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Metabolic reprogramming is a cellular process in which cells modify their

metabolic patterns to meet energy requirements, promote proliferation, and

enhance resistance to external stressors. This process also introduces new

functionalities to the cells. The ‘Warburg effect’ is a well-studied example of

metabolic reprogramming observed during tumorigenesis. Recent studies have

shown that kidney cells undergo various forms of metabolic reprogramming

following injury. Moreover, metabolic reprogramming plays a crucial role in the

progression, prognosis, and treatment of kidney cancer. This review offers a

comprehensive examination of renal cancer, metabolic reprogramming, and its

implications in kidney cancer. It also discusses recent advancements in the

diagnosis and treatment of renal cancer.
KEYWORDS
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1 Introduction

Metabolic reprogramming is a hallmark of malignancy first discovered a century ago.

Reprogrammed metabolic activity has the potential to be utilized in the detection,

surveillance, and management of cancer (1). Kidney cancer (KC) is predicted to be the

14th most common cancer globally by 2020, with 431,288 new cases reported, according to

the Global Cancer Observatory (2). Despite the ongoing rise in incidence of KC, mortality

estimates have reached a plateau (3). Significant roles are played by metabolic

reprogramming in the prognosis and progression of kidney disease (4). By providing

fresh perspectives on the diagnosis and treatment of metabolic reprogramming in renal

cancer, this article examines the function of metabolic reprogramming in kidney cancer.
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2 Metabolic reprogramming

In recent years, metabolic reprogramming has been defined as

“changes in the bioenergetics of tumor cells” (5); ”some metabolic

phenomena of cancer cell reprogramming (6)or “mechanisms by

which cells reconnect their metabolism to promote proliferation and

cell growth (7) “. The proposition is predicated on alterations in lactic

acidosis and heightened glucose consumption in specific critical

tumor regions (Warburg effect) (8). Primarily, cellular energy

production (as ATP), amino acid synthesis, and the surrounding

microenvironment are impacted by these modifications.
2.1 Metabolic reprogramming and tumors

Metabolic reprogramming is a phenomenon observed in

malignant cells as they advance in development, adjusting their

metabolic pathways. Mutations that lead to cancer formation allow

nascent tumor cells to acquire metabolic traits that support cell

survival, immune evasion, and rapid growth, making it a defining

feature of cancer. This concept applies to classic oncogenes like

MYC and KRAS, which can independently control cellular

metabolism (1). Additionally, metabolic reprogramming

influences the treatment of tumors. Given the distinct metabolic

attributes exhibited by tumor cells in comparison to normal cells, it

is possible to devise therapeutic approaches that specifically target

the metabolic deficiencies of tumor cells. Additionally, one potential

approach to treating tumors could involve manipulating the

metabolic pathways of the cells containing the tumors. This could

be achieved through specific metabolic inhibitors or by modifying

the nutrient supply.

Tumor cells generate adenosine triphosphate (ATP) via

glycolysis, as opposed to the oxidative phosphorylation

(OXPHOS) by which normal cells generate energy (5). Tumor

cells exhibit a unique capability to consume large quantities of

glucose for energy production through glycolysis, even in oxygen-

rich conditions, known as the Warburg effect or aerobic glycolysis.

Furthermore, metabolic reprogramming involves not only the

Warburg effect but also various other metabolic alterations to

adjust to different environmental conditions (4), including

enhanced lipid synthesis, abnormal amino acid metabolism and

altered lactate metabolism. Specific facets pertaining to metabolic

reprogramming in tumors are as follows (Figure 1).

2.1.1 Increased glycolysis
Normal cells typically metabolize glucose through oxidative

phosphorylation in the presence of oxygen, resulting in the

production of significant amounts of ATP. In contrast, tumor

cells, even when provided with sufficient oxygen, tend to favor the

glycolytic metabolic pathway, also known as ‘aerobic fermentation,’

to convert glucose into lactate. However, this conversion occurred

at a reduced rate of OXPHOS. An excessive amount of lactate

produced may cause the tumor microenvironment (TME) to

become acidic. In addition to increasing the availability of ATP,

lactic acid accumulation may also influence the ability of tumors to
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invade and metastasize (9). Proliferating cells prevent the

accumulation of cytosolic NADPH and reduce ATP production

by converting excess pyruvate to lactate. This promotes sustained

cytosolic glucose metabolism and helps avoid feedback inhibition

caused by ‘overproduction’ of mitochondrial ATP (10).

