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Prediction of overall survival
in patients with locally
advanced pancreatic
cancer using longitudinal
diffusion-weighted MRI
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Rana Bahij3, Mathilde Weisz Ejlsmark2,3, Uffe Bernchou1,2,
Anders S. Bertelsen1,2, Per Pfeiffer2,3 and Faisal Mahmood1,2

1Laboratory of Radiation Physics, Department of Oncology, Odense University Hospital,
Odense, Denmark, 2Department of Clinical Research, University of Southern Denmark,
Odense, Denmark, 3Department of Oncology, Odense University Hospital, Odense, Denmark
Background and purpose: Biomarkers for prediction of outcome in patients with

pancreatic cancer are wanted in order to personalize the treatment. This study

investigated the value of longitudinal diffusion-weighted magnetic resonance

imaging (DWI) for prediction of overall survival (OS) in patients with locally

advanced pancreatic cancer (LAPC) treated with stereotactic body

radiotherapy (SBRT).

Materials and methods: The study included 45 patients with LAPC who received

5 fractions of 10 Gy on a 1.5T MRI-Linac. DWI was acquired prior to irradiation at

each fraction. The analysis included baseline values and time-trends of the

apparent diffusion coefficient (ADC) and DWI parameters obtained using a

decomposition method. A multivariable Cox proportional hazards model for

OS was made using best-subset selection, using cross-validation based

on Bootstrap.

Results: The median OS from the first day of SBRT was 15.5 months (95% CI:

13.2-20.6), and the median potential follow-up time was 19.8 months. The best-

performing multivariable model for OS included two decomposition-based DWI

parameters: one baseline and one time-trend parameter. The C-Harrell index

describing the model’s discriminating power was 0.754. High baseline ADC

values were associated with reduced OS, whereas no association between the

ADC time-trend and OS was observed.
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Conclusion: Decomposition-based DWI parameters indicated value in the

prediction of OS in LAPC. A DWI time-trend parameter was included in the

best-performing model, indicating a potential benefit of acquiring longitudinal

DWI during the SBRT course. These findings support both baseline and

longitudinal DWI as candidate prognostic biomarkers, which may become

tools for personalization of the treatment of patients with LAPC.
KEYWORDS

diffusion-weighted MRI, biomarker, pancreatic cancer, apparent diffusion coefficient,
overall survival
1 Introduction

Pancreatic cancer is the fourth most common cause of cancer-

related death in Europe, with a 5-year survival rate of less than 10%

and an increasing incidence (1, 2). Twenty percent of the patients

are eligible for curative-intent surgery, which increases the survival

rate to about 20% (3, 4). Radiotherapy (RT) can be used to

downstage tumours, making them eligible for surgery or as a

definitive treatment. The development of image-guided RT

(IGRT), especially the recent introduction of hybrid MRI linear

accelerators (MRI-Linacs), have made hypofractionated stereotactic

body RT (SBRT) well-tolerated (5–7). Still, the best RT treatment

for patients with pancreatic cancer remains to be settled. A possible

problem in interpreting the result from pancreatic cancer studies is

the considerable variation within the studied cohorts, possibly

related to different responses to RT. Thus, biomarkers may allow

a more informed treatment choice (8). The impact of such

biomarkers could be either dose escalation or de-escalation to

obtain an optimal balance between survival and toxicity.

One promising candidate for such a biomarker is the apparent

diffusion coefficient (ADC) derived from diffusion-weighted MRI

(DWI). ADC quantifies the motion of water molecules, which

indirectly reflects the tissue microstructure (9). Several groups

have investigated the value of ADC in detecting pancreatic cancer

(10–14) and the relation between ADC and pathological response

(15–17). The correlation between overall survival (OS) and ADC

has also been investigated (4, 18, 19), with findings indicating that

pre-treatment ADC might contain more predictive information

than standard clinical parameters such as age and tumour size.

However, the predictive power of these studies was limited. A

potential improvement can be sought through the MRI-Linac,

where DWI can be feasibly integrated into the workflow in each

treatment fraction. This setup allows investigation of whether

changes in DWI parameters during the treatment course could

add independent information to the prediction of the outcome for

the patients.

