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in HBV-related hepatocellular
carcinoma: an online interactive
nomogram integrating
inflammatory markers,
radiomics, and convolutional
neural networks
Yun Zhong1,2,3,4†, Lingfeng Chen1,2,3,4†, Fadian Ding1,2,3,4,
Wenshi Ou1,2,3,4, Xiang Zhang1,2,3,4* and Shangeng Weng1,2,3,4*

1Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Fujian Medical
University, Fuzhou, China, 2Fujian Abdominal Surgery Research Institute, The First Affiliated Hospital,
Fujian Medical University, Fuzhou, China, 3Department of Hepatobiliary and Pancreatic Surgery,
National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical
University, Fuzhou, China, 4Fujian Provincial Key Laboratory of Precision Medicine for Cancer, The
First Affiliated Hospital, Fujian Medical University, Fuzhou, China
Objective: The early recurrence of hepatocellular carcinoma (HCC) correlates

with decreased overall survival. Microvascular invasion (MVI) stands out as a

prominent hazard influencing post-resection survival status and metastasis in

patients with HBV-related HCC. The study focused on developing a web-based

nomogram for preoperative prediction of MVI in HBV-HCC.

Materials and methods: 173 HBV-HCC patients from 2017 to 2022 with complete

preoperative clinical data and Gadopentetate dimeglumine-enhanced magnetic

resonance images were randomly divided into two groups for the purpose of

model training and validation, using a ratio of 7:3. MRI signatures were extracted

by pyradiomics and the deep neural network, 3DResNet. Clinical factors, blood-cell-

inflammation markers, and MRI signatures selected by LASSO were incorporated

into the predictive nomogram. The evaluation of the predictive accuracy involved

assessing the area under the receiver operating characteristic (ROC) curve (AUC), the

concordance index (C-index), along with analyses of calibration and decision curves.

Results: Inflammation marker, neutrophil-to-lymphocyte ratio (NLR), was positively

correlated with independent MRI radiomics risk factors for MVI. The performance of

prediction model combined serum AFP, AST, NLR, 15 radiomics features and 7 deep

featureswas better than clinical and radiomicsmodels. The combinedmodel achieved

C-index values of 0.926 and 0.917, with AUCs of 0.911 and 0.907, respectively.
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Conclusion: NLR showed a positive correlation with MRI radiomics and deep

learning features. The nomogram, incorporating NLR and MRI features,

accurately predicted individualized MVI risk preoperatively.
KEYWORDS

hepatocellular carcinoma, microvascular invasion, radiomics, convolutional neural
network, inflammation marker
1 Introduction

Liver cancer, the fifth most common malignant tumor, ranks

fourth in mortality of cancer (1). Hepatocellular carcinoma (HCC)

accounts for approximately 90% of the cases of liver cancer

worldwide (2). At least 50% cases of HCC worldwide were caused

by hepatitis B virus (HBV). In China, chronic HBV infection is also

the main cause of HCC (3, 4).

At present, the main treatment options for HCC encompass

liver resection, liver transplant, and transcatheter arterial

chemoembolization (TACE) (5). Post-surgical resection, the

annual recurrence rate of hepatocellular carcinoma (HCC) is at

least 10%, escalating to 70–80% within a five-year period. The

recurrent HCC tumors may probably progress into incurable,

advanced-stage disease in most patients (6). So accurately

identifying high-risk patients, estimating the prognosis of those

with HCC, and extending survival time are of critical importance in

clinical practice.

Microvascular invasion (MVI) serves as a significant independent

prognostic factor for patients with hepatocellular carcinoma (HCC)

following curative treatments, including surgical resection, liver

transplantation, or alternative therapeutic interventions (7). Under

microscopic examination, microvascular invasion (MVI) is

characterized by the presence of neoplastic cell clusters within the

lumina of endothelial-lined vascular channels, including those of the

portal and hepatic venous systems (8). Recent evidence suggested that

MVI might be the first step in the occurrence of intra-hepatic or

systemic metastasis of HCC (9). Several retrospective studies suggest

an association between inflammation and MVI in HBV-HCC

patients (10). Inflammatory environment may increase hepatic

microvascular permeability so that cancer cells can invade through

the blood vessel wall (11). The occurrence of microvascular invasion

(MVI) signifies the infiltration of cancer cells into the vasculature,

heralding the potential onset of metastasis.

There has been an increasing interest in predicting MVI

through preoperative data. Recent studies have highlighted the

potential utility of blood-cell-inflammatory markers as non-

invasive predictors of MVI (12, 13). These markers, including

neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte

ratio (PLR), and systemic immune-inflammation index (SII),

reflect the patient’s systemic inflammatory response, which is

closely associated with tumor progression and metastasis. It has
02
been previously observed that an elevated NLR is correlated with an

increased incidence of MVI in HCC patients (14). Furthermore, the

SII, which combines neutrophil, lymphocyte, and platelet counts,

has shown superior predictive accuracy for MVI compared to

individual markers (15). The integration of these inflammatory

markers into clinical practice could enhance the preoperative

assessment of MVI, allowing for more tailored and effective

treatment plans for HCC patients.