2.1.2 Increased lipid synthesis
Glucose is the primary carbon source in most tumor

microenvironments (TMEs) and is used for lipid synthesis

through citrate. Conversely, cancer cells generate energy by

oxidizing fatty acids in a lipid-rich TME. Tumor cells typically

demonstrate increased resynthesis of fatty acids, redirecting energy

production towards anabolic pathways that create phospholipids

for cell membranes and signaling molecules (11). An abundance of

evidence suggests that the lipid metabolism of immune cells and

tumor cells in tumor microenvironments (TMEs) is essential for

coordinating immunosuppression (9).

2.1.3 Alterations in the metabolism of
amino acids

Malignant cells often exhibit irregular amino acid metabolism

patterns. For instance, specific tumors meet the metabolic needs of

cancer cells by consuming a significant amount of glutamine. This

process, known as glutamine anaplerosis or glutamine backfilling,

leads to increased ammonia release. Exposure to ammonia can

trigger autophagy in nearby cells, including cancer-associated

fibroblasts (CAFs). Moreover, the activation of autophagy in

CAFs by ammonia promotes the release of glutamine, which in

turn supports the proliferation of tumor cells. Additionally,

byproducts like aspartate and glutamate from glutamine

metabolism play crucial roles in regulating tumor cell epigenetics,

nucleotide synthesis, redox homeostasis, and overall metabolism

(9). In addition to prostaglandin E2 (PGE2) and cyclooxygenase,
FIGURE 1

Regulation of glucose metabolism in cancer cells. Glucose
metabolism in mitochondria mainly consists of glycolysis and the
tricarboxylic acid cycle, and tumour cells enhance the conversion of
glucose to lactate pathway through the glycolytic
metabolic pathway.
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the aforementioned pathways also involve adenosine signaling

mechanisms. In the hours following tissue injury, adenosine

concentrations in hypoxic tissues and TMEs increased

significantly (12). Cell surface molecules CD73 and CD39 serve as

nucleotide metabolizing enzymes, respectively. Adenosine synthesis

is regulated by their conversion of ATP to AMP and AMP to

adenosine, respectively (13). A correlation has been identified

between heightened expression of CD39 and CD73 in tumors and

an unfavorable prognosis in patients with non-small cell lung

cancer, gastrointestinal cancer, and gynecological cancer (14).

Cyclooxygenase 2 (COX2) overexpression is observed in a

multitude of cancers (15). This overexpression is significantly

associated with immunosuppression within the tumor

microenvironment (TME) and substantial production of PGE2.

Inhibiting the production of PGE2 and its associated signaling

cascade has been shown to improve numerous components of the

immune response against tumors, with colorectal cancer receiving

the most attention (16).

The aforementioned attributes of metabolic reprogramming

provide tumor cells with advantages in terms of proliferation and

survival. Metabolic pathway modifications in tumor cells augment

their resistance to the arduous microenvironment present within

the tumor.
2.2 Metabolic reprogramming
and immunity

The immune system consists of a variety of immune cells such

as macrophages, neutrophils, monocytes, eosinophils, basophils,

lymphocytes, and natural killer cells. While these cells are inactive

during normal conditions, they quickly become activated and

respond when exposed to infections, inflammation, or

external triggers.

T cells exhibit completely different metabolic patterns

depending on their activation state (17). The metabolism of naïve

T cells is essentially static, with zero proliferation, and therefore

requires only minimal nutrient intake, minimal glycolysis rate and

minimal biosynthesis to be maintained, and their ATP is mainly

produced by OXPHOS (18). Once activated by an external stimulus
Frontiers in Oncology 03
to effector T cells (Teff), it exhibits a state of metabolic activation,

