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Construction of a risk prediction
model for lung infection after
chemotherapy in lung cancer
patients based on the machine
learning algorithm
Tao Sun1*, Jun Liu2, Houqin Yuan1, Xin Li1 and Hui Yan1

1Department of Hematology and Oncology Laboratory, The Central Hospital of Shaoyang, Shaoyang,
Hunan, China, 2Department of Scientific Research, The First Affiliated Hospital of Shaoyang University,
Shaoyang, Hunan, China
Purpose: The objective of this study was to create and validate a machine

learning (ML)-based model for predicting the likelihood of lung infections

following chemotherapy in patients with lung cancer.

Methods: A retrospective study was conducted on a cohort of 502 lung cancer

patients undergoing chemotherapy. Data on age, Body Mass Index (BMI),

underlying disease, chemotherapy cycle, number of hospitalizations, and

various blood test results were collected from medical records. We used the

Synthetic Minority Oversampling Technique (SMOTE) to handle unbalanced data.

Feature screening was performed using the Boruta algorithm and The Least

Absolute Shrinkage and Selection Operator (LASSO). Subsequently, six ML

algorithms, namely Logistic Regression (LR), Random Forest (RF), Gaussian

Naive Bayes (GNB), Multi-layer Perceptron (MLP), Support Vector Machine

(SVM), and K-Nearest Neighbors (KNN) were employed to train and develop an

ML model using a 10-fold cross-validation methodology. The model’s

performance was evaluated through various metrics, including the area under

the receiver operating characteristic curve (ROC), accuracy, sensitivity,

specificity, F1 score, calibration curve, decision curves, clinical impact curve,

and confusion matrix. In addition, model interpretation was performed by the

Shapley Additive Explanations (SHAP) analysis to clarify the importance of each

feature of the model and its decision basis. Finally, we constructed nomograms

to make the predictive model results more readable.

Results: The integration of Boruta and LASSO methodologies identified Gender,

Smoke, Drink, Chemotherapy cycles, pleural effusion (PE), Neutrophil-lymphocyte

count ratio (NLR), Neutrophil-monocyte count ratio (NMR), Lymphocytes (LYM)

and Neutrophil (NEUT) as significant predictors. The LR model demonstrated

superior performance compared to alternative ML algorithms, achieving an

accuracy of 81.80%, a sensitivity of 81.1%, a specificity of 82.5%, an F1 score of

81.6%, and an AUC of 0.888(95%CI(0.863-0.911)). Furthermore, the SHAP method

identified Chemotherapy cycles and Smoke as the primary decision factors

influencing the ML model’s predictions. Finally, this study successfully

constructed interactive nomograms and dynamic nomograms.
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Conclusion: The ML algorithm, combining demographic and clinical factors,

accurately predicted post-chemotherapy lung infections in cancer patients. The

LR model performed well, potentially improving early detection and treatment in

clinical practice.
KEYWORDS

lung infection, chemotherapy, machine learning, logistic regression, predictive
model, nomogram
1 Introduction

Lung cancer, being one of the most prevalent malignant

neoplasms globally, presents a substantial risk to both the survival

and well-being of affected individuals (1). The World Health

Organization’s data indicates that lung cancer exhibits the highest

incidence and mortality rates among all cancer types (2). Despite

notable advancements in lung cancer therapy, the effective

management of post-chemotherapy complications remains a

significant hurdle (3–5). Of particular concern is the high

prevalence of lung infections following chemotherapy in lung

cancer patients, which seriously affects the therapeutic effect and

survival quality of patients (6). The presence of lung infections in

lung cancer patients not only exacerbates their health status but also

has the potential to impede or halt chemotherapy, thereby

impacting the overall efficacy of treatment. Furthermore, lung

infections contribute to escalated medical expenses, extended

hospital stays, and heightened mortality rates (7). Consequently,

the timely and precise identification of the likelihood of lung

infections following chemotherapy is crucial for informing clinical

interventions and enhancing patient outcomes.

The utilization of ML technology in the healthcare sector has

experienced significant growth in recent years, showcasing robust

data processing and pattern recognition capabilities. ML algorithms

have exhibited promise and efficacy in lung cancer diagnosis,

treatment selection, and prognosis assessment (8, 9). Notably, the

analysis of extensive clinical data through ML algorithms can aid

healthcare professionals in identifying potential disease development

patterns, facilitating personalized treatment strategies, and enhancing

treatment outcomes (10–12). Conventional approaches to evaluating

the risk of lung infection rely heavily on the subjective judgment and

clinical expertise of healthcare professionals, necessitating a greater

degree of objectivity and precision. In light of this prevailing situation,

the utilization of ML technology presents novel opportunities for

addressing this issue by leveraging ML algorithms to analyze

extensive patient data, potential correlations and patterns can be

identified, enabling healthcare providers to make more precise

predictions regarding the likelihood of lung infection following

chemotherapy in individuals with lung cancer.

In recent studies, researchers have utilized various ML

algorithms to create predictive models aimed at aiding physicians
02
in evaluating the likelihood of complications in lung cancer patients

following chemotherapy or surgical procedures. While previous

research has explored the application of ML in forecasting

complications in lung cancer patients, there is a notable scarcity

of studies focusing on predicting the likelihood of lung infection

following chemotherapy. Consequently, the current study seeks to

address this gap by introducing and refining a prediction model

utilizing ML algorithms to identify lung cancer patients at risk of

post-chemotherapy lung infection. This study posits that an

interpretable ML-based algorithm will achieve the most accurate

predictions if significant predictors are identified through an

effective feature selection method. Therefore, the objective of this

study was to create and evaluate a proficient and interpretable ML

system for forecasting the likelihood of lung infection following

chemotherapy in Chinese lung cancer patients. Our research

findings offer a novel approach for early identification of infection

risk in lung cancer patients while also contributing to the

advancement of ML in oncology clinical investigations. Moving

forward, we intend to enhance the precision and reliability of the

model, facilitate its integration into clinical settings, and offer

enhanced scientific and precise assistance for the care and

oversight of lung cancer patients.
2 Materials and methods

2.1 Study design

This study was conducted to develop a machine learning-based

model for predicting the risk of lung infections following

chemotherapy in lung cancer patients. The retrospective study

included a cohort of 502 lung cancer patients who had undergone

chemotherapy, aged 18 years and above, and had completed at least

one cycle of treatment. Data encompassing demographic details,

medical history, chemotherapy specifics, and blood test results were

extracted from the hospital’s electronic medical record system. The

SMOTE algorithm is used to solve the category imbalance problem.

