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Purpose: To construct and validate radiomics models that utilize ultrasound (US)

and digital breast tomosynthesis (DBT) images independently and in combination

to non-invasively predict the Ki-67 status in breast cancer.

Materials and methods: 149 breast cancer women who underwent DBT and US

scans were retrospectively enrolled from June 2018 to August 2023 in total.

Radiomics features were acquired from both the DBT and US images, then

selected and reduced in dimensionality using several screening approaches.

Establish radiomics models based on DBT, and US separately and combined. The

area under the receiver operating characteristic curve (AUC), accuracy,

specificity, and sensitivity were utilized to validate the predictive ability of the

models. The decision curve analysis (DCA) was used to evaluate the clinical

applicability of the models. The output of the classifier with the best AUC

performance was converted into Rad-score and was regarded as Rad-Score

model. A nomogram was constructed using the logistic regression method,

integrating the Rad-Score and clinical factors. The model’s stability was assessed

through AUC, calibration curves, and DCA.

Results: Support vector machine (SVM), logistic regression (LR), and random

forest (RF) were trained to establish radiomics models with the selected features,

with SVM showing optimal results. The AUC values for three models (US_SVM,

DBT_SVM, and merge_SVM) were 0.668, 0.704, and 0.800 respectively. The

DeLong test indicated a notable disparity in the area under the curve (AUC)

between merge_SVM and US_SVM (p = 0.048), while there was no substantial

variability between merge_SVM and DBT_SVM (p = 0.149). The DCA curve

indicates that merge_SVM is superior to unimodal models in predicting high

Ki-67 level, showing more clinical values. The nomogram integrating Rad-Score

with tumor size obtained the better performance in test set (AUC: 0.818) and had

more clinical net.
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Conclusion: The fusion radiomics model performed better in predicting the Ki-

67 expression level of breast carcinoma, but the gain effect is limited; thus, DBT is

preferred as a preoperative diagnosis mode when resources are limited.

Nomogram offers predictive advantages over other methods and can be a

valuable tool for predicting Ki-67 levels in BC.
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1 Introduction

Breast Cancer (BC) is a malignant tumor with the greatest

morbidity and mortality rate all around the world, which is a severe

risk to women’s health (1). Ki-67 is a nuclear antigen that is closely

connected with the invasiveness and proliferative activity of breast

cancer (2). It serves as a significant marker for breast cancer category

(3), prognosis, as well as predicting the effectiveness of preoperative

neoadjuvant chemotherapy and endocrine therapy (4, 5). Currently,

Ki-67 is mainly detected by immunohistochemistry (IHC), which

requires tissue specimens to be obtained by core-needle biopsy or

surgery. However, these procedures are invasive, time-consuming, not

repeatable, and the limited number of samples obtained cannot

thoroughly represent the tumor’s heterogeneity (6). Moreover, Ki-

67 expression levels can change dynamically during the course of

treatment (7), and IHC cannot be used as a routinemeans of dynamic

monitoring. Therefore, it is crucial to find a non-invasive and accurate

technique to assess Ki-67 expression before surgery.

During mammography, dense and inhomogeneous mammary

glands might cause normal breast tissue to overlap with lesions,

leading to decreased sensitivity and specificity in detection (8, 9).

Digital breast tomosynthesis (DBT) is an advanced digital

mammography technique that utilizes three-dimensional imaging

technology to reduce breast tissue overlap, improving lesion

visibility (10, 11). It provides increased sensitivity and specificity

compared to traditional mammography, enabling the identification

of initial, low-grade breast cancer (12). It is gradually becoming the

current standard for breast screening and diagnosis.

Radiomics uses advanced data analysis techniques to assess

biological indicators of breast cancer non-invasively before surgery

(13), it offers significant potential in distinguishing between benign

and malignant breast lesions, categorizing and grading breast

cancer, and forecasting treatment response and risk of recurrence

(14, 15), it also has major potential in evaluating the tumor

microenvironment (16). Most current radiomics research to

predict high Ki-67 expression relies on single-mode imaging or

Magnetic Resonance Imaging (MRI). Nevertheless, the high cost,

long examination time, and limited availability have impeded its

practical application. Women diagnosed with breast cancer are

more inclined to have DBT and US due to their efficiency,
02
affordability, and ease of operation. A recent meta-analysis

indicated that combining DBT and US can enhance the diagnosis

accuracy of dense breasts (17), potentially serving as an alternative

to MRI. Furthermore, a few studies have demonstrated that

radiomics based on DBT and US is feasible and repeatable (18),

and it has the potential to facilitate precision medicine.