increased nutrient uptake, increased rate of glycolysis, and

accumulation of protein, lipid and nucleotide synthesis (19). At

the same time, mitochondrial oxygen consumption is reduced, and

eventually T cells gain the ability to grow and proliferate, generating

progeny cells that perform effector killing functions (18).The

metabolic pattern of memory T cells is similar to that of naïve T

cells, maintaining a basic nutrient intake, a lower rate of glycolysis,

and a dependence on OXPHOS to provide ATP (19). Enhanced

glycolysis and mitochondrial metabolism are observed following B-

lymphocyte activation induced by LPS or antigenic stimulation. It is

worth noting that glycolysis serves as the primary metabolic

pathway for activated B lymphocytes. In contrast, regulatory T

cells (Treg cells) and M2 macrophages predominantly rely on

oxidative phosphorylation (OXPHOS) generated through fatty

acid oxidation (FAO) to meet their energy demands (20) (Table 1

and Figure 2).
3 Metabolic reprogramming in
renal cancer

Clear cell renal cell carcinoma (ccRCC), papillary renal cell

carcinoma (pRCC), and smoky renal cell carcinoma (chRCC)

are the three primary subtypes of renal cell carcinomas as

determined by histological examination (21). Furthermore, renal

cell carcinoma (RCC), collecting duct renal cell carcinoma,

medullary renal cell carcinoma, and hereditary smooth muscle

tumor disease are uncommon subtypes (21).CcRCC is the

most prevalent subtype of RCC, comprising over 75% of all

reported cases (21).Renal cell carcinoma (RCC) is sometimes

referred to as a ‘metabolic disease’ due to the disruptions and

alterations that occur in various metabolic pathways. Metabolic

reprogramming in renal cancer is mainly triggered by the activation

of the Ras-PI3K-AKT-mTOR pathway and the inactivation of the

von Hippel-Lindau (VHL) gene (22). Myc and hypoxia-inducible

factor (HIF) play vital roles in the metabolic reprogramming

of renal cell carcinoma. This reprogramming affects glucose, fatty

acid metabolism, and the TCA cycle across all RCC types.

Furthermore, renal cancer involves the alteration of glutamine,
TABLE 1 Changes in energy metabolism in glycolysis, oxidative phosphorylation, fatty acid oxidation, and glutamine catabolism in different T cells.

Type Changing of energy metabolism

Glycolysis OXPHOS FAO Glutaminolysis

Naïve T cell ↓ ↑ ↑↑ ↓

Treg cell ↓ ↑ ↑↑ ↓

Teff cell ↑↑ ↑ ↓

Th1 cell ↑↑ ↓ ↓ ↑

Memory T cell ↓ ↑ ↑↑ ↓

Cytotoxic T cell ↑↑ ↓ ↓ ↑
↓: decreased, ↑↑: Significantly increased, ↑: increased.
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tryptophan, and arginine metabolism to support tumor growth and

tumorigenesis (21).
3.1 Reprogramming of metabolic genes

Essential genes involved in the regulation of metabolic

reprogramming in renal cancer are VHL, PTEN, Akt, mTOR,

TSC1/2 and Myc (22, 23). The tumor suppressor gene von

Hippel-Lindau (VHL) is particularly important for ccRCC, and its

frequent mutation or deletion causes dysregulation of several

hypoxia-inducible factor (HIF) transcription factor families and

their associated pro-oncogenic mediators (24, 25). Inactivation of

VHL leads to activation of two VHL E3 ubiquitin ligase complex

targets, HIF1a and HIF2a (encoded by HIF1A and EPAS1) (21, 24,

25). Under hypoxia in cancer cells, HIF1a and HIF2a are

upregulated, and the transcription of several low-responsive genes

involved in tumor growth, angiogenesis and metastasis, as well as

genes related to glucose transport and metabolism, are transcribed

(21, 26). HIF can drive the expression of several proteins and

enzymes involved in glucose uptake and glycolysis, such as GLUT1

(glucose transporter-1), PGK (phosphoglycerate kinase), LDHA

(lactate dehydrogenase), PDK1 (pyruvate dehydrogenase kinase)

and HK (hexokinase) (27). HIF also inhibits the tricarboxylic acid

cycle and oxidative phosphorylation (28).

Frequent mutations in Ras-PI3K-Akt-mTOR pathway genes

(including PTEN, mTOR and PIK3CA) were also observed in RCC

cells (29, 30). TCGA studies of ccRCC also detected mutations in

several genes in the PI3K-AKT-mTOR pathway, PTEN, TSC1/2

and PIK3CA (31–33). TSC1 and TSC2 encode heparin and nodulin

to form a complex that inhibits mTORC1 activation (34).