The Boruta algorithm and LASSO regression performed feature

screening to identify the features most associated with the risk of

lung infection. Subsequently, a range of ML models, including LR,

RF, GNB, MLP, SVM, and KNN, were developed and refined by
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applying a 10-fold cross-validation methodology. The performance

of these models was assessed using various metrics, including

accuracy, sensitivity, specificity, positive predictive value, negative

predictive value, F1 score, Kappa score, AUC, calibration curve,

calibration curves, Clinical Impact Curve and confusion matrix. To

enhance the transparency and interpretability of the model, the

SHAP method was employed to interpret the predicted results and

elucidate the impact of each feature on the predictions, thereby

offering a practical reference for clinicians. Figure 1 explains the

overall workflow of the proposed system more clearly.
2.2 Study data

This retrospective study examined data from lung cancer

patients at The Central Hospital of Shaoyang between January

2020 and December 2023. The study included adult patients aged 18

years and older who had not experienced lung infections within a

week before receiving chemotherapy. Patient records with missing

or abnormal data were excluded to maintain data quality. The

study’s rigorous inclusion and exclusion criteria aimed to ensure the
Frontiers in Oncology 03
completeness and reliability of the information on included cases,

thus providing a high-quality database for evaluating the risk of

lung infections in lung cancer patients after chemotherapy.

Inclusion criteria: (i) adult patients aged ≥18 years, (ii) patients

diagnosed with lung cancer and treated with chemotherapy, (iii)

patients who did not have any lung infection before chemotherapy,

and (iv) patients with complete clinical information; Exclusion

criteria: (i) patients with mental illness or intellectual disability,

(ii) patients with missing or abnormal data, and (iii) exclusion of

patients with a combination of other tumors.
2.3 Research variables

The study encompassed 36 predictors related to demographic

factors (gender, age), lifestyle habits (history of alcohol

consumption, history of smoking), medical history (history of

diabetes, history of hypertension, history of coronary heart

disease), physical characteristics (BMI), disease severity (stage at

diagnosis, histologic features, presence or absence of pleural

effusion), treatment information (cycles of chemotherapy,
FIGURE 1

Research flowchart.
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number of hospitalizations), and laboratory values (leukocytes,

erythrocytes, hemoglobin, platelets, percentage of neutrophils,

percentage of lymphocytes, percentage of monocytes, NLR, NMR,

neutrophil-platelet count ratio (NPR), indirect bilirubin, alanine

aminotransferase, glutamine aminotransferase, total bilirubin,

direct bilirubin, total protein, albumin, globulin, white globule

ratio, urea, creatinine, uric acid, and CEA). Of these, gender, age,

history of alcohol consumption, history of smoking, history of

diabetes mellitus, history of hypertension, history of coronary

artery disease, BMI, tumor typing, cycles of chemotherapy,

number of hospitalizations, and the presence or absence of

pleural effusions were the data before the last chemotherapy
Frontiers in Oncology 04
session. The other laboratory data were obtained after the last

chemotherapy. A brief description of the study variables is given

in Table 1.
2.4 Diagnostic criteria of pulmonary
infection after chemotherapy

The diagnostic criteria for pulmonary infection in patients with

lung cancer following chemotherapy encompass a body

temperature exceeding 38°C, the presence of clinical symptoms

indicative of pulmonary infection (e.g., cough and expectoration),
TABLE 1 Description of the study variables.

SN Predictors Description Types Values

1 Gender Sex of the patient Categorical 1 male
2 female

2 Age Age of the patient (years) Continuous 35-83

3 Drink History of alcohol consumption Categorical 0 No history of alcohol consumption
1 History of alcohol consumption

4 Smoke History of smoking Categorical 0 No history of smoking
1 History of smoking

5 Diabetes History of diabetes Categorical 0 No history of diabetes
1 History of diabetes

6 Hypertension History of Hypertension Categorical 0 No history of hypertension
1 History of hypertension

7 CHD History of coronary heart disease Categorical 0 No history of coronary heart disease
1 History of coronary heart disease

8 BMI Body mass index (kg/m2) Continuous 11.43-31.83

9 Stage Stage at diagnosis, Count (%) Categorical Stage 1 24(4.78%)
Stage 2 59(11.75%)
Stage 3 204(40.64%)
Stage 4 215(42.83%)

10 Histology Histologic features, Count (%). 1,
Adenocarcinoma; 2, Squamous; 3,
SCLC; 4, Other lung cancers

Categorical Grade1 222(44.22%)
Grade2 189(37.65%)
Grade3 80(15.94%)
Grade4 11(2.19%)

11 Chemotherapy
cycles

The Number of chemotherapy cycles Continuous 1-32

12 Hospitalizations Total number of hospitalizations Continuous 1-45

13 PE The presence of pleural effusion Categorical 0 No pleural effusion
1 With pleural effusion

14 WBC White blood cell Continuous 1.31-60.80

15 RBC Red blood cell Continuous 1.44-6.20

16 HGB Hemoglobin Continuous 53.00-9792.00

17 PLT Platelet Continuous 22.00-631.00

18 NEUT Percentage of Neutrophil Continuous 0.44-98.21

19 LYM Percentage of Lymphocytes Continuous 1.42-65.50

20 NLR Neutrophil-Lymphocyte count ratio Continuous 0.02-69.16

(Continued)
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the identification of moist rales in the lungs, and the visualization of

a distinct infectious focus on CT imaging. Should a lung cancer

patient meet at least three of these criteria within 14 days post-

operation, a diagnosis of post-chemotherapy lung infection

is warranted.
2.5 Feature screening

2.5.1 Least absolute shrinkage and
selection operator

The LASSO regression enhances model refinement by

implementing a penalty function that compresses certain regression

coefficients, thereby enforcing a constraint on the sum of their

absolute values to be below a predetermined threshold (13, 14). We

utilize the glmnet package in R for LASSO regression, setting

family=“binomial” to apply to our binary outcome data. The key

parameter alpha is set to 1, and the LASSO method is used entirely.