Therefore, the present study attempted to construct DBT, US,

and fusion models utilizing the quantitative radiomics features

extracted from DBT and US images, and to investigate whether

the three models could enhance the diagnostic efficacy of

preoperative noninvasive prediction for Ki-67 status. Figure 1

displays the workflow.
2 Materials and methods

2.1 Patient selection

This retrospective research received approval from the Ethics

Committee of the Suzhou Municipal Hospital (No. 2024320), and

the need for written informed permission was waived. Patients

pathologically diagnosed with breast tumors in the breast cancer

screening center from June 2018 to August 2023 were enrolled.

The inclusion standards were (a) patients diagnosed with breast

cancer via biopsy or surgical pathology; (b) DBT and US examinations

were conducted within 1 week before surgery; (c) immunohistochemical

indexes such as Ki-67 were perfected after operation.

The exclusion standards were (a) inadequate quality of DBT

and US images for radiomics analysis owing to artifact, calcification,

cystic degeneration, etc.; (b) patients had received any form of

treatment (including neoadjuvant chemotherapy, radiotherapy,

hormone therapy, surgery, and core-needle biopsy) before DBT

and US examination; (c) lesions larger than 50 mm (not completely

shown on a single plane); (d) patients with other primary tumors.
2.2 Clinical and pathological assessment

Clinical data including age, mass location, and menstrual status

were acquired from the hospitalization system of our center, tumor
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size, calcifications, and burr edges were evaluated from medical

images. ER, PR, HER2, and Ki-67 were detected by IHC of the

surgical specimens, conducted by two senior attending physicians

in the Department of Pathology. ER and PR status were taken for

positive when ≥1% of tumor cell nucleus showed ER and PR

staining. The diagnostic criterion for positive expression of Ki-67

was the percentage of tumor nuclei in the field of view of the hot

spot in the section. According to the expert consensus of the 2020

International Breast Cancer Ki-67 Working Group (19), a cut-off

value of 30% was used to classify high and low Ki-67 expression

(≤30% as low expression and >30% as high expression). HER2

expression levels of 0 and 1+ were classified as negative, 3+ as

positive, and 2+ required additional FISH testing: amplification was

deemed positive, while non-amplification was deemed negative.
2.3 Image acquisition

All DBT images were obtained using a Selenia Dimensions

system (Hologic, Bedford, MA, USA) on both the craniocaudal

(CC) and mediolateral oblique (MLO) views. The DBT volumes

were rebuilt with a slice interval of 1 mm and an in-plane pixel size of

roughly 100 mm using the filtered back-projection reconstruction

method. The scanning angle was 15° ± 7.5°. The US inspections were

conducted by two sonographers with over 10 years of experience in

breast diagnosis for each patient. Each patient was placed in the

supine position, and the Resona R7 or Resona R9 ultrasonic

diagnostic apparatus (Mindray, Shenzhen, China) was utilized,

with the probe model L14-5WU. The probe frequency was set at

7-10 MHz, and the measurement standard for lesions was based on

the 2013 American Co1lege of Radiology (ACR) Breast Imaging

Reporting and Data System (BI-RADS) (20), the multifocal mass
Frontiers in Oncology 03
selected the largest mass for measurement, the gray-scale ultrasound