As known, preoperative images are also important preoperative

data. Radiomics, defined as the transformation of digital medical

images into high-dimensional, analyzable data through advanced

computational techniques, facilitates the exhaustive extraction and

quantification of data from standard radiological imagery, thereby

yielding critical insights into the cancer phenotype and the tumor

microenvironment (16). Recent studies suggest an association

between some radiographic features and local inflammatory status

and vascular response in tumor (17). Li Yang reported that a

nomogram incorporating radiomic features extracted from

hepatobiliary phase (HBP) imaging demonstrated efficacy in the

preoperative prognostication of MVI risk in HCC patients (18).

PENG LIU has substantiated that radiomic analysis of computed

tomography images exhibits a definitive predictive value for MVI in

solitary HCC with a dimension less than or equal to 5 cm (19).

Gadobenate dimeglumine-enhanced MRI imaging carries additional

information on tumors than computed tomography, which can also

reflect changes in the tumor micro-environment (20).

Deep learning with convolutional neural networks (CNNs) was

applied to extract the inherent features of input data automatically

(21). Recently, Residual Neural Network, a classical deep learning

model, has been widely used for 3D imaging data analysis in

medical field including MRI (22). Li et al. utilized a six-layer

CNN to extract features from MR images to classify low grade

gliomas and found an improvement on the traditional radiomics

(23). Unlike traditional computed features, deep features retain a

large amount of the global spatial information. So far, very little

attention has been paid to the role of blood-cell-inflammatory

markers combined with radiomics and deep learning features

from preoperative MRI in predicting MVI.

In this study, we aimed to integrate preoperative MRI

characteristics with inflammatory markers to create and confirm

a new predictive nomogram for the preoperative estimation of MVI

in HBV- related HCC. This nomogram facilitates the preoperative
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determination of the individualized risk of MVI in HCC patients,

which is especially beneficial for categorizing patients into

appropriate treatment groups.
2 Materials and methods

2.1 Patients and follow-up

Ethical approval was obtained for this retrospective study, and

the requirement for informed consent was waived. Patients were

retrospectively collected from January 1, 2017 to November 31,

2022 (The First Affiliated Hospital of Fujian Medical University).

[MTCA, ECFAH of FMU[2015] No.084-1] The inclusion criteria

were: (a) Pathologically diagnosed hepatocellular carcinoma with

MVI evaluation; (b) HBV related HCC; (c) Without history of prior

intervention therapy; (d) Gadobenate dimeglumine-enhanced MRI

was performed before surgery within 1 week; (e) No portal or

hepatic vein invasion; (f) No lymph node or distant metastasis. The

exclusion criteria were: (a) Complicated with other malignant

tumors, and multiple primary or recurrent liver cancer; (b)

Pathology-confirmed malignancies were not HCC; (c) Combined

with other infectious diseases, immune diseases, hematologic

diseases or allergic diseases; (d) Patients with emergency surgery

for heparorrhexis; (e) Incomplete medical information. The

ultimate composition of the patient cohort encompassed a total of

173 individuals (150 men and 23 women). The training group

included 120 patients, and 52 patients were allocated to the

validation group. The process for patient inclusion was detailed in

the flowchart provided in Figure 1. Recurrence-free survival (RFS)

time referred to the time interval from surgery to the date of

recurrence, death or the last follow-up. The RFS was analyzed
Frontiers in Oncology 03
using the Kaplan-Meier method to estimate the survival

distribution in this population. The Log-rank test was employed

to compare the survival differences between MVI positive and MVI

negative groups.
2.2 Laboratory and pathology
data acquisition

Clinical-pathological baseline data were systematically extracted

from our institution’s medical archives. Clinical features included age,

gender, BMI, neutrophil, lymphocytes, hemoglobin, platelets, serum

albumin, alkaline phosphatase (ALP), aspartate aminotransferase

(AST), alanine aminotransferase (ALT), g-glutamyl transpeptidase

(g-GT), AFP, the Systemic Immune-inflammation Index (SII), the

Neutro-phil-to-LymphocyteRatio (NLR), the Platelet-to-Lymphocyte

Ratio (PLR). MR image characteristics including enhancement

pattern, peritumoral enhancement on artery phase, radiologic

capsule on delay phase, peritumoral hypointensity were analyzed by

2 experienced radiologists. The pathological attributes, including

tumor count, MVI presence, tumor size, Edmondson-Steiner

grading, and cirrhosis status in non-tumorous liver tissue, were

assessed by 2 experienced pathologists. Laboratory analyses

consisted of common hematology tests were performed within one

week prior to the surgical intervention.
2.3 Magnetic resonance imaging
data acquisition