Through cross-validation with the cv.glmnet function, we chose two

lambda values: lambda.min and lambda.1se. The former minimizes

the cross-validation error, while the latter provides a cleaner model,

which together help us to balance the complexity of the model with

the prediction accuracy. Ultimately, we filter out variables that are

significant to the predictions based on non-zero coefficients,

simplifying the model and improving its interpretability.

2.5.2 Boruta
The Boruta algorithm is a Random Forest-based feature

selection and packaging algorithm that evaluates the importance

of features by generating “shadow variables” corresponding to each
Frontiers in Oncology 05
original variable in the dataset (15). In particular, Boruta (Version:

8.0.0) is executed to perform feature selection, where the algorithm

iteratively compares the importance of each original variable with

its shadow variable, and determines the importance of each variable

over 500 iterations or until all variables are stable. Importance

results are extracted with the attStats function and formatted with a

customized adjustdata function (16).
2.6 Machine learning algorithms

2.6.1 Logistic regression algorithm
In this study, we used a logistic regression (LR) model to predict

the probability of infection in patients receiving chemotherapy,

defined as a binary classification problem that predicts the risk of

infection based only on clinical features (17). The logistic regression

model used L2 regularization with the regularization factor (C) set

to 1.0, a maximum number of iterations of 100, and a convergence

tolerance (tol) of 0.0001.These parameters help prevent model

overfitting while ensuring convergence and computational

efficiency of the algorithm.

2.6.2 Random forest algorithm
The RF algorithm is an ML technique that enhances predictive

accuracy by generating multiple decision trees. RFs excel in

analyzing extensive datasets with high-dimensional features,

effectively managing intricate relationships among data variables

(18). In this research, RFs are employed to identify non-linear

associations and enhance the model’s ability to generalize. In the

Random Forest model, the Gini Index is used as the splitting
TABLE 1 Continued

SN Predictors Description Types Values

21 NMR Neutrophil-Monocyte count ratio Continuous 0.01-311.37

22 NPR Neutrophil-Platelet count ratio Continuous 0.01-3.67

23 MONO Percentage of Monocytes Continuous 0.30-63.20

24 IBIL Indirect bilirubin Continuous 2.20-90.40

25 ALT Glutamic pyruvic transaminase Continuous 2.70-888.60

26 AST Aspartate aminotransferase Continuous 3.80-591.20

27 TBIL Total bilirubin Continuous 1.90-297.60

28 DBIL Direct bilirubin Continuous 0.13-207.20

29 TP Total protein Continuous 22.50-85.80

30 ALB Albumin Continuous 10.70-51.04

31 GLB Globulin Continuous 11.96-51.90

32 A/G White ball ratio Continuous 0.48-3.99

33 Urea Urea Continuous 1.25-32.97

34 CREA Creatinine Continuous 34.70-367.90

35 UA Uric acid Continuous 78.30-1201.40

36 CEA CEA Continuous 0.20-1500.00
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criterion, the number of trees is set to 20, the maximum depth of the

tree is not restricted, and the minimum impurity reduction is set to

0.0. This parameter configuration is designed to allow the model to

fully learn the complex structure in the data, and to improve the

accuracy and generalization of the prediction.

2.6.3 Gaussian Naive Bayes algorithm
The GNB classifier is a straightforward probabilistic model

grounded in Bayes’ theorem, predicated on the feature independence

assumption. While this assumption may not hold true in all practical

scenarios, GNB remains highly effective in numerous instances owing

to its simplicity and computational efficiency (19). The Gaussian Naive

Bayes model does not set a specific prior probability, and the variable

smoothing parameter is set to 1e-09. this setting allows the model to be

more accurate when performing probability calculations, especially

when dealing with datasets with continuous characteristics.

2.6.4 Multi-layer perceptron algorithm
The MLP is a feed-forward artificial neural network model

capable of processing data through multiple layers to learn non-

linear features (20). It is well-suited for complex pattern recognition

tasks. In this research, we employ MLP to develop a sophisticated

predictive model for assessing the risk of lung infection following

chemotherapy, the multilayer perceptron model uses ReLU as the

activation function, and the structure of the hidden layer is set to

two layers containing 20 and 10 neurons, respectively, with a

maximum number of iterations of 20.

2.6.5 Support vector machine algorithm
Support Vector Machine (SVM) is robust classifiers utilized to

discern between classes by identifying optimal decision boundaries

within data points. SVMs are especially adept at processing high-

dimensional data and excel in scenarios where data boundaries are

ambiguous (21, 22). In this study, the SVM model selects Radial

Basis Function (RBF) as the kernel function, with the regularization

parameter C set to 1.0 and the tolerance to 0.001. This setting helps

the model to effectively identify complex decision boundaries while

controlling overfitting when dealing with high-dimensional data.

2.6.6 K-Nearest neighbor algorithm
The KNN is utilized to predict the category of a given sample point

by examining the categories of its K-nearest neighbors. This method,

known for its simplicity and intuitive nature, does not necessitate

explicit model training (23). In this study, The number of neighbors of

the KNN model is set to 5 and a uniform weighting method is used.

This setting simplifies the computational process of the model and

allows the model to predict the classification of new samples based

directly on the nearest few samples for effective classification.
2.7 SHAP interpretability analysis

The SHAP is a technique utilized to interpret predictions

generated by ML models, particularly those that are intricate and

incorporate numerous features (24). The fundamental principle
Frontiers in Oncology 06
underlying this method involves the computation of the

incremental impact of individual features on the model’s output,

enabling interpretation of the model’s behavior at both a global and

local scale. This is achieved through the development of an additive

explanatory model that considers all features as contributors,

thereby facilitating the calculation of the average incremental

impact of each feature across all feasible feature combinations to

derive a SHAP value for each feature, which provides both global

and local interpretations, helping to understand which features are

the main influences on model predictions, as well as the predictions

of individual samples—factors, as well as the prediction results for a

single sample (25).
2.8 Statistical analysis

All data analyses in this study were performed using SPSS (17.0),

R language (version 4.3.2), Matlab (version R2021a), and Python

(version 3.7). The initial analysis of the data set involved the

application of descriptive statistics. Data points adhering to a

normal distribution were represented as mean ± standard

deviation, while those deviating from normal distribution were

represented as median (quartiles). Subsequently, the independent

samples t-test was employed to compare two groups with normally

distributed data. In contrast, the Mann-Whitney U test was utilized to

compare two groups with non-normally distributed data. For count

data, frequencies and percentages were used to characterize group

variances, while the chi-square test or Fisher’s exact probability

method was employed to assess inter-group discrepancies. We

solved the problem of sample imbalance by oversampling a small

number of classes and thereby solving the sample imbalance problem

through the SMOTE algorithm based on Matlab software. To

construct the predictive model, the dataset was partitioned

randomly into a training subset comprising 70% of the total data

and a test subset comprising 30%. Subsequently, six ML algorithms

were employed to train the model using the training subset data.