The current study utilized longitudinal DWI data to investigate

how baseline DWI parameters and changes in DWI parameters

during the treatment course impact survival prediction in patients
02
with locally advanced pancreatic cancer (LAPC). DWI parameters

were derived using a data-driven method recently proposed by

Rahbek et al. (20, 21). The potential advantage of data-driven

approaches is that there are no initial model assumptions which

could lead to biased parameters. The standard ADC based on a

mono-exponential model was included for comparison.
2 Materials and methods

A multivariable Cox survival model was made to predict OS in

patients with LAPC. The model was based on both clinical

parameters and parameters derived from DWI. The DWI

parameters were extracted from the GTV volume using both a

model-based method (ADC) and a model-free decomposition

method. Image analysis was performed by persons without

knowledge of the clinical data.

A statistical analysis plan (SAP) was created prior to data

analysis of the outcome (Supplementary Materials 3). The SAP

states time to local progression as a second endpoint. However, due

to very few local progression events (8), stable statistical models

could not be derived, and therefore, time to local progression is not

included in the analysis.
2.1 Patients and endpoints

The study included patients diagnosed with LAPC, treated with

SBRT for downstaging or definitive (consolidation) SBRT. The

patients had a primary tumour or local recurrence in the

pancreas. No tumours were resectable at the time of diagnosis

based on evaluations at multi-disciplinary team conferences (three

patients underwent surgery after SBRT). No lymph nodes were

involved at the time of SBRT for any of the patients. All patients

received induction chemotherapy using various chemotherapy

regimens for at least two months prior to SBRT and were treated

with five fractions of 10 Gy on a 1.5 T MRI-Linac (Unity by Elekta,

Stockholm, Sweden). Only patients without visual artefacts in the

GTV regions for at least two treatment fractions were included. The
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follow-up after SBRT, including clinical examination and CT scan,

was scheduled for every three months for two years. Only patients

that attended at least the first three-month follow-up were included

in the study, due to the initial intention of using local progression as

a second endpoint. OS was defined as the time from the first SBRT

fraction to death for any cause. Time between diagnosis and the first

SBRT fraction was included as a clinical parameter to take into

account differences due to different chemotherapy regimens. All

patients were prospectively included in the MOMENTUM study

(clinicaltrials.gov NCT04075305) (22), although this specific

investigation was planned after patient inclusion. The research

ethics committee at the local institutional board (26/68031)

approved inclusion of data in MOMENTUM, and the Region of

Southern Denmark (20/35211) approved storage of data. Informed

consent was obtained from all patients.
2.2 MRI protocols

Before treatment, T2-weighted MRI (T2W) scans were acquired

on a 1.5 T MRI simulator (Ingenia, Phillips). Imaging before each

treatment fraction at the MRI-Linac included T2W and DWI scans.

The majority of the patients (n=39) were DWI scanned using the b-

values 0, 30, 80, 150 and 500 s/mm2 (sequence 1), while six patients

were scanned using b-values of 0, 20, 60, 100, 300, 800 and 1000 s/

mm2 (sequence 2) (acquisition details in Supplementary Tables S1,

S2, Supplementary Materials 1).

DWI scans were visually inspected for artefacts. In some

patients, an alternation of DWI signal between neighbouring

slices was observed, likely due to cross-talk between slices. This

was reduced by a pre-processing step in which all slices were

convolved with the neighbouring slices with a weight of 0.25 and

a weight of 0.5 on the current slice (see Supplementary Figure S6 in

Supplementary Materials 1).
2.3 Region of interest

GTV delineations from the treatment pre-plan (based on T2W

from the MRI simulator) were used to measure the volume of the

GTV at baseline. The GTV delineations from the daily adapted

treatment plans (based on T2W from the MRI-Linac) were the basis

for extracting DWI parameters. The GTVs were transferred to

DWIs without translational adjustment. A 5 mmmargin was added

to the GTVs to account for delineation uncertainty and possible

misalignment of the GTV between T2Ws and DWIs which may

occur due to motion or geometric distortions present in DWI (23).