all study patients underwent gadobenate dimeglumine-

enhanced MR imaging using 3.0-Tesla MR scanners (Magnetom
FIGURE 1

Flow chart of the patient enrollment process.
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Skyra Siemens Healthcare). Conventional MRI parameters were as

follows: repetition time (TR)/echo time (TE), 6000/125 ms; number

of excitation (NEX), 1; field of view (FOV), 20 mm; slices, 22; slice

thickness, 3 mm. Gadopentetate dimeglumine was administrated

with a dose of 0.1 mmol/kg, followed by a 20-mL continuous saline

flush. Imaging sequences included T2-weighted imaging with fat

suppression, T1-weighted imaging, and contrast-enhanced T1-

weighted im-aging obtained at 20–30 s (by monitoring, the scan is

triggered when the contrast agent reaches the ascending aorta), 70–

90 s, 100–120 s, and 160–180 s respectively after contrast medium

injection. That included a transverse arterial phase, transverse

portal venous phase and transverse delayed phase. Image

characteristics including enhancement pattern, peritumoral
Frontiers in Oncology 04
enhancement on artery phase, radiologic capsule on delay phase

and peritumoral hypointensity were analyzed by 2 experienced

radiologists (Figure 2).
2.4 Workflow of radiomics analysis

The radiomics analysis workflow encompassed the

segmentation of the tumor, the extraction and selection of

features, followed by the construction and evaluation of the

predictive model (Figure 2). 1223 candidate texture parameters

were extracted, including shape_LeastAxisLength, shape_

MeshVolume,shape_MinorAxisLength, glrlm_RunEntropy,
FIGURE 2

Comprehensive workflow diagram of the prediction model. Tumor segmentation in MR images is the first step. After that, MRI feature extraction was
conducted separately via radiomics and neural convolutional networks. Student's t-test, Mann-Whitney U test and least absolute shrinkage and
selection operator (LASSO) were used to feature selection, sequentially. The receiver operating characteristic (ROC) curve and the area under the
curve (AUC) were calculated to evaluate the prediction efficiency of the radiomic features. Finally, a nomogram was developed and evaluated.
FIGURE 3

Characteristic MRI images of microvascular invasion (MVI)-positive and MVI-negative hepatocellular carcinoma. (A, B) The axial arterial phase image
shows a non-smooth hype vascular tumor (arrow) with peritumoral enhancement (arrows). (C) The delayed phase image exhibits a rapid low signal
intensity (arrow) within the tumor. (D, E) The arterial phase image demonstrates a smooth tumor, accompanied by (F) a radiologic capsule in the
delayed phase.
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ngtdm_Coarseness, gldm_DependenceNonUniformity and so on.

All feature extraction was implemented by Python (Version 3.10.5).

2.4.1 Tumor segmentation
The MRI images of the patients were exported in DICOM

format. Blind to the pathological findings, the radiologist, boasting

three years of expertise in abdominal imaging, employed the 3D-

Slice software (www.slice.org) to demarcate the region of interest

(ROI) on each slice encompassing the tumor. Regions of interest

(ROIs) were drawn on all arterial phase (AP), venous phase (VP),

delayed phase (DP) and T2-weighted (T2) images slice-by-slice for

each patient (Figure 3).

2.4.2 Feature extraction
Features, including radiomics features and deep learning

features, were extracted through Python package Pyradiomics and

trained 3D ResNet, respectively. 1223 radiomics texture parameters

were extracted, including first-order features and texture features in

every phase. In another way, 3D ResNet, a pre-trained deep learning

architecture, was utilized to harvest 512 deep features from the ROIs

of the images for each patient in every MRI sequence. All feature

extraction was implemented by Python (Version 3.10.5).

2.4.3 Model construction and evaluation
The clinical model was constructed using features that

demonstrated a statistical significance with p-values less than 0.05

in the multivariate logistic regression analysis. We built a radiomics

model and a deep learning model using features that were extracted

by the above method. A combined model was constructed by

integrating elements from the clinical model with the most

effective signatures from radiomics and deep learning models.

The efficiency of the radiomic feature-based predictions was

assessed by computing the receiver operating characteristic

(ROC) curve and the corresponding area under the curve (AUC).

The area under the curve (AUC) was ascertained along with its 95%

confidence interval (CI), in addition to quantifying the sensitivity,

specificity, and precision of the model. A nomogram was

constructed to visually represent the combined model. The

discriminative efficacy of the nomogram was quantified

employing Harrell’s concordance index (C-index). Calibration

curves were generated and analyzed to assess the diagnostic

concordance of the nomogram within the training and validation

cohorts. Decision curve analysis was employed to ascertain the

clinical utility of the nomogram. A web-based calculator for the

dynamic prediction of MVI was created utilizing the “shiny” and

“DynNom” packages (https://www.shinyapps.io/).
2.5 Evaluation of NLR and radiomics and
deep features

The correlation between the NLR and extracted features were

represented by “ggpubr” and “ggExtra” R packages. Besides, we

explored the relationship between the NLR and risk score of every

model by Pearson correlation analysis.
Frontiers in Oncology 05
2.6 Statistical analysis