imaging of the largest plane of each breast lesion was selected in all

patients. Subsequently, all collected images were stored in digital

imaging and communications in medicine (DICOM) format.
2.4 ROIs segmentation

The Regions of Interest (ROIs) were manually drawn layer by

layer along the edge of the lumps by two imaging physicians with

over 5 and 15 years of experience in breast diagnosis utilizing an

open-source imaging platform ITK-SNAP (version 4.0.1, http://

www.itk-snap.org), avoiding cystic and necrotic areas as much as

possible. Subsequently, 40 image cases were chosen randomly for a

consistency assessment.
2.5 Feature extraction

All images were standardized and normalized to reduce

variability caused by different machines, with the intensities of the

images adjusted to a range of 0-1. Then the open-source

pyRadiomics package of Python (version 3.7.6) was used to

extract the radiomics features from the CC, MLO images of DBT,

and US images respectively. These features mainly encompass first-

order features, shape features, texture features, and higher-order

texture features (features extracted through transformations such as

wavelet and Laplace filter (LoG)). The specific parameters can be

referred to https://pyradiomics.readthedocs.io/. Overall, 1427

features were separately acquired from the CC and MLO views of

DBT images, whereas 1239 features were obtained from the US

images. All features were merged as features of the fusion model.
FIGURE 1

Workflow of predicting the Ki-67 level based on radiomics.
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2.6 Feature selection

The participants were divided into the training and test sets

randomly with a ratio of 7:3. The feature screening procedure was

applied in the training set to screen the optimal radiomics features

in 4 steps. Firstly, the extracted features were standardized by z-

score normalization in both the training and the test set separately

to provide a uniform standard of feature values and enhance

comparability between features, achieving proportional scaling of

the original data. Secondly, The Student’s T test was performed on

all radiomics features and only features with a p-value <0.05 were

considered potentially predictive and retained. Thirdly, RF was used

to rank features from high to low. Then, the Spearman correlation

coefficient was used to examine the relevance between features.

Features with a coefficient > 0.9 were considered highly associated,

and the one with a lower RF score was discarded. Finally, The Least

Absolute Shrinkage and Selection Operator Method (LASSO) was

performed for feature dimensionality reduction to select features

further, the optimal tuning parameter l was selected using 10-fold

cross-validation, and features with non-zero regression coefficients

were selected from these candidate features (Figure 2).
2.7 Model construction

Radiomics models: The features of the three models were input

into three commonly used machine learning methods separately

after the LASSO algorithm: Random Forest (RF), Logistic

Regression (LR), Support Vector Machine (SVM), and the three

prediction models (DBT_, US_, and merge_) were constructed

using the “scikit-learn” package in Python (version 3.7.6). The

predictive performance of the 9 models was presented in a table,

and the optimal model was chosen by comparing the AUC values of

the training and test sets. For the optimal model selected, the ROC

curves of the training and validation sets were summarized to

compare the differences in the AUC values of DBT, US, and
Frontiers in Oncology 04
fusion models. The Decision Curve Analysis (DCA) was used to

quantify the net gains at different threshold probabilities in the

validation set to evaluate the clinical utility of the three models.

Nomogram model: The output of the classifier with the best

AUC value was converted into Rad-Score and was regarded as a

Rad-Score model, and then we utilize the univariate and

multivariate logistic regression to find the best clinical predictors,

p < 0.05 were considered as the risk factors. Subsequently, the Rad-

Score and risk predictors were integrated to construct the

nomogram model. The model’s stability was evaluated using

AUC, calibration curve, and DCA.
2.8 Statistical analysis

Statistical analyses of the data were conducted using the “SciPy.

stats” package of Python (version 3.7.6) and graphing were

performed using the “matplotlib. pyplot” package. The AUC, 95%

confidence interval (95% CI), accuracy, sensitivity, and specificity

were utilized to validate the predictive performance of the models.

DeLong test was applied to evaluate the differences in AUC values

between the models, p < 0.05 (two-tailed) was considered

statistically significant.
3 Results

3.1 Clinical characteristics

A total of 149 cases were finally enrolled, consisting of 82

individuals with low Ki-67 level and 67 with high Ki-67 level. All

participants were female, aged 30 to 86 years old, with an average of

59.01 ± 11.78 years old. The patients were randomly divided into a

training set (n = 104) and a test set (n = 45). Table 1 displays the

statistics of clinical features. There were significant differences in

tumor size, ER and HER2 status between the high Ki-67 group and
FIGURE 2

LASSO algorithm for radiomics features selection in the training set.
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the low Ki-67 group in the training set and the test set (p < 0.05).