In the following, all DWI information obtained from the “GTV”

refers to the GTV with the 5 mm margin.
2.4 ADC calculation

ADC maps were calculated using the standard mono-

exponential Stejskal-Tanner model (24), using the b-values 150

and 500 s/mm2 (DWI sequence 1) and 300 and 800 s/mm2 (DWI
Frontiers in Oncology 03
sequence 2), to adhere as closely as possible to recommendations

from the Elekta MRI-Linac Consortium (25). For each patient, a

time-trend was extracted using a linear fit of the median ADC

within the GTV as a function of fractions. The slope of the fit as well

as the ADC value at fraction one were included in the

statistical analysis.
2.5 Data-driven DWI decomposition

A decomposition method suited for DWI data, the monotonous

slope non-negative matrix factorization method (msNMF) recently

introduced by Rahbek et al. (20), was used as a data-driven

alternative to the model-based ADC analysis. In brief, the DWI

signals can be described as a combination of msNMF components,

which represent “typical” behaviours of the DWI signals (linear

combination with only positive weights). Thus, each DWI voxel

(across all b-values) is represented by weights, one for

each component.

The components were determined based on data from all

patients scanned with DWI sequence 1 (n=39). For this purpose,

all GTV voxels from all patients and all fractions were pooled into

one data matrix, i.e. only one set of components was derived in total.

This set of components was subsequently projected onto each single

voxel from all patients (n=45), to obtain the unique weights for each

voxel. In the current study, two, three and four components

described 86%, 94%, and 96% of the initial data variance,

respectively. Based on these values, it was decided to use three

components (k=3). Thus, in the following, W1, W2 and W3 refer to

the weights associated with the components C1, C2 and C3,

respectively. The extracted components are shown in Figure 1

along with example scans. Details regarding image pre-processing

and implementation of msNMF in the current study are provided in

Supplementary Materials 2.

The spatial distribution of weights associated with the three

components were presented as weight maps, (Figures 2A–C). To

characterize changes in the weights across fractions, the 10th and

90th percentiles of the weight distributions within the GTV were

calculated (Figures 2D–F). Inspired by Rahbek et al. (21), a time-

trend of each percentile was extracted using a linear fit (Figure 2G).

The slope of the linear fit and the value at fraction one were used as

parameters in the statistical analysis. This resulted in 12

decomposition-based parameters [3 components x 2 percentiles x

(time-trend + value at fraction one)].
2.6 Statistical analysis

A multivariable Cox proportional hazards survival model was

made with OS as the endpoint. Patients who were alive at the cut-off

date for data collection (March 30, 2023) were censored. In total, 14

DWI parameters (12 decomposition-based and 2 ADC) and 6

clinical parameters were included in the analysis. The clinical

parameters at the time of SBRT were age, GTV volume at

baseline, time between diagnosis and SBRT, sex, performance

status (PS), and primary tumour/recurrence. The continuous
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parameters were standardized by subtracting the mean and dividing

by the standard deviation.

Parameter selection was based on best-subset selection using

bootstrap-based cross-validation. This was chosen as a robust

method to limit the risk of overfitting compared to e.g. stepwise

selection (26, 27). Thus, for each combination of potential

parameters for the multivariable model, a bootstrap of the initial

data was made. Patients included in the boot (in-boot patients) were

used to calculate the regression constants, and the cross-validated
Frontiers in Oncology 04
model likelihood was subsequently calculated using the patients not

included in the boot (out-of-boot patients). Since the number of

out-of-boot patients will vary per boot, the computed likelihood was

divided by the number of out-of-boot patients, as suggested by

Schemper (28). The entire bootstrap process was iterated 50 times,

to obtain the mean cross-validated likelihood. The selected

multivariable model was the model which performed best during

cross-validation. For the best model, model regression constants (b)
and corresponding 2-sided 95% confidence intervals (CI) defined as
B C
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FIGURE 1

Example of T2-weighted image (A), DWI images (B–F) and ADC map (G) for a patient. Example of weight maps (W1, W2, W3) corresponding to the
three components (C1, C2, C3) (H–J). Components (C1, C2, C3) resulting from decomposition analysis (msNMF) based on a total of 190 DWI scans
from 39 patients (5 scans per patient, except for 2 patients with only 2 and 3 scans, respectively) (K).
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the range of the 95% most central values were established using

2000 bootstraps.

The multivariable Cox model was validated using a calibration

plot, which allows a visual inspection of how well the model fits the

data, as well as the model’s ability to discriminate between patients

with at short and long survival time (29). Patients were divided into

low-, medium- and high-risk groups and a comparison between the

Kaplan-Meier survival curve and model estimate was performed

within each risk group. The risk groups were defined based on the

model’s ranking of the patients’ survival times (i.e. according to the

value of the linear predictor for each patient (oibixi), such that the

high- and low-risk groups contained the 25% shortest and longest

living patients, respectively, and the medium-risk group contained

the remaining 50%. Besides the calibration plot, the model’s ability

to discriminate between patients with high and low risk was

reported using the C-Harrell index, which measures the fraction

of patient pairs in which the one with the lower risk survives

the longest.