During the model training process, a 10-fold cross-validation method

is used to optimize the model parameters and prevent the occurrence

of overfitting phenomenon. LASSO regression analysis was

conducted utilizing the glmnet package [4.1.7] in R to analyze

cleaned data and derive coefficient values of variables, logarithmic

values of lambda, and regularized values of L1, followed by data

visualization. The Boruta algorithm was implemented using Boruta

8.0.0 [4.1.7] in R. Interpretability analysis was carried out using the

Python libraries shap=0.43.0. Statistical significance levels were

established at P<0.05.
3 Results

3.1 Patient characteristics

This study assembled a cohort of 502 lung cancer patients who

did not have lung infections before undergoing chemotherapy. The

median age of the patients was 65 years (range: 58-71 years), with

404 (80.48%) being male and 98 (19.52%) being female. We used
frontiersin.org
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the SMOTE algorithm for data imbalance. The original data of 502

cases contained 404 non-infected cases, 98 infected cases, and

19.52% of infected cases, and the processed data of 808 cases

contained 404 non-infected cases, 404 infected cases, and 50.00%

of infected cases. A comparison of baseline characteristics between

the two groups revealed statistically significant differences in

chemotherapy cycles, hospitalizations, WBC, pulmonary

embolism, Gender, CREA, Histology, alcohol consumption,

smoke, CHD, NEUT, LYM, NMR, NPR, IBIL, TBIL, and NLR

(P < 0.05), as shown in Table 2.
3.2 Predictor screening

A total of 808 patients undergoing chemotherapy for lung cancer

after data imbalance were divided into a training group consisting of

565 patients and a test group consisting of 243 patients, following a

ratio of 7:3. Statistical analysis revealed no significant differences
Frontiers in Oncology 07
between the two groups (Table 3). Utilizing the Boruta algorithm, an

extension of the RF algorithm, enabled the identification of the actual

feature set by accurately estimating the importance of each feature.

The Boruta algorithm identified 35 key factors, including Drink,

Smoke, Chemotherapy cycles, Hospitalizations, PE, NEUT, LYM,

MONO, NLR, and NMR, etc (Figure 2A). In contrast, LASSO

regression serves as a compression estimation method that

accomplishes variable selection and complexity adjustment through

the formulation of an optimization objective function incorporating

penalty terms. In this study, LASSO regression was utilized to identify

characteristic factors such as Gender, Drink, Smoke, Chemotherapy

cycles, PE, NEUT, NLR, NMR, and AST (Figures 2B, C). Through a

comparative analysis of the outcomes obtained from LASSO

regression and Boruta algorithm screening, we identified a

common subset of feature variables selected by both methods.

These selected features were ultimately utilized in the construction

of the model and consisted of Gender, Drink, Smoke, Chemotherapy

cycles, PE, NEUT, AST, NLR, and NMR (Figure 2D).
TABLE 2 Baseline characterization and comparison.

Variables Total (n = 808) Pulmonary infection after chemotherapy for lung cancer P

No (n = 404) Yes (n = 404)

Age 65.00 [59.00, 70.00] 65.00 [58.00, 71.00] 65.00 [59.00, 69.00] 0.985

BMI 21.50 [19.70, 23.70] 21.80 [19.50, 24.10] 21.20 [19.80, 23.40] 0.129

Chemotherapy cycles 5.00 [2.00, 8.00] 3.00 [1.00, 5.00] 7.00 [5.00, 11.00] <0.001

Hospitalizations 7.00 [4.00, 12.00] 4.50 [2.00, 7.00] 10.00 [6.00, 15.30] <0.001

WBC 6.90 [5.49, 9.17] 6.56 [5.19, 8.78] 7.07 [5.93, 9.55] <0.001

RBC 3.77 [3.30, 4.15] 3.76 [3.28, 4.17] 3.78 [3.33, 4.15] 0.943

HGB 112.00 [99.90, 125.00] 112.00 [99.00, 125.00] 112.00 [101.00, 124.00] 0.603

PLT 209.00 [160.00, 258.00] 208.00 [161.00,268.00] 212.00 [160.00,241.00] 0.357

NEUT 72.10 [64.30, 79.20] 70.60 [63.10, 78.30] 74.10 [66.00, 79.60] <0.001

LYM 17.30 [12.00, 23.30] 18.80 [12.80, 25.10] 16.10 [11.50, 21.60] <0.001

MONO 7.30 [5.40, 9.48] 7.40 [5.50, 9.73] 7.11 [5.20, 9.10] 0.147

NLR 4.38 [2.83, 7.09] 3.74 [2.53, 6.10] 4.90 [3.33, 7.67] <0.001

NMR 10.10 [7.11, 14.40] 9.34 [6.74, 13.20] 10.90 [7.57, 15.40] <0.001

NPR 0.35 [0.27, 0.43] 0.33 [0.26, 0.42] 0.36 [0.29, 0.44] 0.001

IBIL 7.30 [5.70, 9.39] 7.00 [5.31, 9.42] 7.45 [6.10, 9.31] 0.007

ALT 18.00 [12.70, 26.30] 17.90 [13.00, 28.30] 18.20 [12.30, 24.90] 0.218

AST 23.40 [19.40, 29.40] 23.80 [18.90, 29.80] 23.20 [19.80, 28.70] 0.858

TBIL 9.89 [7.63, 12.60] 9.46 [7.22, 12.70] 10.10 [8.08, 12.30] 0.013

DBIL 2.40 [1.59, 3.40] 2.30 [1.50, 3.43] 2.50 [1.63, 3.38] 0.199

TP 66.80 [62.30, 69.90] 66.30 [61.70, 71.10] 66.90 [62.50, 69.20] 0.636

ALB 40.00 [36.50, 42.50] 39.90 [36.50, 42.70] 40.20 [36.80, 42.30] 0.764

GLB 26.30 [23.50, 29.40] 26.30 [22.30, 30.60] 26.30 [24.30, 28.60] 0.897

A/G 1.54 [1.31, 1.75] 1.52 [1.26, 1.81] 1.55 [1.34, 1.71] 0.943

(Continued)
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TABLE 2 Continued

