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Background: Detailed and invasive clinical investigations are required to identify

the causes of haematuria. Highly unbalanced patient population (predominantly

male) and a wide range of potential causes make the ability to correctly classify

patients and identify patient-specific biomarkers a major challenge. Studies have

shown that it is possible to improve the diagnosis using multi-marker analysis,

even in unbalanced datasets, by applying advanced analytical methods. Here, we

applied several machine learning algorithms to classify patients from the

haematuria patient cohort (HaBio) by analysing multiple biomarkers and to

identify the most relevant ones.

Materials and methods: We applied several classification and feature selection

methods (k-means clustering, decision trees, random forest with LIME explainer

and CACTUS algorithm) to stratify patients into two groups: healthy (with no clear

cause of haematuria) or sick (with an identified cause of haematuria e.g., bladder

cancer, or infection). The classification performance of the models was

compared. Biomarkers identified as important by the algorithms were also

analysed in relation to their involvement in the pathological processes.

Results: Results showed that a high unbalance in the datasets significantly

affected the classification by random forest and decision trees, leading to the

overestimation of the sick class and low model performance. CACTUS algorithm

was more robust to the unbalance in the dataset. CACTUS obtained a balanced

accuracy of 0.747 for both genders, 0.718 for females and 0.803 for males. The

analysis showed that in the classification process for the whole dataset:

microalbumin, male gender, and tPSA emerged as the most informative

biomarkers. For males: age, microalbumin, tPSA, cystatin C, BTA, HAD and

S100A4 were the most significant biomarkers while for females microalbumin,

IL-8, pERK, and CXCL16.
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Conclusions: CACTUS algorithm demonstrated improved performance

compared with other methods such as decision trees and random forest.

Additionally, we identified the most relevant biomarkers for the specific patient

group, which could be considered in the future as novel biomarkers for diagnosis.

Our results have the potential to inform future research and provide new

personalised diagnostic approaches tailored directly to the needs of

the individuals.
KEYWORDS
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1 Introduction

Haematuria is defined as the visible presence of red blood cells

(RBCs) in urine (gross haematuria) or at least three RBCs in high-

powered field upon microscopic evaluation of a urine sample.

Prevalence of microhaematuria among the general population is

relatively high. It was estimated that in 2.4 -31.1% of total urine

samples, RBCs are detectable in concentrations exceeding a fixed

reference threshold (1–4). A haematuria patient population can be

heterogenous with differences in age, gender, risk factors,

geographical diversity etc., and it can have very different aetiology,

including the presence of genitourinary malignant diseases. While

most commonly cases of haematuria are non-malignant (e.g.,

infection, kidney or bladder stones, benign prostate enlargement,

menstrual blood contamination), first-stage assessment should

always be focused on the physical examination and collection of

patient history, current treatment (e.g., anticoagulants) (5), lifestyle

(e.g., smoking, alcohol consumption, strenuous physical activity),

occupational hazards and risk factors (6). Dipstick urine analysis can

be performed to confirm or exclude some causes of haematuria, for

example, infection. For non-obvious cases, further investigation

should be performed. Currently, cystoscopy together with urine

cytology is the gold standard for bladder cancer diagnosis.

Cystoscopy is an invasive procedure which is not without risk e.g.,

infection, bleeding, and pain. Computed tomography (CT)

urography is warranted for patients who require upper urinary

tract investigation, which raises concerns of radiation exposure (7).

A retrospective study by Georgieva et al. (8) compared the benefits,

harms, and costs of different haematuria evaluation guidelines and

showed that guidelines which missed the fewest cancers also

generated the highest number of radiation-induced cancers, false-

positive cases, and diagnostic procedures costs (Table 1). They also

showed that uniform CT imaging for patients is associated with a

limited increase in cancer detection, high personal cost and is

generally uneconomical.