The median survival time for the entire cohort was assessed

using the Kaplan-Meier estimator, and the median potential follow-

up time was calculated using the reverse Kaplan-Meier method (30).

Univariable Cox models were made to provide an overview of the

entire data set.
3 Results

In total, 50 patients fulfilled the inclusion criteria (see section

“Patients and endpoints”). Out of these, five patients were excluded

before statistical analysis, as their DWI sequences differed

substantially from those of the remaining patients (sequence 1 and

2). For two patients, DWIs were missing for two and three fractions,

respectively, however, they were kept as part of the analysis. The

analysis was thus based on 45 patients (demographics shown

in Table 1).

The decomposition analysis (msNMF) resulted in three well-

separated components: one slowly decaying component (C1), one
B C

D E F

GA

FIGURE 2

Derivation of decomposition-based DWI parameters for outcome prediction. Examples of weight maps for a patient (A–C). The red contour
represents the GTV. The distribution of weights within the GTV (3D volume) are presented using histograms (D–F). The red, vertical lines represent
the 10th and 90th percentiles of the distributions. Time trends are extracted from each percentile using a linear fit to the data as a function of fraction
number (G).
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TABLE 1 Patient demographics for 45 patients receiving SBRT for
localized pancreatic cancer.

Overall
(N=45)

Age (years)

Mean (SD) 67.5 (10.1)

Median [Min, Max] 69.5 [45.2, 85.3]

Sex

F 26 (57.8%)

M 19 (42.2%)

Performance status

0 17 (37.8%)

1+ 28 (62.2%)

Clinical presentation

Primary tumour (LAPC) 37 (82.2%)

Local recurrence 8 (17.8%)

Time between diagnosis and RT (months)

Mean (SD) 7.40 (5.89)

Median [Min, Max] 6.48 [1.15, 35.4]

GTV volume (cm3)

Mean (SD) 21.6 (15.8)

Median [Min, Max] 19.1 [2.68, 77.0]

T-stage

T3-4 45 (100%)

Chemotherapy

Yes 45 (100%)
The reported T-stage is at the time of diagnosis. No re-staging was performed at the time of
recurrence. The reported GTV volumes were obtained from the treatment pre-plan, without
the 5 mm expansion.
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fast decaying component (C2), and one component mainly driven

by b=0 s/mm2 (C3) (Figure 1K). The weight maps revealed tissue

heterogeneity, highlighting different regions within the GTV

(Figures 1H–J). The weight maps did not correlate 1:1 with the

DWI images or the ADC map and thus provide complementary

information (Figures 1B–G).

The median OS was 15.5 months (95% CI: 13.2-20.6) (see

Kap l an -Me i e r p lo t in Supp l ementa ry F igure S1 in

Supplementary Materials 1). The median potential follow-up

time was 19.8 months. Based on univariable analyses, none of

the clinical parameters showed a statistically significant

association with OS on a 5% level; however, the association

between age and OS was borderline significant (Figure 3).

Several of the DWI-derived parameters, including ADC at the

first treatment fraction, showed a statistically significant

association with OS.

The best-performing cross-validated multivariable Cox model

included two decomposition-based parameters (“Component1_

prc10_time-trend” and “Component2_prc90_frac1”) (Figure 4).

The C-Harrell conformance index for the best model was

0.754. A calibration plot demonstrated good agreement between

the model and data for all risk groups (Figure 5). The individual

performance of the two predictors in the best-performing model is

shown in Supplementary Figure S2 in Supplementary Materials 1.

The model’s performance is notably reduced when the parameters

are used separately and have C-Harrell indexes of 0.633 and 0.688
Frontiers in Oncology 06
for Component2_prc90_frac1 and Component1_prc10_time-

trend, respectively.
4 Discussion

This study investigated the value of longitudinal DWI in the

prediction of OS in patients with LAPC utilizing parameters derived

using both a standard, model based approach (ADC) and a model-

free decomposition approach (msNMF). To our knowledge, this

study is the first to utilize longitudinal DWI for this purpose.