Additionally, PR status differed significantly in the training set (p <

0.05). However, no notable differences were found in age, location

of mass, menstrual status, and lymph node metastasis in either the

training set or the test set (p > 0.05).
3.2 Radiomics feature selection

Following feature dimensionality reduction and screening based on

LASSO, 9 optimal features were selected for the DBT model and 3 for

the US model (detailed in Supplementary Tables 1, 2). The fusion

model incorporated 8 optimal features, including 1 feature from the US
Frontiers in Oncology 05
and 7 features from DBT (4 from the MLO view and 3 from the CC

perspective) as detailed in Table 2. All of them were texture features

after wavelet, LoG, and square transformations, mainly including gray-

level co-occurrence matrix (GLCM) and gray-level dependence matrix

(GLDM), gray-level size zone matrix (GLSZM), gray-level run length

matrix (GLRLM), and neighboring gray-tone difference matrix

(NGTDM), with AUC values vary from 0.556 to 0.783. The weight

map of the fusion modal features is displayed in Figure 3, of which,

wavelet-LHH_glcm_ClusterShade_CC, log-sigma-3-0-mm-

3D_glcm_Contrast_MLO, square_gldm_SmallDependence

LowGrayLevelEmphasis_MLO and wavelet-HLL_glszm_SizeZone

NonUniformityNormalized_US were more weighted. In the high Ki-

67 group, themean values of the four features were -0.36 ± 0.59, -0.18 ±
TABLE 1 Statistical results of the clinical characteristics.

characteristics

training set

p

test set

p

High Ki-67 Low Ki-67 High Ki-67 Low Ki-67

(n=48) (n=56) (n=19) (n=26)

Age, Mean ± SD 58.58 ± 10.90 59.96 ± 13.04 0.567 58.47 ± 9.54 58.15 ± 11.84 0.925

Location of the mass,n(%) 0.716 0.493

right 24(50%) 30(53.6%) 9(47.4%) 15(57.7%)

left 24(50%) 26(46.4%) 10(52.6%) 11(42.3%)

Menstruation status,n(%) 0.467 0.368

Yes 16(33.3%) 15(26.8%) 3(15.8%) 7(26.9%)

No 32(66.7%) 41(73.2%) 16(84.2%) 19(73.1%)

ER,n(%) 0.044* 0.044*

positive 30(62.5%) 48(85.7%) 10(52.6%) 21(80.8%)

negative 18(37.5%) 12(14.3%) 9(47.4%) 5(19.2%)

PR,n(%) 0.000* 0.135

positive 17(35.4%) 40(71.4%) 6(31.6%) 14(53.8%)

negative 31(64.6%) 16(28.6%) 13(68.4%) 12(46.2%)

HER2,n(%) 0.029* 0.007*

positive 18(37.5%) 33(58.9%) 10(52.6%) 4(15.4%)

negative 30(62.5%) 23(41.1%) 9(47.4%) 22(84.1%)

LNM, n(%) 0.242 0.912

positive 18(37.5%) 15(26.8%) 7(36.8%) 10(38.5%)

negative 30(62.5%) 41(73.2%) 12(63.2%) 16(61.5%)

Calcifications,n(%) 0.070 0.670

positive 21(43.7%) 15(26.8%) 7(36.8%) 8(30.8%)

negative 27(56.3%) 41(73.2%) 12(63.2%) 18(69.2%)

Burr edges,n(%) 0.079 0.314

positive 20(41.7%) 33(58.9%) 12(63.2%) 20(76.9%)

negative 28(58.3%) 23(41.1%) 7(36.8%) 6(23.1%)

Tumor size(mm),
Mean ± SD 21.77 ± 5.35 17.04 ± 5.68 0.000* 22.63 ± 8.23 16.54 ± 4.81 0.003*
ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor 2; SD, standard deviation; LNM, lymph node metastasis; *p<0.05.
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0.79, -0.27 ± 0.75, 0.19 ± 1.22, and 0.11 ± 0.89, 0.19 ± 1.12, 0.43 ± 1.31,

-0.38 ± 1.02 in low Ki-67 group (detailed in Supplementary Figure 1).
3.3 Assessment of model efficacy