Given the high prevalence of haematuria, the numerous

potential causes, and the significant human and financial costs

involved, the development of non-invasive diagnostic tests, based
02
on biomarkers from urine or blood samples, would be a major step

forward. However, this presents a significant challenge. To date,

only two biomarkers - nuclear matrix protein (NMP22) and bladder

tumour antigen (BTA) - have been approved by the Food and Drug

Administration (FDA) for the detection and monitoring of bladder

cancer. Unfortunately, commercially available tests for both

biomarkers have low specificity and high false-positive rates

(12, 13). Data shows that combining biomarker screening

(NMP22) with cytology may improve patient screening (14), but

current guidelines do not recommend the use of urinary tumour

biomarkers or cytology in the initial evaluation of microhaematuria.

To improve the diagnostic pathway, current research has focused

on shifting towards a multi-biomarker approach. This approach has

been proven to provide improvements in cancer detection (15, 16)

while also being cost-effective in differentiating patients with benign

and malignant disease (17). The complexity of the diverse causes of

haematuria necessitates studies with a large number of possible

biomarkers, with the associated challenge of identifying the most

informative without creating false discoveries. This makes multi-

biomarker studies more complex and less tractable, creating a need

for computational tools to generate personalised insights from the

available data (18–20).

Numerous studies have proved that by using advanced

analytical methods, it is possible to create algorithms that can

improve patient diagnosis with multiple biomarker analysis (15,

21, 22). Machine Learning (ML) (23, 24), especially, has been able to

produce unique insights using different data sources (25–27). One

of the major challenges of traditional ML models is poor

generalisation, due in part to low robustness to unbalanced

distribution of classes within a dataset, which is a common

scenario in medical data. These models pay equal attention to the

majority and minority classes. As a result, they often perform poorly

on the minority class, especially when the imbalance in the data is

extreme (28). Data dimensionality is another major challenge for

ML algorithms, especially when dealing with small datasets where

the number of features exceeds the number of samples and where

different types of data (e.g. continuous or categorical) are present.

Non-meaningful parameters need to be separated to subtract
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hidden information and provide actionable insights to clinicians.

This could be achieved at the level of domain experts and data-

driven features that could be incorporated into the model design.

The final challenge for ML, and currently a requirement for any

clinical decision support system, is explainability. Explainability is a

property of an AI algorithm that allows a human to understand why

a particular decision was made. In practice, explainability can either

be an inherent property of an algorithm, or it can be approximated

by other methods. Many modern ML methods can outperform

humans in certain analytical tasks (e.g., pattern recognition), but

they lack explainability, so the explanation must be approximated.

On the other hand, the performance of traditional explainable

methods is usually inferior to modern state-of-the-art methods

such as neural networks, so the trade-off between performance and

explainability is a major challenge for modern clinical decision

support systems.

The Haematuria Biomarker (HaBio) dataset (22) is a unique

collection of data illustrative of a patient population presenting with

haematuria and includes an extensive range of biomarkers

preselected based on literature searches and clinical experience. At

the same time, HaBio presents all the challenges for ML described

above. Considering the need for novel biomarker discovery for

haematuria patients’ stratification and ensuring the models

explainability, we analysed the HaBio cohort using various ML

algorithms, including the recently developed CACTUS explainable

classification algorithm (29, 30). To facilitate the diagnosis procedure

and provide actionable insights for clinical patient management, we

have provided a selection of biomarkers that could be useful in

clinical practice, along with their possible decision boundaries.
2 Materials and methods

2.1 HaBio cohort

The HaBio Study was a three-way collaborative project between

Queen’s University Belfast, Northern Ireland Health Trusts and

Randox Laboratories Ltd.
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HaBio was funded by Invest Northern Ireland and Randox

Laboratories Ltd. Ethical approval was obtained from the Office for

Research Ethics Committee Northern Ireland (11/NI/0164) to recruit

patients who satisfied the HaBio study inclusion criteria (22). The

protocol for HaBio was also reviewed by hospital review boards and

was conducted according to the Standards for Reporting of Diagnostic

Accuracy (STARD) (31). A total of n=677 patients were recruited to

HaBio, of which n=2 patients were excluded due to incomplete data.