Furthermore, inhibition of tumor suppressor 4EBP1 by mTORC1

enhances the expression of HIF-1 and HIF-2 (35, 36). Myc is a

proto-oncogenic transcription factor, often overexpressed in renal
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cell carcinoma cells (37, 38), which plays an important role in

reprogramming glutamine metabolism and fatty acid synthesis

(37, 39).
3.2 Alterations in glucose metabolism

The presence of HIF in cancer cells is not correlated with the

availability of oxygen (26). Increased expression of lactate

dehydrogenase A (LDHA), the enzyme responsible for converting

pyruvate to lactate, was observed in response to elevated levels of

HIF (40). In healthy cells, glucose catabolism to lactate generates

less energy than oxidative phosphorylation (41). Therefore, in order

to meet the energy demands of cancer cells, they must consume a

great deal of glucose. Elevated glucose transporter expression on the

membranes of cancer cells is a contributing factor to elevated

glucose consumption (42). The metabolic transformation referred

to as aerobic glycolysis or the “Wartburg effect” is responsible for

this (5). An increase in aerobic glycolysis expedites the provision of

carbon intermediates required for the biosynthesis of amino acids,

lipids, and nucleic acids (43). Conversely, monocarboxylic acid

transporters (MCTs) remove lactate, the principal byproduct of

glycolysis, from cancer cells in order to facilitate a positive glucose

flux via glycolysis (44).
3.3 Alterations in the pentose phosphate
pathway and the tricarboxylic acid cycle

The rate-limiting enzyme of the pentose phosphate (PPP)

pathway, glucose-6-phosphate dehydrogenase (G6PD) is frequently

upregulated in cancer cells (45).The pentose phosphate pathway,

which is up-regulated, supplies ribose precursors to satisfy the high

demand for 5-carbon sugars for nucleotide biosynthesis and to

maintain intracellular redox homeostasis for growth and

proliferation (46, 47). Reducing equivalents (NADPH) are utilized

to impede oxidative stress. A concurrent elevation in lactate efflux

fosters the development of an immunosuppressivemicroenvironment

within the tumor.

HIF downregulates the tricarboxylic acid cycle in renal cancer

cells by inhibiting metabolic fluxes to the TCA cycle through

transcriptional activation of PDK1. This results in a decreased

conversion of pyruvate to acetyl coenzyme A and the suppression

of intermediates such as fumaric acid and b-ketoglutarate. Pyruvate
carboxylase (PC) converts acetyl coenzyme A to oxaloacetate, which

is the primary stable intermediate of the tricarboxylic acid cycle

(48, 49). The neurotransmitter GABA, which is produced as a

byproduct of glutamine metabolism, is converted to succinate,

another tricarboxylic acid cycle intermediate, via g-aminobutyric

acid transaminase (48, 49). A constituent of the alpha-ketoglutarate

dehydrogenase complex, dihydrolipoamide acetyltransferase

controls the recycling of alpha-ketoglutarate (48). Experimental

investigations have demonstrated that renal cell carcinoma cells

exhibit a downregulation of these enzymes in comparison to normal

renal cells (50).
FIGURE 2

Tumour cells compete with immune cells within the tumour for
glucose, glutamine, fatty acids and other amino acids.
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3.4 Alterations in fatty acid metabolism

Renal cell carcinoma often associated with obesity (51).In renal

cell carcinoma, lipid synthesis exceeds lipid degradation. Expression

of enzymes involved in fatty acid oxidation is down-regulated in

ccRCC cells compared to normal renal cells (52, 53). SCD1 is the

enzyme responsible for lipid storage and is highly expressed in ccRCC

(53). The b-oxidation pathway of lipids was down-regulated,

however, the synthesis of carnitine, fatty acids, phospholipids and

cholesterol were all expressed up-regulated in renal cell carcinoma

(21). Higher levels of cholesteryl ester accumulation have been

reported in the kidneys of patients with ccRCC. The accumulation

of “lipid droplets” is considered a hallmark of clear cell renal cell

carcinoma (ccRCC). Accumulation of lipid droplets near the

endoplasmic reticulum (ER) contributes to the maintenance of ER

integrity in ccRCC cells. Storage of lipid droplets is induced by the

gene periplasmic protein 2 (PLIN2), which is upregulated in a HIF2-

dependent pathway to maintain endoplasmic reticulum homeostasis

and withstand cytotoxic stresses (54).