All statistical analyses were conducted utilizing IBM SPSS

Statistics (Version 24.0), Python (Version 3.10.5), and R (Version

4.3.1) software packages. A two-tailed p value less than 0.05 was

considered statistically significant.
3 Results

3.1 Baseline characteristics and
survival curve

The baseline characteristics of the study participants were

presented in Supplementary Table S1. These data provided a

comprehensive overview of the demographic, clinical, and

biochemical characteristics at the onset of the study. There was no

significant difference in the incidence of MVI between the training

and validation groups. Meanwhile, we conducted a follow-up study

involving 111 patients from this population and plotted the survival

curve (Supplementary Figure S1). This survival curve demonstrated

that MVI was a major risk factor for HCC recurrence.
3.2 Clinical feature analysis

The clinical and MR image characteristics collected from MVI-

negative and MVI-positive groups were presented in Table 1.

Youden index was used to find the best cut-off value of

inflammation markers (Table 2). NLR, AST, serum AFP levels,

and peritumoral enhancement were significantly different between

groups through univariate and multivariate analyses (P < 0.05).
3.3 Traditional radiomics feature analysis

For all MRI radiomics features, 982 stable features were retained

through the evaluationof consistency (ICCs>0.75). 4 features in artery

phase, 2 features in venous phase, 3 features in delayed phase and 6

features in T2-weighted images were selected by Mann-Whitney U-

test, univariate logistic, and LASSO analysis, sequentially (P < 0.05).

The lasso dimension reduction analysis of radiomics features was

presented in Supplementary Figure S2. Supplementary Figure S3

shows the predictive performance of each feature.
3.4 Deep learning feature analysis

A total of 951 deep learning features were preserved following the

consistency check (ICCs > 0.75). Following the same method, 2

features in artery phase, 1 feature in venous phase, 1 feature in

delayed phase, and 3 features in T2-weighted images were selected.

The lasso dimension reduction analysis of deep learning features was

shown in Supplementary Figure S4. The predictive performance of

each characteristic was illustrated in Supplementary Figure S3.
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3.5 Correlation between the NLR and
extracted features

The correlation between NLR and radiomics and deep features

was tested using Pearson analysis. As shown in Figure 4, the result
TABLE 1 Comparisons of patients’ characteristics in training and
validation datasets.

Characteristics

Training dataset
(n = 120)

Validation
dataset (n = 53)

MVI
(+)

MVI
(-)

P
MVI
(+)

MVI
(-)

P

Age, years 0.583 0.838

< 35 2 3 1 1

35-65 28 36 21 22

≥ 65 27 24 3 5

Gender 0.283 0.614

Male 49 58 21 22

Female 8 5 4 6

BMI 0.652 0.994

< 18.5 5 3 1 1

18.5-25 30 33 18 20

≥ 25 22 27 6 7

a-Fetoprotein <0.001 <0.001

< 20 ng/mL 16 38 9 16

≥20ng/mL 41 25 16 12

Edmondson-Steiner Grade 0.015 0.478

I 7 11 1 1

II 30 44 16 22

III 20 8 8 5

Cirrhosis of background liver 0.866 0.053

Absent 19 18 5 13

Present 44 39 19 15

Serum albumin 0.629 0.028

< 35 g/L 8 7 6 1

≥35 g/L 49 56 19 27

Alanine transaminase 0.034 0.224

< 40 U/L 29 44 11 17

≥ 40 U/L 28 19 14 11

Aspartate
transaminase

0.018 0.043

< 40 U/L 24 46 11 20

≥ 40 U/L 33 17 14 8

Total billrubin 0.522 0.346

< 21 mmol/L 47 49 20 25

≥ 21 mmol/L 10 14 5 3

g-Glutamyltransferase 0.022 0.200

< 60 U/L 6 17 9 15

(Continued)
TABLE 1 Continued

Characteristics

Training dataset
(n = 120)

Validation
dataset (n = 53)

MVI
(+)

MVI
(-)

P
MVI
(+)

MVI
(-)