Therefore, the complete dataset is available for n=675 patients (n=485

males and n=190 females). There are significantly more males (2.5:1

ratio of males to females) which reflect “real world” urology patterns of

presentation to haematuria clinics at the time of recruitment. This

observation is borne out by the large number of men with benign

prostatic hyperplasia (BPH) as a cause for haematuria. Within each

gender there was a 2:1 ratio of non-cancer versus cancer (males 1.9:1

(319:166); females 2.7:1 (139:51), Figure 1).
2.2 Biomarker analysis

At the time of recruitment, a research nurse or clinician

measured each patient’s height, weight and blood pressure while

also recording details of medical history, lifestyle/behaviours, and

occupations before collecting urine (25ml) and blood (35ml)

samples. In the collected samples, 80 biomarkers previously

indicated as potential biomarkers of urinary tract diseases,

representing a range of biological pathways, were measured

(Supplementary Materials, Table A). Patient samples were

analysed in triplicate and the results were expressed as a mean ± SD.

In the study, chosen biomarkers were analysed with several

different techniques. At recruitment, patient urine samples were

collected prior to cytoscopic examination and evaluated using the

POC test for NMP22 (BladderChek, Alere, US). Osmolarity

(mOsm) was determined using a Löser Micro-osmometer

according to manufacturer’s instructions (Löser Messtechnik,

Berlin, Germany). Total urinary protein levels (mg/ml) were

measured by Bradford assay (Pierce, Rockford, IL, USA). For

multimarker analysis Biochip Array Technology was used
TABLE 1 Comparison of different haematuria guideline outcomes simulated on the modelled haematuria patient’s cohort.

Dutch Guidelines
(9)

CUA Guideline
(10)

KP Guidelines
(11)

HRI Guidelines
(6)

AUA Guidelines
(4)

Total urinary tract cancers
Cancer
Detected

Cancer
Missed

Cancer
Detected

Cancer
Missed

Cancer
Detected

Cancer
Missed

Cancer
Detected

Cancer
Missed

Cancer
Detected

Cancer
Missed

3514
(2980-4090)

3263
(2260-
3240)

251
(140-400)

3343
(2300-
3290)

172
(100-
300)

3385
(2550-
3600)

130
(60-270)

3399
(2740-
3750)

116
(50-250)

3432
(2760-
3850)

82
(0-80)

False-positive (CT,
ultrasonography, or cystoscopy)

6452
(4040-9410)

6740
(4220-9820)

9099
(6270-12 450)

13 811
(10 800-17 170)

22 189
(17 520-27 370)

Lifetime radiation-
induced cancers

NA NA
108

(34-201)
136

(62-229)
573

(184-1069)

Costs (total US$)
44 254

(8112-129 435)
46 163

(8466-135 063)
51 920

(12 546-143 170)
59 751

(13 434-153 739)
93 886

(21 670-237 374)
fron
(Dutch Urological Association Guidelines, CUA, Canadian Urological Association; KP, Kaiser Permanente Program; HRI, Haematuria Risk Index; AUA, American Urological Association); NA,
not applicable, based on (8).
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(simultaneous detection of multiple analytes from a single patient

urine and/or serum sample) (Randox Clinical Laboratory Services

(RCLS), Antrim, Northern Ireland, UK), other biomarkers were

measured using commercially available ELISA kits. Detailed

description of analytical procedures is provided in Supplementary

Materials. When data was below the Limit of Detection (LOD) or

the Mean Detectable Dose (MDD) for any given test, 90% of the

LOD or the MDD was used in lieu of the actual value for

analysis (22).
2.3 Classical approach

In the study, due to differences in the typical causes of

haematuria and the prevalence of malignant diseases we analysed

data separately for male and female participants, in addition to the

entire cohort. In the pre-processing step, as the data were

characterised by a highly skewed distribution, we performed a log

transformation of the biomarker measurement results for further

analysis to reduce the skewness and replaced missing data with the

median value for the given biomarker. For analysis, urine and serum

biomarkers were used; if the same biomarker was analysed in both

serum and urine samples, serum results are indicated by the word

“serum” in the biomarker name.

Firstly, we performed k-means clustering to assess if analysed

features could be linearly separated. For k-means clustering, we

iteratively tested the number of clusters from 1 to 20 and used the

silhouette width to select the best configuration. We observed that for

all three data subsets, the optimal value of clusters for k-means

clustering was 2, showing that the distribution of features does not

follow clear macro patterns or reflect the underlying number of

causes of haematuria (Figure 2). As it was not possible to distinguish

the number of clusters reflecting the number of underlying classes of

final diagnosis, based on clinical evaluation and experience we

decided to stratify patients into two subgroups, sick and healthy.