The best-performing model for OS prediction included only two

parameters; one time-trend DWI parameter (Component1_prc10_

time-trend) and one baseline DWI parameter (Component2_prc90_

frac1), both of which were based on DWI decomposition. None of the

clinical parameters were selected by the cross-validation process. The

best model reached a C-Harrell index of 0.754 indicating that the

model is good at determining which of two patients will survive the

longest (a value of 0.5 corresponds to a random guess, and a value of 1

means that the model can perfectly rank the patients’ survival times).

The C-Harrell index was markedly reduced if the model was based on

just one of the parameters compared to the best model

(Supplementary Figure S2 in Supplementary Materials 1),

indicating that both baseline information (Component2_

prc90_frac1) and longitudinal changes (Component1_prc10_time-

trend) might be important for the prediction of OS.
FIGURE 3

Hazard ratios and 95% confidence intervals for univariable Cox proportional hazards models for overall survival. In the graphical representation, the
confidence interval for the DWI parameter “Component3_prc10_frac1” was cut off at 0.10 in order to make a more well-balanced figure. The DWI
parameter names refer to the msNMF components, the percentile (10th or 90th percentile), and whether the value represents the time-trend or the
value at fraction one (see section “Data-driven DWI decomposition”).
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Previous studies have indicated that image-based parameters

derived from pre-treatment CT, PET and MR imaging can provide

prognostic information in pancreatic cancer (4, 31, 32). With the

ability to perform daily imaging in a non-invasive and radiation-

free manner, MRI-Linacs represent an interesting opportunity for

exploring changes in image-based parameters over the course of

treatment using longitudinal imaging. The feasibility of extracting

such changes with an MRI-Linac have been demonstrated, with

results indicating an increased performance compared to

parameters derived at a single time-point (33–35). The current

study made use of this opportunity to investigate image-based

parameters derived from longitudinal DWI, exploring different

methods for extraction of parameters. The msNMF method has

previously been tested in patients with brain metastasis, showing

borderline significant differences between responders and non-

responders (21), but has not been tested as a predictor of OS in
Frontiers in Oncology 07
pancreatic cancer. It was included in the current study to investigate

whether it could provide information useful for the prediction of OS

in pancreatic cancer, as a proof of concept. Interestingly, the cross-

validation process selected decomposition-based parameters

instead of ADC information. A possible explanation could be that

the decomposition-based parameters might be more stable than the

standard ADC values. Increased stability may be achieved as the

extracted components are based on data from all patients and

fractions, which may reduce the impact of noise. The C-Harrell

index for a model based on the baseline ADC (ADC_frac1) and the

ADC time-trend (ADC_time-trend) was 0.623 (data not shown),

indicating an inferior discriminating power. That being said, the

Pearson correlation between ADC_frac1 and Component2_prc90_

frac1 is 0.78, showing that most of the information in

Component2_prc90_frac1 is also present in the ADC signal

(Supplementary Figure S4 in Supplementary Materials 1). Thus,
FIGURE 4

Hazard ratios and 95% confidence intervals for the multivariable Cox proportional hazards model for overall survival. The parameters included in this
model were selected by the cross-validation process.
FIGURE 5

Comparison of the multivariable Cox model and the Kaplan-Meier estimator for the best-performing model for overall survival. The model included
the decomposition-based parameters “Component1_prc10_time-trend” and Component2_prc90_frac1” (see section “Data-driven DWI
decomposition”). Patients were split into high, medium, and low-risk groups based on the 25% and 75% percentiles of the calculated linear
predictors (-0.66 and 0.72), i.e. the high- and low-risk groups each contained 25% of the patients, and the medium-risk group contained 50% of the
patients. The confidence intervals for each of the risk groups were overlapping (not shown). Only patients who attended the first three months
follow up were included in the study, hence the graphs show a constant survival probability of one during the first three months.
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based on the current results, the main difference between the

standard ADC approach and the msNMF approach is within the

longitudinal changes in which msMNF parameters showed a

stronger association with OS compared to ADC_time-trend. The

potential added benefit of the msNMF approach compared to the

ADC approach should be weighed against the increased complexity

of the image post-processing, which may make msNMF more

labour intensive.