P

≥ 60 U/L 51 46 16 13

Neutrophils, 10^9/L*
3.50
± 2.12

3.28
± 1.25

0.483
3.62
±

1.18

3.36
±

0.74
0.142

Lymphocyte, 10^9/L*
1.74
± 0.60

1.64
± 0.52

0.337
1.80
±

0.74

1.52
±

0.43
<0.001

Hemoglobin, g/L*
141
± 16

142
± 13

0.837
147
± 10

132
± 10

0.006

Platelet,10^9/L*
182
± 72

166
± 66

0.251
208
± 83

169
± 24

0.034

NLR 0.019 0.004

< 1.45 24 40 9 21

≥ 1.45 33 23 16 7

Tumor size 0.247 0.001

< 5cm 39 49 5 18

≥ 5cm 18 14 20 10

Tumor margin 0.005 0.100

Smooth margin 8 23 2 7

Non-smooth margin 49 40 23 21

Enhancement pattern 0.398 0.224

Typical 21 28 14 11

Atypical 36 35 11 17

Peritumoral enhancement on artery phase 0.004 0.040

Absent 27 46 9 18

Present 30 17 16 10

Radiologic capsule on
delay phase

0.698 0.884

Absent 37 43 12 14

Present 20 20 13 14

Peritumoral hypointensity 0.269 0.487

Absent 25 34 11 15

Present 32 29 14 13
frontie
Unless otherwise noted, data are shown as number of patients, with the percentage
in parentheses.
*Data are medians, with interquartile ranges in parentheses.
Bold indicate values below 0.05, which are statistically significant.
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showed that NLR was positively correlated with features like

wavelet.LLL.glszm.LargeAreaHighGrayLevelEmphasis radiomics

feature, deep feature 292, deep feature 157 in T2 phase and deep

feature 22 in artery phase. Furthermore, we discovered the positive

relationship between the NLR and 3 predictive model including deep
Frontiers in Oncology 07
learningmodel, radiomicsmodel, and combinedmodel (r = 0.244; P =

0.001; r = 0.161;P= 0.038; r = 0.209; P= 0.007). Reasonably, the results

indicated that the inflammatory signature couldbe a good indicator for

reflecting inflammation inMRI images and a new biomarker forMVI

prediction with radiomics features in HBV-HCC patients.
TABLE 2 Predictive efficacy of the inflammation markers.

Inflammationmarker Threshold Youden index Sensitivity Specificity P

Neutrophil to lymphocyte
ratio,NLR

1.45 0.277 0.585 0.692 0.002

Systemic Immune
Inflammation Index, SII

482.04 0.104 0.280 0.824 0.341

Platelet to
lymphocyteratio, PLR

115.89 0.118 0.415 0.703 0.376
Bold indicate values below 0.05, which are statistically significant.
FIGURE 4

The correlation between the NLR and MRI features. (A) Pearson correlation between NLR and the risk scores of each predictive model. The color of
the band represented the R-value. (B) Correlation of the NLR with every single MVI-related MRI feature. The size of the circle represents the
magnitude of the correlation coefficient. The color of the circle indicates the magnitude of the p-value.
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3.6 Model construction and evaluation

3.6.1 Clinical model
The univariate analysis indicated a significant association

between MVI and several independent variables, including NLR,

serum AFP, AST, and the presence of peritumoral enhancement.

Upon multivariate logistic regression analysis, it was ascertained

that NLR [odds ratio (OR) 2.837; 95% confidence interval (CI)

1.412-5.703; P = 0.003], serum AFP [OR 3.95; 95% CI 1.936-8.061;

P < 0.001], peritumoral enhancement [OR 2.605; 95% CI 1.285-

5.283; P = 0.008], and AST [OR 2.916; 95% CI 1.433-5.935; P =

0.003] emerged as independent predictors of MVI, as shown in

Table 3. These were also effective components in the construction of

the clinical model. In conclusion, the AUCs for the clinical model

yielded values of 0.734 [95% CI: 0.7024-0.8685] for the training

group and 0.767 [95% CI: 0.6778-0.9194] for the validation cohort,

respectively (Figure 5).

3.6.2 Single radiomics model
Multivariate logistic regression was used to build the model for

each MRI phase. The quartet of radiomics models were designated

as the arterial, venous+delay, arterial+venous+delay, and T2 model,

each predicated on features derived from the arterial phase, portal
Frontiers in Oncology 08
venous phase, delayed phases, and T2-weighted imaging sequences,

respectively. The performance of each model is shown in Table 4.

Within the training group, the AUCs for the artery, venous+delay,

artery+venous+delay, and T2 models were 0.696 [95% CI: 0.6014-

0.7910], 0.774 [95% CI: 0.6917-0.8566], 0.779 [95% CI: 0.6978-

0.8611], and 0.698 [95% CI: 0.6025-0.7927]. In the validation

cohort, the diagnostic efficacy of the radiomics models was

quantitatively evaluated. The arterial model demonstrated a

notable area under the curve (AUC) of 0.820, with a 95%

confidence interval (CI) ranging from 0.7018 to 0.9382. The

venous+delay model exhibited an AUC of 0.769 (95% CI: 0.6343-

0.9029), reflecting substantial discriminative capability. The arterial

+venous+delay model achieved an AUC of 0.803 (95% CI: 0.6844-

0.9213), indicating a robust performance in prognostic evaluation.

Lastly, the T2 model presented an AUC of 0.724 (95% CI: 0.5731-

0.8755), suggesting a respectable level of diagnostic accuracy within

the context of the studied parameters. In the training and validation

cohorts, the artery model and artery+venous+delay model

predicted more accurately than the other radiomic signature

models, respectively.

