, rather than mutations within a single discrete cell

(202), thus, obscuring efforts to clearly delineate the initiating cell-

of-origin.

The goal of identifying the cell-of-origin is to develop therapies

that specifically target malignant stem cells while sparing normal

stem cells. However, developing therapies that discriminate between

malignant and normal stem cells remains difficult. For example,

despite preclinical data showing DOT1L inhibitor pinometostat

exhibits10-fold higher toxicity against leukemia stem cells than

normal hematopoietic stem cells, nearly 50% of acute myeloid

leukemia patients relapsed after DOT1L inhibition, highlighting

the challenges of translating cell-of-origin insights into clinical

practice (182, 203).

Clinically, emerging therapies directly targeting CSCs, such as

STAT3 inhibitor napabucasin and ABL inhibitor asciminib, have

shown initial efficacy in early phase trials, offering proof-of-concept

for CSC-directed approaches (204). However, resistance and relapse

continue to pose substantial challenges. In studies of ALDH

inhibitors, suppression of CSC populations was only transient
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before their reconstitution, highlighting the need for combination

treatments (205). However, directly linking patient clinical response

to the specific effects on CSCs is complicated by the realities of

intratumor heterogeneity and CSC plasticity (5). CSCs can

dynamically transition between cell states and repopulate the CSC

pool, limiting durable responses to single agent CSC-

targeting drugs.

The rarity of CSCs poses inherent difficulties for analysis and

evaluation, especially in the context of tumor heterogeneity. The

low CSC frequency makes obtaining sufficient material for in-depth

profiling challenging. Furthermore, low initial CSC frequency can

cloud clinical response assessments if the resolution is inadequate,

since even small surviving CSCs can re-initiate tumor growth (206).

This has stirred debate on whether rarity versus abundance is more

therapeutically disadvantageous. Thus, despite promising

preliminary results, realizing the full potential of CSC-targeted

therapies will require overcoming hurdles related to tumor

evolution, plasticity, heterogeneity, and rarity through rational

combination strategies and high-resolution monitoring.

The paradigm-shifting concept of CSCs and cell-of-origin holds

immense promise for transforming cancer prevention, treatment,

and overcoming therapeutic resistance. However, capitalizing on

their full potential requires navigating tremendous knowledge gaps

and inherent complexities. A key challenge is prospectively isolating

definitive purified CSC subsets for characterization because of

biomarker ambiguity and interconversions between states (11,

14). Preventing resistance requires innovative, adaptive therapies

blocking CSC evolution and plasticity (59). Selectively eliminating

CSCs while sparing normal stem cells remains an ongoing quest

requiring deeper appreciation of stemness vulnerabilities (182).

Realizing clinical advances necessitates embracing CSC

complexity through emerging tools like high-dimensional single-

cell profiling, organoids, and computational modeling that capture

dynamic stem cell ecosystem interactions (207, 208). By unraveling

the intricacies of malignant stem cell biology, pioneering
FIGURE 3

An updated timeline of key discoveries related to cancer stem cell research.
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interdisciplinary science can transform cancer into a durable

chronic condition rather than a deadly disease.
Challenges and future directions

Despite advances in our understanding of the interplay between

CSCs and the cell-of-origin, several challenges persist. First, cell-

origin-based identification and characterization of CSCs remains

challenging due to CSC and TME heterogeneity. Improved single-

cell sequencing technologies coupled with innovative lineage

tracing approaches may provide deeper insights into distinct

cellular origins of CSCs within heterogeneous tumors (201, 209).

Second, CSC plasticity complicates their targeting because of their

dynamic transitions between stem-like and differentiated states.

Improved understanding of the epigenetic and signaling

mechanisms regulating CSC plasticity could lead to novel

strategies to maintain CSCs in a more differentiated state,

susceptible to conventional therapies (210, 211). Third, TME

plays a critical role in regulating CSC behavior and therapeutic

responses. Interactions with immune cells, fibroblasts, and the ECM

contribute to CSC maintenance and therapy resistance (5, 212).

Investigating the crosstalk between CSCs and TME may unveil new

therapeutic targets and combination strategies to overcome therapy

resistance. Fourth, the development of reliable CSC-specific

biomarkers based on cell-of-origin properties is essential for

clinical translation. Biomarkers that can accurately identify and

isolate CSCs from patient samples would facilitate the design of

targeted therapies and monitoring of treatment responses (213).

Continued efforts in biomarker discovery and validation are crucial

for advancing CSC-targeted therapies.

Furthermore, integrated multi-omics approaches are required

to fully characterize and map the cell-of-origin-specific molecular

vulnerabilities and dependencies of CSCs. Additionally, novel ex

vivo and in vivo models that more accurately recapitulate the

complex native TME are required to better understand the

extrinsic regulation of CSC behavior by the surrounding niche.

Standardization of protocols for isolating and validating CSCs

across research groups would allow for improved comparisons

and reproducibility between studies. As evident in Table 2,

clinical trials evaluating cell-of-origin-guided therapies and

combination approaches thatspecifically target CSCs are critical

for translating research findings to benefit patients (162-159).

Finally, the development and validation of reliable biomarkers

and assays to track and profile CSCs longitudinally in patients

could enable earlier detection of minimal residual disease and

facilitate more tailored, adaptive treatment monitoring approaches.
Conclusion

The intricate relationship between CSCs and their cell-of-origin

is an exciting frontier in cancer research. Understanding this

interaction provides insights into the molecular basis of tumor

initiation, therapeutic resistance, and patient outcomes. The path
Frontiers in Oncology 14
forward demands interdisciplinary collaboration to unlock

transformative insights that propel more effective, adaptive, and

durable therapies targeting the self-renewing core of tumors;

ultimately making curative outcomes feasible and fundamentally

altering the prognosis of cancer patients worldwide.
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