The prediction performance evaluation results for the three models

are displayed in Table 3. After comparing the performance of the three

classifiers, it was found that the RF classifier was generally less effective,

LR had the best prediction results in the test set but poor classification
Frontiers in Oncology 06
results in the training set, and SVM showed stable performance in both

sets. Therefore, SVMwas chosen as the preferred method for modeling

due to its comprehensive performance. Figure 4 displays the

classification outcomes of the three models constructed by the SVM

classifier. In the training set, the AUC values for US_SVM and

DBT_SVM were 0.726 (95% CI: 0.627-0.825) and 0.856 (95% CI:

0.780-0.931) respectively. In the test set, the AUC values were 0.668

(95% CI: 0.505-0.832) for US_SVM and 0.704 (95% CI: 0.546-0.863)

for DBT_SVM. Overall, DBT_SVM had a slightly higher prediction

accuracy than US_SVM. The AUC of the merge_SVMmodel achieved
TABLE 2 Features for the prediction of the Ki-67 level in merge_SVM.

Radiomics feature source set AUC ACC SPE SEN

square_gldm_SmallDependenceLowGrayLevelEmphasis
DBT_CC

training 0.634 0.510 0.821 0.146

test 0.621 0.622 0.923 0.211

wavelet_LHH_glcm_ClusterShade DBT_CC
training 0.620 0.558 0.911 0.146

test 0.556 0.698 0.923 0.053

wavelet_HLL_gldm_SmallDependenceLowGrayLevelEmphasis DBT_CC
training 0.613 0.596 0.857 0.292

test 0.640 0.622 0.769 0.421

log-sigma-3D_glcm_Contrast DBT_MLO
training 0.661 0.644 0.768 0.500

test 0.583 0.533 0.654 0.368

log-sigma-3D_glrlm_RunLengthNonUniformity DBT_MLO
training 0.656 0.567 0.875 0.208

test 0.761 0.711 1.000 0.316

square_gldm_SmallDependenceLowGrayLevelEmphasis DBT_MLO
training 0.636 0.635 0.607 0.667

test 0.660 0.667 0.654 0.684

wavelet_HLH_ngtdm_Strength DBT_MLO
training 0.624 0.596 0.357 0.875

test 0.783 0.622 0.842 0.842

wavelet_HLL_glszm_SizeZoneNonUniformityNormalized US
training 0.616 0.538 0.929 0.083

test 0.660 0.622 0.962 0.158
AUC, Area Under Curve; ACC, accuracy; SPE, specialty; SEN, sensitivity.
FIGURE 3

Weights of non-zero coefficient features after the LASSO algorithm.
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TABLE 3 Prediction performance of three classifiers.

Modality
training set test set

AUC (95%CI) ACC SPE SEN AUC (95%CI) ACC SPE SEN

SVM

US 0.726 (0.627- 0.825) 0.692 0.732 0.646 0.668 (0.505- 0.832) 0.667 0.769 0.526

DBT 0.856 (0.780- 0.931) 0.683 0.679 0.688 0.704 (0.546- 0.863) 0.778 0.808 0.737

merge 0.805 (0.719- 0.891) 0.702 0.661 0.750 0.800 (0.662- 0.937) 0.800 0.846 0.737

RF

US 0.788 (0.699- 0.877) 0.702 0.732 0.667 0.652 (0.486- 0.817) 0.644 0.731 0.526

DBT 0.747 (0.652- 0.843) 0.712 0.714 0.833 0.692 (0.532- 0.852) 0.622 0.692 0.526

merge 0.762 (0.668- 0.856) 0.635 0.732 0.521 0.757 (0.609- 0.905) 0.778 0.923 0.579

LR

US 0.681 (0.577- 0.785) 0.663 0.732 0.583 0.741 (0.590- 0.892) 0.756 0.808 0.684

DBT 0.763 (0.670- 0.856) 0.702 0.679 0.708 0.812 (0.678- 0.945) 0.756 0.769 0.737

merge 0.777 (0.686- 0.868) 0.683 0.643 0.729 0.816 (0.683- 0.948) 0.822 0.885 0.737
F
rontiers in Onco
logy 07
SVM, Support Vector Machine; RF, Random Forest; LR, Logistic Regression; AUC, Area Under Curve; ACC, accuracy; SPE, specialty; SEN, sensitivity.
A