Reprogramming of glycerophospholipid metabolism and

arachidonic acid metabolism is characteristic of renal cancer (55).

Glycerophospholipids are a source of phosphatidic acid (PA),

lysophosphatidic acid (LPA) and triacylglycerol, which are forms

of lipid storage (55). Arachidonic acid is an important derivative of

membrane phospholipids, the synthesis of which involves a number

of inflammatory enzymes such as lipoxygenases (LOXs) and

cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) (55).

Increased expression of the enzymes 5-LOX and 15-LOX2 and 15-

hydroxyeicosatetraenoic acid, an immunosuppressive arachidonic

acid, in renal cancer cells compared with normal renal cells (56). In

RCC cel ls , LOX also promotes the secre t ion of the

immunosuppressive chemokine CXCL2 and the cytokine IL10

and regulates immune escape from RCC cells (56). Also, the COX

pathway of arachidonic acid metabolism is involved in the tumor-

promoting pathway (57). Prostaglandin E2 (PGE2), a product of

COX-2, promotes renal cell carcinoma invasion (57). COX-2 in

renal cell carcinoma correlates with tumor size, stage and grade,

suggesting that it may be a potential target in renal cancer

cells (Figure 3).
3.5 Alterations in glutamine metabolism

Glutamate is an essential nutrient utilized by cancer cells for the

maintenance of cellular bioenergetics and biomass. Additionally, it

is a constituent of both protein and lipid synthesis (21). Glutamine

acts as a precursor for the synthesis of glutathione (GSH), an

antioxidant that operates within cells, as well as a metabolic

intermediate in the form of a-ketoglutarate, which plays an

indirect role in the TCA cycle. The conversion of glutamine to a-
ketoglutarate is facilitated by the enzyme glutaminase (GLS) (58).

Metabolomic analysis of postoperatively resected tissues from

patients diagnosed with clear cell renal cell carcinoma (ccRCC)

showed a significant rise in glutamine utilization and uptake by

tumor tissues compared to normal paired renal tissues. Additionally,
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an elevated glutathione content in tumor tissues was positively

correlated with the clinical progression of ccRCC patients,

including tumor stage and prognosis (21). GSH, an amino acid

tripeptide consisting of glutamate, cysteine, and glycine, is present in

numerous prokaryotic cells and nearly all eukaryotic cells (22). An

important metabolic process involving glutamine is the metabolism

of GSH. In the human body, the main forms of GSH are oxidized

glutathione (GSSG) and reduced glutathione. Reduced GSH acts as

an intracellular antioxidant and is transformed into GSSG under the

influence of glutathione peroxidase. The balance between

glutathione and oxidized glutathione (GSH/GSSG) is tightly

regulated in renal cell carcinoma (21). Glutamine regulates redox

processes in cancer cells via GSH as well. As a ROS substrate,

glutathione is oxidized to GSSG to reduce ROS levels. This indicates

that glutamine and glutathione act as the cell’s internal antioxidant

system to maintain the survival of healthy tumor cells. The oncogene

c-Myc can upregulate glutaminase expression, impacting the

glutamine metabolism of cancer cells (59). The conversion of

glutamine to glutamate is catalyzed by glutaminase. Inhibiting

glutaminase or depriving ccRCC cells of glutamine in the culture

medium reduces cell survival, revealing a dependency on exogenous

glutamine. This highlights the importance of exogenous glutamine

and GLS in the proliferation of tumor cells.

Furthermore, renal cancer cells exhibit a downregulation of the

urea cycle, which impedes the catabolism of glutamine and arginine,

among other amino acids (21). Increased tryptophan metabolism via

the xanthine (KN) pathway leads to enhanced immunosuppression.