3.6.3 Radiomics and deep learning model
The Radiomics model, utilizing features extracted from four

distinct MRI phases, yielded an AUC of 0.817, with a 95% CI

spanning from 0.742 to 0.892 in the training cohort. And the AUC

value of the Radiomics model is 0.864(95% CI: 0.761-0.967) in

validation group. Then we applied residual networks (ResNet) to

construct a predictive model. This prediction model, which used

deep MR image features to forecast MVI, gave back the following

performance data. In the training cohort, the model demonstrated a

specificity of 0.778 and a sensitivity of 0.649. The AUC for this

model was determined to be 0.714, with a 95% CI ranging from

0.620 to 0.808. The AUC for the test cohort was 0.767 (95% CI:

0.637-0.896), while the corresponding specificity and sensitivity
TABLE 3 Logistics regression analysis for MVI.

Characteristic Hazard ratio 95%CI P

AFP 3.95 1.936-8.061 <0.001

NLR 2.837 1.412-5.703 0.003

Peritumoral
enhancement

2.605 1.285-5.283 0.008

AST 2.916 1.433-5.935 0.003
Bold indicate values below 0.05, which are statistically significant.
FIGURE 5

Comparison of receiver operating characteristic (ROC) curves for prediction of microvascular invasion. ROC curves of clinical model (pink curve),
radiomics model (grey curve), deep learning model (olive green curve), and combined model (brown curve) in the (A) training and (B) validation
datasets. The X-axis represents the specificity predicted by the model, the Y-axis represents the model’s sensitivity, and the AUC indicates the
predictive performance of the predictive model.
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were 0.964 and 0.480. The ROC curves of radiomics and deep

learning models were presented in Figure 5.

3.6.4 Development and validation of the
combined model

Clinical characteristics, radiomics features and deep learning

features were incorporated to construct a Combined model. This

MVI predictive model combining all significant independent

predictors outperformed other models with an AUC of 0.900(95%

CI: 0.8474-0.9532). The combined model was able to predict MVI

more accurately. The performance of the model in the training set

was characterized by an AUC of 0.911, with a 95% CI ranging from

0.862 to 0.960. It demonstrated a sensitivity of 84.2% and a

specificity of 84.1%, as detailed in Figure 5. When utilized in the

validation group, the model produced an AUC of 0.907, with a 95%

confidence interval (CI) from 0.831 to 0.984, with specificity values

of 96.4%, sensitivity values of 72.0% respectively. The performance

of the combined model, the radiomics model, the deep learning

model, and the clinical model is shown in Table 5. Figure 6 depicts

the nomogram based on the merged model. The nomogram

demonstrated satisfactory predictive accuracy, as reflected by a C-

index of 0.926, with a 95% CI ranging between 0.881 and 0.969, in

the training group. Similarly, in the validation group, the C-index

was an impressive 0.917, with a 95% CI of 0.846 to 0.988. The

calibration curves (Figure 6) illustrated that the nomogram’s

predicted probabilities exhibited a high degree of correlation with

the actual occurrences of MVI in both the training and validation

groups. In the training group, the calibration was statistically

significant with a P-value of 0.022, while in the validation group,

the result nearly reached statistical significance with a P-value of
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0.052. Decision curve for the nomogram was demonstrated in

Figure 6. Considering the findings, a dynamic online tool (https://

zhongyun.shinyapps.io/HBV-HCC_MVI_NOMOGRAM/) has

been created for forecasting the likelihood of microvascular

invasion in individuals diagnosed with HBV-related HCC

(Figure 7).
4 Discussion

The role of systemic inflammation in the pathogenesis of

hepatocellular carcinoma (HCC) in the context of hepatitis B

virus (HBV) infection has been extensively examined (18). The

design of this retrospective study aimed to construct and confirm a

novel nomogram that incorporates preoperative indicators,

including markers of blood-cell-mediated inflammation and

radiomics-derived inflammation, for the prognostication of MVI

in individuals with HBV-HCC. In contrast to earlier findings, we

introduced MRI deep radiomics features to construct a new

predictive model called the deep radiomics model.

In the systemic milieu induced by the tumor, a myriad of

inflammatory cytokines contribute to the invasion of HCC cells and

the progression of metastases (20). Inflammation markers derived

from blood cells, such as the neutrophil-to-lymphocyte ratio (NLR),

systemic immune-inflammation index (SII), and aspartate

aminotransferase-to-platelet ratio index (APRI), represent ratios

that correlate various cellular proportions implicated in the

inflammatory response. In our investigation, patients with HBV-

HCC exhibited elevated levels of these inflammatory indices.

Hernandez-Ainsa et al. have reported an association between
TABLE 4 Predictive efficacy of different radiomics models.