B

FIGURE 4

Classification results of three SVM models for predicting Ki-67 expression in breast cancer. (A) Comparison results of accuracy, specificity, and
sensitivity of the three models. ACC: accuracy, SPE: specificity, and SEN: sensitivity. (B) Summary of ROC curves of the three SVM models for
predicting Ki-67 expression in breast cancer.
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0.805 (95% CI: 0.719-0.891) in the training group and 0.800 (95% CI:

0.662-0.937) in the validation group. It had the highest AUC value in

the test set and the highest accuracy, specificity, and sensitivity in both

training and test sets, except for a slightly lower specificity in the

training set. The DeLong test indicated that the AUC value of the

merge_SVM was significantly different from the US_SVM (p = 0.048)

and not substantially different from the DBT_SVM (p = 0.149). The

DCA of merge_SVM expressed the best among the three models,

indicating that this model had a higher net clinical benefit than the

other two models for predicting high Ki-67 expression (Figure 5).
3.4 Assessment of the nomogram

According to the performance of the three radiomics models

above, merge_SVM was selected as the Rad-Score model (Fusion-

Rad model), then established a rad score formula to calculated each

patient’s Rad-Score using non-zero features coefficient. Rad-score

and clinical characteristics were analyzed utilizing the univariate

and multivariate logistic regression, as shown in Table 4. Among

them, tumor size and Rad-Score were relevant to Ki-67 expression

level (p < 0.001). In multivariate logistic regression, tumor size (OR

0.925, CI 0.849 - 1.002, p < 0.05), and Rad-Score (OR 0.006, CI

-3.174-3.186, p < 0.05) were independent risk factors for Ki-67

status in BC. A nomogram was developed by integrating Rad-Score,

tumor size using the logistic regression method (Figure 6). The

AUC values of the nomogram models were 0.779 in the training set

and 0.818 in the test set (Figure 7, Table 5). The calibration curves

revealed good predictive accuracy between model-predicted values

and actual outcomes (Figure 8). The DCA of the nomogram model

performed better than the Fusion-Rad model (Figure 9).
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4 Discussion

Early prediction of Ki-67 expression level in breast cancer has

important clinical significance for breast cancer treatment planning

and prognosis (21). Currently, the detection of Ki-67 is mainly based

on IHC, which is an invasive procedure that is time-consuming and

non-repeatable. A non-invasive preoperative detection method is

needed in clinical practice. Multiple studies have proved that

radiomics techniques can be used for the prediction of therapy

response and prognosis (22), and tumor biomarkers such as Ki-67

(23). In this research, we extracted an amount quantity of radiomics

features from DBT and US images, and then constructed and validated

the radiomics predictive models of Ki-67 expression levels in unimodal

and fusion modalities. Compared with the DBT and US models, the

fusion model achieved better classification results in the test set

(AUC=0.800). The DCA indicated that the net clinical benefit of

merge_SVM was higher than that of DBT_SVM and US_SVM,

indicating that the fusion model has higher clinical applicability and

can provide a non-invasive prediction method for Ki-67 level in

breast cancer.

In this study, we first established prediction models for Ki-67

expression levels in BC based on two clinically common imaging

modalities, DBT and US. Our DBT model has an AUC value of

0.704, which is similar to the performance of Tagliafico’s model

(AUC = 0.698) (24). Similarly, our US model has an AUC value of

0.668, which is not much different from the results of the US model

constructed by Liu et al. (AUC = 0.713) (25). It is essential to

mention that the AUC value of the DBT model in this study was

0.036 higher than that of the US. Additionally, the accuracy,

specificity, and sensitivity were also higher. This difference may

be related to the different imaging modalities used in DBT and US.
FIGURE 5

Decision curve analysis for the three models. Neither treatment as the baseline (black dashed line), merge_SVM had the highest net benefit
compared to DBT_SVM, US_SVM, and both treatments (black solid line). The net benefit refers to the proportion of patients who can be treated
more who are truly Ki-67 high-expressing without increasing overtreatment, compared to neither treatment, using a model or criteria to guide
whether to treat or not.
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DBT utilizes three-dimensional imaging, allowing for the capture of