By reprogramming metabolic pathways, energy (ATP) and other

molecules necessary for cell proliferation (lipids, phospholipids, and

ribose) are produced, allowing renal cancer cells to evade the immune

system and withstand hypoxia, nutrient depletion, and oxidative

stress (Table 2).
FIGURE 3

Reprogramming of fatty acid metabolism and glutamine metabolism
in RCC. In renal cell carcinoma, where lipid synthesis predominantly
exceeds lipid degradation, the b-oxidation pathway of lipids is
down-regulated whereas the synthesis of carnitine, fatty acids,
phospholipids, and cholesterol are all expressed up-regulated. The
urea cycle is down-regulated, reducing the catabolism of amino
acids such as arginine and glutamine.
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4 Metabolic reprogramming in the
treatment of ccRCC

ccRCC is frequently associated with mutations in genes that

cause hypoxic alterations, the most common of which is VHL (64).

VHL mutations lead to the accumulation of HIF-a in cells, which in

turn upregulates the expression of vascular endothelial growth

factors (VEGFs) (65). Prior to this, the mainstay of treatment for

ccRCC was the use of VEGF receptors (VEGFR) or inhibitors such

as sunitinib leading to regeneration of the target vessel (66), but

inhibitors have limited efficacy and can cause many adverse effects

such as vascular toxicity and off-target effects (67). Based on

metabolic reprogramming, in ccRCC, we can follow the

therapeutic approach of hepatocellular carcinoma and use

glycolysis inhibitors to suppress tumor cells (68), while early

clinical studies have also demonstrated that targeting the

glycolytic pathway can effectively inhibit cancer progression (69).
4.1 HIF-2a inhibitors

HIF-2a is a key downstream effector protein of the VHL tumor

suppressor protein, which is frequently mutated in ccRCC (70), and

promotes tumorigenesis and metastasis by regulating angiogenesis,

cell proliferation and metabolism; therefore targeting the HIF-2a

pathway could be used to treat ccRCC (71). First-generation drug
Frontiers in Oncology 06
PT2399 shows superior activity to sunitinib and is effective against

sunitinib-resistant tumors (71) (NCT02293980). Second-generation

drugs such as PT2977 (MK- 6482, Belzutivan) can overcome some

of the limitations of first-generation compounds (72).
4.2 FAS inhibitors

Upregulation of FAS expression in ccRCC increases fatty acid levels

and provides energy for cancer cells and post-translationally modified

proteins (71). Preclinical experiments show that the FAS inhibitor C75

inhibits invasiveness and proliferation of ccRCC (73). TVB-2640 is a

novel FAS inhibitor that demonstrated promising clinical activity and

safety in a phase I clinical trial (74) (NCT02293980).
4.3 Glutaminase inhibitors

Glutamine is essential for energy production, redox stability

maintenance, and macromolecule synthesis in cancer cells (71). In

colorectal cancer, glutamine-like substance (GLS) functions as a

compensatory mechanism to partially stimulate cell proliferation

and restore the tricarboxylic acid cycle (75). CB-839, a GLS

inhibitor, has demonstrated encouraging outcomes in preclinical

investigations and augments antitumor functionality in animal

models when combined with everolimus, a frequently utilized

mTOR inhibitor for the treatment of ccRCC (71).
TABLE 2 Findings related to glutamine metabolism in renal tumor cells.

Year of
study publication

metabolic
mechanism

research object The main findings of
the study

reference

2011 Upregulation of free fatty acids
in renal cell carcinoma

Patient-derived renal
cancer cells

Elevated glutamine levels in
kidney cancer

(60)

2015/2016 Increased expression of
glutathione peroxidase 1
(GPX1) in ccRCC cells;
Inhibition of glutamine-
depleted enzyme expression via
the GSH/GSSG pathway

138 matched pairs of clear cell
ccRCC and normal tissue/
RCC cells

Glutamine maintains cellular
redox homeostasis by
scavenging ROS; high-grade,
high-stage and metastatic
ccRCC are associated with
elevated glutamine levels and
the GSH/GSSG pathway

(48, 49)

2019 HSP60 silencing activated the
MEK/ERK/c-Myc pathway to
enhance glutamine-
directed metabolism

Clear cell renal cell carcinoma
786-O and 769-P cell lines

Low expression of HSP60
enhances cell growth in ccRCC

(61)