Variables Total (n = 808) Pulmonary infection after chemotherapy for lung cancer P

No (n = 404) Yes (n = 404)

Urea 5.89 [4.74, 7.56] 5.73 [4.58, 7.20] 6.05 [4.99, 7.64] 0.059

CREA 78.80 [66.00, 92.30] 76.60 [63.70, 91.90] 82.00 [68.60, 93.10] 0.004

UA 330.00 [278.00,394.00] 326.00 [265.00,398.00] 332.00[288.00,393.00] 0.180

CEA 3.69 [2.11, 9.74] 3.70 [2.05, 9.43] 3.68 [2.25, 9.81] 0.556

PE <0.001

No 608 (75.20%) 353 (87.40%) 255 (63.10%)

Yes 200 (24.80%) 51 (12.60%) 149 (36.90%)

Gender <0.001

Male 683 (84.50%) 315 (78.00%) 368 (91.10%)

Female 125 (15.50%) 89 (22.00%) 36 (8.90%)

Drink <0.001

No 683 (84.50%) 377 (93.30%) 306 (75.70%)

Yes 125 (15.50%) 27 (6.70%) 98 (24.30%)

Smoke <0.001

No 518 (64.10%) 322 (79.70%) 196 (48.50%)

Yes 290 (35.90%) 82 (20.30%) 208 (51.5%)

Diabetes 0.999

No 731 (90.50%) 366 (90.60%) 365 (90.30%)

Yes 77 (9.50%) 38 (9.40%) 39 (9.70%)

Hypertension 0.667

No 636 (78.70%) 321 (79.50%) 315 (78.00%)

Yes 172 (21.30%) 83 (20.50%) 89 (22.00%)

CHD 0.008

No 759 (93.90%) 370 (91.60%) 389 (96.30%)

Yes 49 (6.10%) 34 (8.40%) 15 (3.70%)

Stage 0.053

Stage I 29 (3.60%) 21 (5.20%) 8 (2.00%)

Stage II 96 (11.90%) 46 (11.40%) 50 (12.40%)

Stage III 330 (40.80%) 171 (42.30%) 159 (39.40%)

Stage IV 353 (43.70%) 166 (41.10%) 187 (46.30%)

Histology 0.005

Adenocarcinoma 327 (40.50%) 183 (45.30%) 144 (35.60%)

Squamous 333 (41.20%) 151 (37.40%) 182 (45.00%)

SCLC 135 (16.70%) 60 (14.90%) 75 (18.60%)

Other lung cancers 13 (1.60%) 10 (2.50%) 1 (0.70%)
F
rontiers in Oncology
 08
Statistically significant differences are marked with bold font.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1403392
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Sun et al. 10.3389/fonc.2024.1403392
TABLE 3 Training set and Test set variability analysis.