The multivariable Cox model shown in Figure 4 suggests that

high values of Component2_prc90_frac1 are associated with

reduced expected lifetime (hazard ratio (HR)>1). According to

the univariable Cox models presented in Figure 3, the same

applies for high values of ADC_frac1 (HR>1), which is in line

with the observed correlation between Component2_prc90_frac1

and ADC_frac1 (Supplementary Figure S4 in Supplementary

Materials 1). Initially, these results seem to contradict the findings

in some other studies, in which an association between low baseline

ADC (comparable to ADC_frac1 in the current study) and poor

survival was reported (18, 19, 36). The explanation might be a

difference in the definition of the region of interest from which the

DWI parameters were derived. The current study used the clinically

available GTV so that no additional delineation was needed,

whereas previous studies focused on the delineation of the

“viable” part of the tumour, which differs from the GTV by

excluding necrotic and cystic parts. This explanation is supported

by a study by Lyng et al. (37), which shows that some necrotic

regions are related to increased ADC values. Furthermore, necrosis

has been related to less favourable outcomes in patients with LAPC

(38), which matches high values of ADC_frac1 in patients with low

OS seen in the current study. That ADC’s capacity as a biomarker of

response is affected by the choice of regions of interest has also been

demonstrated in other anatomical regions (39).

For Component 2 frac1 and Component 1 time-trend, the 10%

and 90% percentiles contain quite similar information, with a

correlation of 0.70 and 0.61, respectively (Supplementary Figure

S4 in Supplementary Materials 1). Since the average of the 10% and

90% percentile values for symmetrical distributions is very close to

the median, it is likely that the median values could have been used

instead. In fact, a model based on the related median values of the

best model (i.e. a model based on “Component1_prc50_time-trend”

and Component2_prc50_frac1”) had a C-Harrell index of 0.757

(Supplementary Figure S5 in Supplementary Materials 1), similar to

the C-Harrell index of the best model (0.754). For future studies, it

is likely as good (and simpler) to focus on the median values instead

of the tails of the weight distributions.

To take into account the heterogeneity of the patient cohort,

clinical parameters such as primary tumour/local recurrence were

included in the analysis. Interestingly, the cross-validation process

did not select any of the clinical parameters, indicating a superiority

of baseline and longitudinal DWI to predict OS compared to

standard clinical parameters.

It should be noted that the two parameters in the best model

showed a low correlation with the clinical parameters. The largest

Pearson correlation between the model parameters and the

continuous clinical parameters was 0.24, and the lowest p-value

of a Mann–Whitney U test of best model parameters between the
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levels of the categorical clinical parameters was 0.53. Therefore,

there is no indication that the DWI parameters could be a proxy for

any of the clinical parameters.

In general, OS may depend on many factors, both related to the

tumour and to the individual patient’s response to treatments,

including SBRT. The observed association between DWI parameters

and OS could potentially be related to differences in the tumour

microstructure between patients, which might be captured by DWI.

While ADC is commonly interpreted in terms of cell density,

decomposition-based parameters could potentially reflect the

composition of the tumour microstructure, as sub-compartments

within each image voxel may contain different tissue types. A

possible explanation for the observed association between DWI

parameters and OS could be that the tumour microstructure is

indicative of the tumour aggressiveness and tendency to form

distant metastasis, something that is likely linked to OS (18).

Moreover, tumours with different microstructure may respond

differently to treatments. Based on the results, it might be relevant

to investigate the predictive value of DWI, in order to identify patients

who responds well/poorly to SBRT.

Initially, time to local progression was included as a second

endpoint in the statistical analysis plan. However, due to a small

number of local progression events (n=8), it was not possible to

derive stable statistical models, and thus, no results are presented

for this endpoint. Hence, it might be a relevant topic for a future

study to investigate if DWI could provide information of the local

response to a local treatment (SBRT), as this information might be

relevant in order to personalize the treatment.

A careful parameter selection based on cross-validation was

performed to limit the effect of overfitting, instead of e.g stepwise

parameter selection (26, 27). However, it is still considered a major

limitation of the current study that the statistical model was based

on 45 patients only. Although it is considered a relatively large

cohort compared to other RT studies within LAPC, it may be a poor

representation of patients with LAPC treated worldwide. Validation

of the statistical model in patients from other centres is

thus warranted.

In conclusion, a statistical model to predict survival after SBRT

in patients with LAPC based on only two DWI parameters has been

developed. The model contains both baseline information and DWI

changes during the SBRT course and showed ability to discriminate

between patients with short and long survival times. It is the hope

that in the future, prognostic information from DWI can assist in

stratifying patients for individual treatment (e.g. dose escalation), to

improve treatment outcomes.
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