2019 Macrophage-secreted IL-23
enhanced Treg functions in
glutamine addicted tumors

ccRCC patients tumors from a
Shanghai cohort
and ccRCC tumor data from
The Cancer Genome Atlas
(TCGA) cohort; fresh human
ccRCC tumors and murine
tumor cells

IL-23 is a promising target for
immunotherapy in ccRCC

(62)

2023 PHF8 is recruited by c-MYC to
the promoter
regions of TEA domain
transcription factor 1 (TEAD1)
to transcriptionally up-regulate
TEAD1 then TEAD1 up-
regulates
GLUL transcriptionally

786-O cells (VHL-null cells) PHF8-GLUL axis plays an
essential role in ccRCC tumor
growth and lipid
depositionPHF8-GLUL

(63)
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4.4 IDO inhibitors

IDO is an enzyme involved in the role of tryptophan catabolism

via the renal urinary alkaline pathway (71). IDO promotes tumor

metastasis by depleting tryptophan and activating T cells, inhibiting

immunosuppression in the local tumor microenvironment and

suppressing anti-tumor T cells. Thus, IDO has emerged as a

potential therapeutic target for cancer. Epacaostat, a selective

IDO-targeting inhibitor, showed promising results in preclinical

trials by improving lysis of tumor antigen-specific T cells; however,

side effects such as toxicity and lack of efficacy were identified in

clinical trials (76). Some IDO inhibitors, such as KHK2455,

LY3381916 and MK-7162, are undergoing clinical trials to assess

their safety, tolerability and antitumor activity (77).
4.5 Reduction of arginine

In ccRCC, the use of the polyethylene glycol form of arginine

deaminase (ADI-PEG20) can limit tumor growth by reducing

circulating levels of arginine by catabolizing it to citrulline,

however this treatment may be limited by ASS1 re-expression

(75).Clinical trials have demonstrated the safety, tolerability and

clinical efficacy of ADI-PEG20 in reversing drug resistance in

patients with arginine dystrophy tumors (78).

This article focuses on the anoxic processes involved in glucose

metabolism in cancer cells, specifically highlighting the pentose

phosphate pathway and tricarboxylic acid cycle. It also emphasizes

the connection between renal cell carcinoma and obesity.

Additionally, it provides detailed descriptions of the specific

changes in enzymes related to the fatty acid oxidation pathway

and outlines the developmental course of glutamate metabolism in

renal carcinoma. However, this article does not delve into the

relevant metabolic pathways for tryptophan and arginine, only

mentioning them in relation to specific treatment protocols.

Another article (75) also discusses kidney cancer-related genes,

fatty acids, glucose metabolism, tricarboxylic acid cycle, glutamic

acid metabolism, and specific processes. The literature proposes

using radionuclide imaging for diagnosing renal cell carcinoma.

Furthermore, in this paper new drugs such as KHK2455,

LY3381916 and MK-7162 are suggested for treating IDO

inhibitors. Second-generation drugs like PT2977 (MK-6482) or

Belzutivan are proposed as HIF-2a antagonists that can overcome

certain defects of first-generation drugs.
5 Conclusion and future directions

Metabolomics studies have provided a number of small

molecules that may be used to diagnose and predict kidney

cancer, and which hold promise as biomarkers of kidney cancer.

However, these interpretations are limited to mapping identified

metabolites to pathways, while many important features remain

undefined. Subsequent experimental work is required to
Frontiers in Oncology 07
demonstrate causal inferences arising from genomic analyses. The

dynamic nature of the metabolome means that it may be difficult to

identify the direction of protein/metabolite ←→ disease.

By analyzing indications such as metabolites, subgroups of

patients with similar metabolic characteristics can be more

accurately identified. This contributes to a deeper understanding

of the heterogeneity of the disease and provides a basis for

personalized treatment. Moreover, therapeutic strategies targeting

metabolic vulnerability are based on targeted interventions to the

weakness of specific metabolic pathways or links.

In the future, we can improve our understanding of disease

progression at the individual level by integrating biological data

from multiple genomics and combining a multilevel approach to

observe the biological effects of different therapeutic pathways,

which will ultimately improve the cure rate and reduce the

mortality rate of renal cancer through other approaches such as

targeted therapies.
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