Variable Total (N = 808) Train set (N = 565) Test set (N = 243) P

Age 65.00 [59.00, 70.00] 65.00 [59.00, 70.00] 65.00 [58.00, 70.00] 0.727

BMI 21.50 [19.7, 23.70] 21.50 [19.60, 23.70] 21.60 [20.00, 23.60] 0.497

Chemotherapy cycles 5.00 [2.00, 8.00] 5.00 [2.00, 8.00] 5.00 [2.00, 9.00] 0.737

Hospitalizations 7.00[4.00, 12.00] 7.00 [4.00, 12.00] 7.00 [3.00, 12.00] 0.927

WBC 6.90 [5.49, 9.17] 6.82 [5.49, 8.94] 7.37 [5.47, 9.89] 0.075

RBC 3.77 [3.30, 4.15] 3.77 [3.33, 4.14] 3.76 [3.29, 4.19] 0.644

HGB 112.00 [99.90, 125.00] 112.00 [99.30, 124.00] 112.00 [100.00, 125.00] 0.810

PLT 209.00 [160.00, 258.00] 210.00 [159.00, 262.00] 209.00 [163.00, 243.00] 0.411

NEUT 72.10 [64.30, 79.20] 71.60 [63.60, 78.90] 73.30 [66.10, 80.10] 0.073

LYM 17.30 [12.00, 23.30] 17.50 [12.20, 23.70] 16.80 [11.40, 23.00] 0.249

MONO 7.30 [5.40, 9.48] 7.23 [5.50, 9.50] 7.40 [5.05, 9.30] 0.456

NLR 4.38 [2.83, 7.09] 4.27 [2.73, 6.89] 4.46 [2.97, 7.60] 0.137

NMR 10.10 [6.79, 14.03] 10.20 [7.00, 14.40] 10.00 [7.46, 14.50] 0.375

NPR 0.35 [0.27, 0.43] 0.34 [0.27, 0.43] 0.36 [0.28, 0.44] 0.108

IBIL 7.30 [5.70, 9.39] 7.24 [5.79, 9.30] 7.40 [5.60, 9.72] 0.700

ALT 18.00 [12.70, 26.30] 18.20 [12.40, 27.00] 17.40 [13.30, 24.30] 0.853

AST 23.40 [19.40, 29.40] 23.40 [19.30, 29.00] 23.50 [19.70, 29.70] 0.805

TBIL 9.89 [7.63, 12.60] 9.80 [7.70, 12.40] 9.90 [7.50, 12.80] 0.955

DBIL 2.40 [1.59, 3.40] 2.44 [1.60, 3.40] 2.30 [1.48, 3.39] 0.467

TP 66.80 [62.30, 69.90] 66.70 [62.20, 70.00] 67.20 [62.40, 69.80] 0.939

ALB 40.00 [36.50, 42.50] 39.90 [36.70, 42.40] 40.20 [36.30, 42.70] 0.931

GLB 26.30 [23.50, 29.40] 26.30 [23.70, 29.10] 26.40 [22.80, 30.00] 0.967

A/G 1.54 [1.31, 1.75] 1.54 [1.32, 1.75] 1.55 [1.26, 1.77] 0.975

Urea 5.89 [4.74, 7.56] 5.92 [4.69, 7.63] 5.84 [4.89, 7.32] 0.540

CREA 78.80 [66.00, 92.30] 78.50 [66.60, 92.20] 79.80 [64.00, 92.90] 0.889

UA 330.00 [278.00, 394.00] 330.00 [279.00, 394.00] 330.00 [277.00, 395.00] 0.951

CEA 3.69 [2.11, 9.74] 3.69 [2.14, 9.87] 3.66 [2.03, 8.29] 0.447

Gender, n (%) 0.298

Male 683 (84.50%) 483 (85.50%) 200 (82.30%)

Female 125 (15.50%) 82 (14.50%) 43 (17.70%)

Drink, n (%) 0.385

No 683 (84.50%) 473 (83.70%) 210 (86.40%)

Yes 125 (15.50%) 92 (16.30%) 33 (13.60%)

Smoke, n (%) 0.087

No 518 (64.10%) 351 (62.10%) 167 (68.70%)

Yes 290 (35.90%) 214 (37.90%) 76 (31.30%)

Diabetes, n (%) 0.864

No 731 (90.50%) 510 (90.30%) 221 (90.90%)

Yes 77 (9.50%) 55 (9.70%) 22 (9.10%)

(Continued)
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3.3 Model performance

In the training dataset, the RF model exhibited superior

predictive performance with an AUC of 1.00, indicating a high

level of accuracy in prediction. In contrast, the AUC values for the

remaining five models were as follows: 0.888, 95%CI(0.863-0.911) for

LR, 0.822, 95%CI(0.791-0.852) for GNB, 0.792, 95%CI(0.760-0.825)

for MLP, 0.719, 95%CI(0.681-0.758) for SVM, and 1.000, 95%CI

(NaN- NaN) for KNN (Figure 3A). The F1 scores for these models

were as follows: LR 0.816, RF 0.998, GNB 0.756, MLP 0.736, SVM

0.679, and KNN nan. In the test set, the AUC values for LR, RF, GNB,

MLP, SVM, and KNN were 0.876(95%CI(0.806-0.953)), 0.923(95%

CI(0.866-0.979)), 0.817(95%CI(0.726-0.909)), 0.777(95%CI(0.674-

0.880)), 0.709(95%CI(0.590-0.828)), and 0.837(95%CI(0.750-

0.923)), respectively (Figure 3B). The corresponding F1 scores were

0.791, 0.837, 0.747, 0.716, 0.658, and nan for LR, RF, GNB, MLP,

SVM, and KNN, respectively. The forest plot comparing the AUC

scores of the six ML models is presented in Figure 3C. In this study,

the accuracy, sensitivity, specificity, positive predictive value, negative

predictive value, and kappa value of each model were computed and

compared (Figures 3D, E). While the RF model exhibited exceptional

performance on the training set, the Logistic Regression model was

ultimately selected as the optimal model due to concerns regarding

potential overfitting.
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3.4 The logistic regression model

The results of the univariate logistic analysis are summarized in

Supplementary Table 1. 12 variables were statistically significant:

Gender, Drink, Smoke, CHD, Chemotherapy cycles, Hospitalizations,

PE, NEUT, LYM, NLR, NMR, and CEA. Table 4 presents the

coefficients and odds ratios (OR) for the nine predictor variables

included in the model. The logistic equation was as follows:

y = - 2.954 - 0.424×Gender - 0.049×Drink + 1.754×Smoke +

0.395×Chemotherapy cycles + 1.417×PE + 0.083×NLR +

0.017×NMR + 0.009×AST - 0.008×NEUT. In this study, we

evaluated the prediction accuracy and calibration of the model by

calibration curve analysis of the training and test sets. The

calibration curve results showed that the model in the training set

had high prediction accuracy with a Somers’ D coefficient of 0.777

and an area under the ROC curve of 0.888, indicating that the

model had excellent discriminative ability (Figure 4A). In addition,

the logistic regression calibration slope of the training set model was

close to the ideal value of 1.000, with an intercept of 0.000, showing

excellent calibration. The Brier score of 0.134 reflected the high

reliability of the model predictions. In contrast, the model in the test

set maintained a high discriminative power with an area under the

ROC curve of 0.876, although there was a slight decrease in

prediction accuracy (Somers’ D coefficient of 0.751) (Figure 4B).
TABLE 3 Continued

Variable Total (N = 808) Train set (N = 565) Test set (N = 243) P

Hypertension, n (%) 0.371

No 636 (78.70%) 450 (79.60%) 186 (76.50%)

Yes 172 (21.30%) 115 (20.40%) 57 (23.50%)

CHD, n (%) 0.226

No 759 (93.90%) 535 (94.70%) 224 (92.20%)

Yes 49 (6.10%) 30 (5.30%) 19 (7.80%)

Stage, n (%) 0.779

Stage I 29 (3.60%) 20 (3.50%) 9 (3.70%)

Stage II 96 (11.90%) 71 (12.60%) 25 (10.30%)

Stage III 330 (40.80%) 232 (41.10%) 98 (40.30%)

Stage IV 353 (43.70%) 242 (42.80%) 111 (45.70%)

Histology, n (%) 0.537

Adenocarcinoma 327 (40.50%) 221 (39.10%) 106 (43.60%)

Squamous 333 (41.20%) 241 (42.70%) 92 (37.90%)

SCLC 135 (16.70%) 93 (16.50%) 42 (17.30%)

Other lung cancers 13 (1.60%) 10 (1.80%) 3 (1.20%)

PE 0.237

No 608 (75.20%) 418 (74.00%) 190 (78.20%)

Yes 200 (24.80%) 147 (26.00%) 53 (21.80%)
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The decision curve for the training set (Figure 4C) shows that the

model provides significantly higher net gains than the baseline

strategy when the threshold probabilities are between 0.1 and 0.9.