crucial details like microcalcification clusters, burr edges, and

architectural distortion of the tumor (9). In contrast, 2D US

images provide limited information due to the limitation of

ultrasound scanning probes. However, the predictive ability of

unimodal models is always limited, and it has been suggested that

combining multiple imaging modalities can improve the accuracy

of Ki-67 prediction (26, 27). The results of this study showed that

the fusion model constructed based on US and DBT has an AUC

value of 0.800 (accuracy of 80.0%), surpassing the unimodal models

in classification. This indicates that the combination of DBT and US

can compensate for the shortcomings of the imaging modalities,

provide more heterogeneous tumor information, improving the

prediction level. It is worth mentioning that the prediction

performance of the fusion model constructed in this study for Ki-

67 expression level is comparable to that of the MRI multimodal

models. Jiang et al. (26) combined the radiomics features of two

MRI modalities, dynamic contrast-enhanced (DCE) and diffusion-

weighted (DW), and the predicted AUC for Ki-67 status was 0.818.

Fan et al. (28) combined precontrast and apparent diffusion

coefficient images, the predicted AUC for Ki-67 achieved 0.811.

Our results are consistent with the conclusions of a recent meta-

analysis (17), that combining DBT and US can enhance the
Frontiers in Oncology 09
diagnosis accuracy of dense breasts and potentially serve as an

alternative to MRI.

The fusion model was effective in enhancing the estimated

performance of Ki-67, however, the gain was limited. When

comparing the prediction performance of the fusion model with

unimodal models, the AUC value of the fusion model improves

significantly compared to the US model (DeLong p < 0.05), but

shows only a slight improvement compared to the DBT model

(DeLong p > 0.05). The reason for such a result may be due to the

deviation in the proportion of the two unimodal feature numbers

incorporated in the fusion model, with 7 DBT image features but

only 1 US image feature. Additionally, DBT contains images at both

CC and MLO views, doubling the number of features and providing

more tumor information. Therefore, this study concluded that the

fusion model could enhance the accuracy of predicting Ki-67.

However, if resources are limited and patients cannot take both

imaging examinations at the same time, it is preferable to choose

DBT as a preoperative assessment modality.

In this study, the eight radiomics features incorporated in the

fusion model were all transformed higher-order texture features,

including 2 GLCM, 3 GLDM, 1 GLRLM, 1 GLSZM, and 1 NGTDM

features. These features can characterize and quantify the texture

attributes and complexity in the whole region, suggesting that texture
FIGURE 6

The radiomics-clinical nomogram was developed by logistic regression, which includes tumor size and Rad-Score.
TABLE 4 Univariate and multivariate logistic regression results of the risk factors of high Ki-67 level in BC.

Characteristics
Univariate analysis Multivariate analysis

OR (95% CI) p OR (95% CI) p

Age 1.003 (0.976 - 1.031) 0.807

Tumor size 0.855 (0.788 - 0.922) < 0.001* 0.925 (0.849 - 1.002) 0.046*

Calcifications 1.842 (1.158 - 2.526) 0.080 1.403 (0.627 - 2.179) 0.392

Menstruation status 1.015 (0.298 - 1.733) 0.967

Location of the mass 0.798 (0.151 - 1.445) 0.494

Rad-Score 0.001 (-2.788 - 2.790) < 0.001* 0.006 (-3.174 - 3.186) 0.002*
*p<0.05.
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complexity is associated with the Ki-67 status of breast cancer, which

can serve as an important predictor of Ki-67 expression levels. This

discovery is similar to previous research that has emphasized the

importance of texture features (24, 29–31). The GLCM features

quantify the complexity of voxel intensities in the tumor region (32).