Different models
Training group (n = 120) Validation group (n = 53)

sensitivity specificity AUC AUC (95% CI) sensitivity specificity AUC AUC (95% CI)

The radiomics model 0.807 0.73 0.858 0.7928-0.9226 0.84 0.786 0.851 0.7401-0.9628

The artery+venous+
delayed model

0.807 0.635 0.779 0.6978-0.8611 0.64 0.857 0.803 0.6844-0.9213

The artery model 0.439 0.905 0.696 0.6014-0.7910 0.857 0.76 0.82 0.7018-0.9382

The venous+delayed model 0.86 0.587 0.774 0.6917-0.8566 0.76 0.75 0.769 0.6343-0.9029

The T2 model 0.386 0.937 0.698 0.6025-0.7927 0.6 0.929 0.724 0.5731-0.8755
TABLE 5 Predictive efficacy of predictive models.

Different models
Training group (n = 120) Validation group (n = 53)

sensitivity specificity AUC (95% CI) sensitivity specificity AUC (95% CI)

The combined model 0.841 0.842 0.911 0.862-0.961 0.720 0.964 0.907 0.831-0.984

The radiomics model 0.807 0.73 0.858 0.793-0.923 0.84 0.786 0.851 0.740-0.963

The deep
learning model

0.649 0.778 0.714 0.620-0.808 0.480 0.964 0.767 0.638-0.897

The clinical model 0.737 0.635 0.734 0.645-0.823 0.88 0.536 0.730 0.593-0.867
fr
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elevated values of NLR, PLR, and SII with increased tumor

invasiveness, lower differentiation grades, and diminished overall

survival rates (24). In the cascade of cancer cell metastasis,

neoplastic cells first infiltrate the adjacent microvasculature,

encompassing the intratumoral vascular compartments, before

propagating through these microvascular structures. A strong

relationship between MVI and tumor recurrence and survival

after transplant and surgical resection has been reported in recent

retrospective analysis (25, 26). Consequently, this gives rise to the

hypothesis that the presence of extratumoral MVI constitutes a

significant risk factor for the recurrence of the tumor (27).

The NLR is an inflammatory marker that has been studied as a

predictive indication of recurrence and survival in HCC patients
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(28). Higher NLR correlates with a heightened infiltration of

inflammatory cells and an enhanced secretion of inflammatory

cytokines, leading to a proliferation of neutrophil populations (29).

According to the findings of our study, NLR was significantly

associated with MVI, showing an increasing value at a higher

incidence of MVI. This phenomenon could be attributed to the

substantial release of neutrophils, which amplifies the potential for

tumor progression and vascular invasion through the upregulation

of vascular endothelial growth factor and additional pro-

inflammatory cytokines (30).

The AST is an important enzyme in the liver, which is mainly

present in the mitochondria of liver cells. In highly proliferative

cancer tissues, the level of AST is more frequently activated. Ellen
FIGURE 6

Development of a predictive nomogram for assessing the probabilities of MVI, along with calibration and decision curves. (A) A nomogram
combining fusion radiomics-deep risk score, inflammation markers (NLR, AST), serum AFP, and radiological factor (peritumoral enhancement).
(B, C) Calibration curves of the nomogram in the training and validation groups. The X-axis is the nomogram-predicted probability of MVI. The
Y-axis is the actual probability of MVI. (D) Decision curve of the nomogram for predicting MVI. The pink line represents the expected net benefit per
patient derived from the predictive nomogram.
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Friday has found that the increase in AST might be related to the

tumor growth and progression. Our research has also demonstrated

that the higher level of AST was associated with MVI in

HCC patients.

As a conventional clinical biomarker in HCC, our observations

corresponded with an established trend, wherein serum AFP

paralleled the likelihood of MVI. These inflammatory indices

would probably identify high-risk populations and improve our

screening methods. Using these biomarkers, we developed a clinical

model that combined NLR, AFP, and AST levels to identify HCC

with MVI, achieving an accuracy with an AUC of 0.767. Our results

are in line with those reported by Hidetoshi Nitta, indicating that the

nomogram offers a reliable method for predicting extra tumoral MVI

in patients undergoing hepatic resection or liver transplantation (27).

Prior studies have noted the importance of preoperative tumor

images in tumor immune biology and immunotherapy response.

Traditional radiomics leverages advanced computing tools to extract

deeper and more granular data from imaging (31). As Marius E.

Mayerhoefer mentioned, radiomics models based on large high-quality

and well-curated data sets have a better performance, so we tried to use

radiomics features to construct a predictive model (32). In the context

of this retrospective analysis, we identified 15 radiomic features

correlated with MVI in HCC from T2-weighted phase images and

standard triphasic phase images. These features were subsequently

utilized for the construction of a radiomics score. In these 15 texture

parameters, GLRLM_Long RunEmphasis, NGTDM_Busyness,

GLDM_LargeDependenceHighGrayLevelEmphasis and Firstorder_

TotalEnergy were the most significant difference between the two

groups in 4 phases, respectively. LargeDependenceHighGrayLevel

Emphasis measures the joint distribution of large dependence with

higher gray-level values, with a higher value indicating more

homogeneity (33). This parameter in venous phase has strongest

predictive performance. The increased heterogeneity observed in the

MVI-positive group within MRI scans can be ascribed to the presence

of a greater diversity of atypical vessels, a higher incidence of necrotic

vessels stemming from rapid tumor growth, and a more heterogeneous

internal structure of the tumors (34). The inflammatory reaction within

tumor microenvironment causes the proliferation of abnormal blood
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vessels and the necrosis of the tumor tissue, resulting in the appearance

of uneven tumor internal structure in images.