On the test set (Figure 4D), the model similarly demonstrates good

net returns, especially in the range of threshold probabilities from

0.1 to 0.85, where it maintains a high level of net returns. The

confusion matrix results show the difference in the model’s

performance on different datasets. In the training set (Figure 4E),

the model correctly identified 320 true negatives and 283 true

positives, and misidentified 42 false positives and 82 false

negatives, with a true positive rate (sensitivity) of 77.5% and a

true negative rate (specificity) of 88.4%. In the test set (Figure 4F),

the model correctly identified 32 true negatives and 27 true positives

and misidentified 10 false positives and 12 false negatives, for a true

positive rate of 69.2% and a true negative rate of 76.2%. Finally, we

plotted clinical impact curves (CICs) to assess the net gain in

clinical utility and applicability of the model with the highest

diagnostic value. The clinical impact curves (Figures 4G, H)

provide information on the ability of the models to predict high-
Frontiers in Oncology 11
risk patients at different cost-benefit ratio thresholds. The curves for

both the training and test sets show that when the threshold

probability is greater than the 65% predictive score probability

value, the predictive model’s determination of those at high risk of

developing an infection in the lungs after chemotherapy is highly

matched to those who actually develop an infection, confirming that

the predictive model is clinically highly effective.
3.5 SHAP-based model
interpretability analysis

This study assessed the relative significance of various factors

influencing the susceptibility to lung infections following

chemotherapy in patients with lung cancer. Figure 5A visually

represents this ranking, with each point denoting a sample and the

color gradient from blue to red indicating the magnitude of the

sample eigenvalues. The vertical axis displays the importance ranking

of features, along with the correlation and distribution of each
B

C D

A

FIGURE 2

Predictor screening results. (A) Boruta; (B) Factor screening based on the LASSO regression model, with the left dashed line indicating the best
lambda value for the evaluation metrics (lambda. min) and the right dashed line indicating the lambda value for the model where the evaluation
metrics are in the range of the best value by one standard error (lambda.1se); (C) LASSO regression model screening variable trajectories;
(D) common predictors between Boruta and LASSO.
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eigenvalue with the SHAP value. The impact of the top nine features

in the importance ranking on prediction outcomes is illustrated in

Figure 5B. Specifically, Chemotherapy cycles, Smoke, and PE exhibit

positive contributions to the predictive results, while NEUT

demonstrate negative influences on the model’s output. Figure 5B
Frontiers in Oncology 12
illustrates the hierarchical significance of features in the logistic

regression model. The vertical axis displays individual features in

descending order of importance, while the horizontal axis represents

average SHAP values. The analysis reveals that Chemotherapy cycles,

Smoke, PE, NMR, and NLR are the top five features ranked by

importance, indicating their critical influence on the presence of a

lung infection. To enhance comprehension of the model’s decision-

making process at the individual level, we conducted a detailed

interpretability analysis on two representative samples, as illustrated

in Figures 5C, D. By visualizing the SHAP values of these samples, we

could discern the impact of each feature on the model’s predictions

for these specific instances.
3.6 Construction of nomograms

In this study, two nomograms were constructed, integrating

nine important predictor variables such as alcohol consumption,

smoking, and chemotherapy cycle to visually assess the risk of lung

infection after chemotherapy. Figure 6A shows an interactive

nomogram with a score of 3.51 for the example patient,

corresponding to a 94.5% probability of infection, providing a

quick and easy-to-interpret risk assessment. Figure 6B illustrates a

dynamic nomogram with different risk profiles derived from 10

combinations of variables.
B C

D E

A

FIGURE 3

The performance and comparison of six different predictive models. (A) The training set ROC curve; (B) The test set ROC curve; (C) Forest plot of
AUC values; (D) Evaluation metrics for the training set; (E) Evaluation metrics for the test set.
TABLE 4 Risk factors and their parameters of the logistic model.

Variables Coefficients OR(95%CI) p

Intercept -2.954 0.052(0.006-0.395) 0.006

Gender -0.424 0.655(0.321-1.297) 0.233

Drink -0.049 0.952(0.464-1.963) 0.893

Smoke 1.754 5.776
(3.292-10.375)

<0.001

Chemotherapy
cycles

0.395 1.484(1.380-1.606) <0.001

PE 1.417 4.123(2.389-7.274) <0.001

NLR 0.083 1.087(1.007-1.174) 0.034

NMR 0.017 1.018(0.998-1.038) 0.077

AST 0.009 1.009(1.003-1.019) 0.020

NEUT -0.008 0.992(0.962-1.026) 0.639
OR, odds ratio; CI, confidence interval.
Statistically significant differences are marked with bold font.
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4 Discussion

This research investigated the predictive factors associated with

post-chemotherapy lung infection in patients with lung cancer and

developed a logistic regression-based predictive model that

effectively estimates the likelihood of lung infection following

chemotherapy. By employing meticulous feature selection and

conducting multi-model comparative validation, this study

highlights the significance of various key predictors and offers a

valuable tool to aid in clinical decision-making.

Zhou D et al. conducted a retrospective analysis of 244 non-small

cell lung cancer (NSCLC) patients who underwent surgical

interventions from June 2015 to January 2017. Through applying

LASSO regression and logistic regression analyses, the researchers

identified independent risk factors for postoperative pulmonary

infection (PPI) in NSCLC patients and subsequently developed a

predictive model based on these findings (26). Jong-Ho Kim and

colleagues pioneered the application of ML techniques for the

prognostication of postoperative pulmonary complications (PPCs),
Frontiers in Oncology 13
employing a suite of five algorithms, namely LR, random forests

(RFs), light-gradient boosting machines (LightGBM), extreme-

gradient boosting machines (XGBoost) and MLP for the

construction and assessment of predictive models (27). Xue et al.

established a predictive model utilizing preoperative and intraoperative

data to detect the likelihood of postoperative pneumonia. Their

research delved into the application of machine learning in

predicting a range of postoperative complications, including

pneumonia, within the context of PPCs. Nevertheless, the authors

failed to emphasize unique characteristics and risk factors beyond

pneumonia linked to PPCs, potentially diverting attention away from

PPCs (28). While predictive models have been created for

complications in lung cancer patients, there is a scarcity of predictive

models utilizing ML algorithms for assessing the risk of lung infection

following chemotherapy for lung cancer.