Among GLCM features, Cluster Shade is a measure of skewness and

homogeneity. Li et al. (33) demonstrated that the Cluster Shade value

was higher in the cervical cancer Ki-67 high expression group

compared to the low expression group. In this study, the absolute

value of GLCM_ClusterShade was higher in the Ki-67 high expression

group than the low expression group, indicating that the breast cancer

Ki-67 high expression group may have rougher image texture, higher

tumor heterogeneity, and more invasiveness. The GLDM features

indicate the degree of roughness of the image texture (32). Petrillo

et al. (34) found that these features are effective in distinguishing

between benign and malignant breast lesions and in identifying the

HER2 status. In the present study, three GLDM features showed better

performance in classifying Ki-67 levels (with accuracies of 62.2%,

62.2%, and 66.7%, respectively), indicating that GLDM also can

identify Ki-67 status. Texture features in US images can be applied

to predict Ki-67 status (25, 31) and lymph node metastasis in breast

carcinoma (35, 36). Previous research focused on the importance of

GLCM, while the present study found that the GLSZM features in US

images also have significant predictive value (accuracy of 66.0%). The
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GLSZM features quantify the grey-scale changes of the connected

regions at the edge of the image, reflecting the clarity of the tumor edge.

Niu et al. (37) found that the GLSZM values of benign lesions were

higher than that of malignant lesions, which proved that the edges of

benign lesions were clearer than those of malignant ones. This study

found that the absolute value of the GLSZM features was higher in the

low Ki-67 group compared to the high Ki-67 group, suggesting that the

tumor margins may be more distinct in BC patients with low Ki-67

expression level.

In this study, ER and HER2 status had intergroup differences (p <

0.05), which suggests that Ki-67 values may be higher in patients with

ER andHER2 positivity. According to the results of the univariate and

multivariate logistic regression, the size of tumors and Rad-Score

could be considered as independent risk factors to predict high Ki-67

level in BC. In order to facilitate the potential utilization of radiomics

methods by clinical doctors, we developed a nomogram model

incorporating Rad-Score and clinical independent predictors (tumor

size), which achieved the best predictive performance (AUC=0.818).

The DCA shows that the nomogram has better clinical applicability as

a predictor of Ki-67 expression. To utilize our nomogram, clinicians

should delineate the ROIs in DBT and US images to acquire Rad-

Score, then calculate the probability of high Ki-67 status via the Rad-

Score and the value of tumor size. Afterwards, clinicians can combine

these probabilities with the patient’s other clinical characteristics to

make a comprehensive assessment.

There exist some limitations. (a) This research is a single-center

retrospective study with a small sample capacity, which makes it

difficult to avoid selective bias. To confirm the accuracy of the

models, it is necessary to have more cases of illness and multi-center

data. (b) The US features were extracted from s single image of the

largest cross-section of the tumor, which may result in the missing of

crucial information about tumor heterogeneity. (c) The features we

obtained after the screening were all texture-related features, ignoring

features such as shape features and first-order features, probably

because the difference in those features between the two groups was

small or the weight of the features was low. In future research, we will

improve the feature selectionmethod to explore the clinical significance
TABLE 5 Performance of predicting Ki-67 levels in different models of
training groups and validation groups.

Model AUC (95% CI)

Training group

Fusion-Rad model 0.805 (0.719-0.891)

Nomogram model 0.779 (0.690-0.868)

Validation group

Fusion-Rad model 0.800 (0.662-0.937)

Nomogram model 0.818 (0.685-0.950)
A B

FIGURE 7

Summary of ROC curves of the Fusion-Rad and Nomogram models for predicting Ki-67 expression in breast cancer. (A) training set; (B) test set.
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of these features. (d) Manual outlining of the ROI not only increases

the time needed but also the inconsistency between different

radiologists. In future research, deep learning will be explored as a

means to segment the ROIs to substitute manual outlining

automatically. Additionally, the potential of deep learning to enhance

the accuracy of classification will be investigated.

In conclusion, the fusion model developed based on radiomics

features of DBT and US images is superior to the unimodal models,

which might assist in predicting the Ki-67 expression level of BC

patients and provide individualized precision treatment. However, the

gain effect of the fusion model is limited, so it is recommended that

DBT be preferred as a preoperative diagnostic modality when resources

are restricted. Otherwise, the nomogram offers predictive advantages

over other methods and can be a valuable tool for predicting Ki-67

levels in breast cancer.
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FIGURE 8

Calibration curves of the nomogram model in the training (A) and test sets (B).
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