With the development of high-throughput computing

technology and artificial intelligence, deep image features are

obtained by neural convolutional network algorithm such as

CNN. In contrast to conventional radiomics methods, the image

features are directly extracted from the deep neural network, hence

ensuring that the deep learning radiomics extraction technique

remains error-free (35). After extracting MRI deep features with 3D

ResNet and LASSO analysis, 7 deep features were selected as MVI

risk factors to construct a deep radiomics prediction model. We

developed models based on radiomics features and deep learning

features for predicting MVI in training dataset, with AUCs of 0.817

and 0.714, respectively. And validated in validation dataset, the

AUCs of the two models were 0.864 and 0.730 respectively. Two

models performed well in terms of MVI prediction.

The literature has documented that radiomics features might serve

as indicators of the tumor microenvironment in patients (36). The

occurrence of MVI might be related to the local inflammation in the

tumor microenvironment (37). The radiomics model has a good

prediction effect on MVI, and we speculate that there is a correlation

between radiomics and inflammatory indicators. Finally, we also

proved that radiomics features were positively correlated with NLR,

which reflects inflammation. Simultaneously, it was confirmed that the

risk scores of the deep and radiomics models were positively connected

with NLR. As both preoperative examinations, we infer that the clinical

and MRI indices could reflect the pro/antitumorigenic inflammatory

status in two different ways. Hence, it could conceivably be

hypothesized that clinical characteristics plus MRI signatures can

improve the predictive value for MVI. We constructed a combined

model, the result is just as what we have supposed. Our study

supported the findings of Wenjun Yao, which indicated that a

combined model leveraging both clinical and radiomic signatures

delivered superior predictive performance, as evidenced by a high

AUC, and more effectively differentiated MVI when compared to

models based on clinical or radiomic markers alone (38).

Our combined model achieved an AUC of 0.907, sensitivity of

72.0%, and specificity of 96.4%. These metrics were comparable to
FIGURE 7

A web-dynamic nomogram for MVI prediction. The MVI probability and 95% confidence interval of an HBV-HCC patient with a radiomics score of 1,
NLR over 1.45, AST below 40, serum AFP over 20, and signs of peritumoral enhancement on preoperative MRI were evaluated.
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those reported by Yang et al., who reported an AUC of 0.861, using a

similar MRI-based approach (13). Notably, the AUCs of the clinical

model and the radiomicsmodel were similar to those obtained in their

study, but the combined model yielded a higher AUC. This

underscores the effectiveness of deep learning features in accurately

identifying MVI. When compared to the study by Zhou et al., which

employed 3D convolutional neural networks on contrast-enhanced

MRI to predictive MVI in HCC, our study also utilized advanced

feature extraction method (39). This led to an AUC improvement,

highlighting the superiority of our approach in capturing significant

features linked toMVI. Additionally, the interpretability of our model

was enhanced through the analysis of the correlationbetween radiomic

features and NLR, providing insights into the contribution of

individual radiomic features. This transparency is a significant

advancement over earlier studies, such as that by Mu He, where the

model incorporating neutrophils lacks interpretability (40).

Our analysis extended to examining the performance of radiomics

models in different imaging phases, revealing that the model

integrating venous and delayed phase images yielded better

predictive accuracy than the model based on arterial phase imaging.

Hypervascularity during the arterial phase of enhancement and wash-

out during the portal phase correspond to the Barcelona criteria for

HCC(41).ThehighAUCof themodelmaybedue to the enhancement

patterns and “wash-out” characteristics typical ofHCCseen in imaging

studies (42). Even though deep learning model’s prediction

performance was lower than radiomics model, there was still a high

positive correlation between some deep learning features and NLR. In

the radiomics analysis of HBV-relatedHCC,whichwas closely related

to inflammation, we speculated deep learning features were a good

complement to traditional radiomics analysis. The AUCs of the

combined model also corresponded to our thoughts, and the C-

index and the decision curve both verified the good predictive

performance of the combined model.

This study is subject to certain limitations, including its single-

center design and retrospective nature. Furthermore, the sample

size is relatively small, which may affect the generalizability of the

findings. To develop and validate an accurate prediction model for

microvascular invasion (MVI) grading, additional research

involving larger populations is imperative.
5 Conclusion

In conclusion, the combined model achieves satisfactory

preoperative prediction of MVI in HBV-related HCC. In other

models, the radiomics model has good prediction performance, and

deep learning features are a better complement for MVI prediction.

NLR is positively correlated withMRI features. The nomogram based

on clinical risk factors and MRI characteristics would help clinicians

and patients make an individualized risk assessment of MVI.
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