The dysregulation of the autoimmune system, exacerbated by

chemotherapy-induced immune cell depletion, tumor cell infiltration,

impaired antibody-complement generation, and dysregulation of the

inflammatory system, disrupts immune homeostasis and heightens
B
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FIGURE 4

Comprehensive evaluation of the logistic regression model. (A) Calibration curve for the training set; (B) Calibration curve for the test set;
(C) Decision curve analysis for the training set; (D) Decision curve analysis for the test set; (E) Confounding matrix for the training set;
(F) Confounding matrix for the test set; (G) Clinical impact curve for the training set; (H) Clinical impact curve for the test set.
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susceptibility to concurrent lung infections (29–31). This risk is

further compounded in individuals with comorbidities such as

chronic bronchitis, chronic obstructive pulmonary disease,

interstitial lung disease, pulmonary atelectasis, and other organic

diseases (32, 33). The occurrence of lung infection during

chemotherapy is a prevalent and challenging complication that

hinders the efficacy of treatment and exacerbates the health status

of patients, ultimately impacting their prognosis and increasing the

financial burden of medical care. As such, our research holds

significant clinical importance in examining the determinants of

lung infection during chemotherapy and implementing timely and

efficient interventions for patients with lung cancer.

This study employed a dual methodology of Boruta’s algorithm

and LASSO regression to identify predictors for accurate feature

selection and model stability. The selected features encompassed

variables such as alcohol consumption status, smoking habits,

chemotherapy cycles, hospitalization frequency, presence of lung

pleural fluid, neutrophil count, AST, NLR, and NMR, all of which

have demonstrated significant correlations with the prognosis of lung

cancer patients in prior research. Wei Guo et al. colleagues created a
Frontiers in Oncology 14
predictive model utilizing artificial neural network (ANN) technology

to forecast infection rates in lung cancer patients undergoing

chemotherapy (34). The researchers employed a logistic regression

(LR) model to analyze the data and identify statistically significant

variables. Their results indicated a positive correlation between length

of hospital stay and infection risk, which aligns with our research

findings. However, the researchers discovered that a prior diagnosis

of diabetes was linked to an increased likelihood of lung infection, a

finding that did not align with our results. This discrepancy may be

attributed to the limited sample size of the previous study, which only

included 80 cases. Zhouzhou Ding et al. explored the risk factors for

PPI in patients with non-small cell lung cancer (NSCLC), developed a

risk model, and conducted predictive modeling for PPI. Their

research revealed that the chemotherapy cycle, identified as an

independent risk factor, had a notable impact on the occurrence of

PPI (26). This is in general agreement with our findings. Our findings

emphasize the importance of monitoring and managing these factors

during chemotherapy management.

After comparing these models, it is observed that while the RF

model exhibits superior performance in the training set, its
B

C D

A

FIGURE 5

Interpretability analysis of logistic regression models. (A) SHAP dendrogram of features of the logistic regression model. (B) Importance ranking plot
of features of the logistic regression model. (C, D) Interpretability analysis of 2 independent samples.
BA

FIGURE 6

Construct two different nomograms. (A) Interactive Nomogram. (B) Dynamic Nomogram showing risk profiles for ten scenarios.
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propensity for overfitting necessitates the selection of the logistic

regression model as the optimal choice due to its strong

generalization capabilities in the external test set. Logistic

regression models are favored for their predictive accuracy and

interpretability, which are essential qualities for practical clinical

implementation. The importance of constructing disease prediction

models lies in identifying high-risk patients and mitigating the risk

for individuals who may fall into the high-risk category, thereby

benefiting patients overall. Consequently, the clinical interpretability

of ML models holds significant value in medical practice. In this

research, we utilized the SHAP method to provide both global and

local interpretations of the ML model, enhancing its visual

representation and transparency. Kaidi Gong et al. have observed

that the SHAP method exhibits superior consistency and

performance compared to conventional weight-based interpretation

methods, and the SHAP algorithm demonstrates greater stability

across various models. In contrast to the Local Interpretable Model-

agnostic Explanations (LIME) method, SHAP demonstrates strong

performance in both global and individual interpretation tasks, while

LIME shows less consistency in individual analysis (35). Yasunobu

Nohara and colleagues further substantiated that SHAP values

exhibit superior interpretability compared to the coefficients of

generalized linear regression models, as evidenced through a

comparative analysis of interpretation outcomes with other

established methodologies. Additionally, they found that SHAP

summary plots offer more effective visualization of results than

feature importance plots (36). The utilization of SHAP value

analysis in this research offers a novel lens through which to

comprehend the model’s decision-making process. Through this

method, we were able to elucidate the specific contributions of

individual predictors to the model’s decision-making, ultimately

improving the transparency and interpretability of the model.

Notably, factors such as chemotherapy cycle, smoking, PE, and

NMR were underscored for their significance, consistent with prior

research findings and reaffirmed their pivotal role in predicting post-

chemotherapy lung infections.

Despite the results of this study, there are some limitations.

Firstly, being a retrospective study, there is a potential for omitted

data and selection bias to impact the results. Secondly, the small

sample size of this study and the fact that the sample was collected

from a single center may limit the generalizability of the findings. The

potential incorporation of prospective design and multicenter data in

future studies, coupled with integrating additional patient data and

utilizing advanced machine learning techniques, is anticipated to

enhance model performance. This improvement aims to validate the

robustness and generalizability of the model, ultimately leading to the

development of more personalized and precise treatment

management strategies for patients with lung cancer.
5 Conclusion

This study has effectively developed a predictive tool utilizing

logistic regression modeling to forecast lung infections following
Frontiers in Oncology 15
chemotherapy in lung cancer patients. The tool demonstrates

high predictive accuracy and holds substantial clinical relevance.

By identifying and assessing crucial predictors, this research

establishes a valuable scientific foundation for the prevention and

treatment of post-chemotherapy complications in lung cancer

patients, ultimately enhancing patient survival quality and

prognostic outcomes. Future work will focus on further validating

the model’s validity and exploring integrating these predictive tools

into clinical practice to improve the prediction of treatment

consequences in lung cancer patients.
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