The sick population had any of the following possible causes for their

haematuria: chronic kidney diseases, infection, other benign

diagnosis, bladder cancer, history of bladder cancer or other types

of cancer (e.g., prostate cancer, renal cell carcinoma). The healthy
Frontiers in Oncology 04
population included every patient with no causes identified for

their haematuria.

The initial analysis included logistic regression analysis and

assessment of balanced accuracy for each biomarker separately. For

logistic regression, we tested two approaches: linear and, to account

for any possible non-linear relationship between the biomarkers and

the outcome, we also fitted natural cubic splines. The results of the

two approaches were later compared by ANOVA and the best

performing model was selected as the final regression analysis.

Afterwards, we applied binary decision trees and random forest

models. For both models we performed 10-fold cross validation

repeated three times. As the random forest is not an inherently

explainable method, in contrast to the decision trees, we applied the

local interpretable model-agnostic explanations (LIME) algorithm

(32), to provide the explanation of the classification process and

understanding of the biomarkers’ influence on the final class

prediction. LIME focuses on explaining the model’s prediction for

individual cases. LIME generates a new dataset consisting of

perturbed samples and the corresponding predictions and then

trains an interpretable model (regression) on this new dataset,

weighted by the proximity of the sampled cases to the case of

interest. Because a linear model is inherently interpretable, the

fitted weights can be inspected and viewed as proxies for feature

importance and based on the proximity of the values to the perturbed

data point, the cut-off values for individual features can be provided.

All the analysis described in this section were performed in R (33).
2.4 CACTUS classification

To model the healthy and sick classes, we used the CACTUS

(29, 30) algorithm. In the first step, fully anonymized data

abstractions of the quantitative and qualitative biomarker data

were generated by (34) transforming raw biomarker data into

two-stage data abstractions (flips) based on receiver-operator

curve (ROC) theory. These flips were encoded with the last letter

of the label for each biomarker: up (U) abstracts raw data above, and

down (D) below calculated cut-off values. For each biomarker,

significance was determined from the node’s conditional probability
A B

FIGURE 1

Division of the dataset into the study groups (A) and the structure of the study population (B).
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P(ƒ|ci) of the flip ƒ, given the class ci (sick or healthy). To assess how

the conditional probability P(ƒ|ci), will change across the N

considered classes, and to infer their importance for the

classification process, ranks (Rxf) were calculated for each

biomarker according to the to the Equation 1.

Rxf =  o
N
i=1oN

j>i P(xf jci) − P(xf jcj)
�� ��

NC2
(1)

To assess the accuracy of the network’s patient classification we

calculated the (Equation 2). For every patient in the given state “s”

(sick or healthy) the cost function (Cs)   was calculated based on the

corresponding node significance (ss,i) of each biomarker (xi):

Cs =
Yn

i s s,ixi (2)

The cost function with the greater value was the determinant for

patient classification as sick or healthy. Obtained classifications

were compared to real diagnosis groups, marked as true positive

(TP), false negative (FN), true negative (TN) or false negative (FN)

and used to calculate specificity (Equation 3.a), sensitivity (Equation

3.b) and accuracy (Equation 3.c) for all tested models. Due to the

much higher number of sick patients in our study groups, we used

balanced accuracy (a metric which is robust for unbalanced

datasets) to assess model performance.

Sensitivity =
TP

TP + FN
(3a)

Specif icity =  
TN

TN + FP
(3b)
Frontiers in Oncology 05
Balanced   accuracy =
sensitivity + specif icity

2
(3c)

CACTUS has been implemented in Python3 (35).
2.5 Comparison of tested models

We evaluated the performance of each model using the c2 test,
which assesses whether the performance of the model is better than

random chance. To compare the performance of the tested models,

we performed a pairwise comparison of the model results using the

McNemar test on the classification results, with a significance level

of 0.05.
3 Results

K-means clustering was performed to assess how linearly

separable the results were and whether it is possible to distinguish

the final diagnostic group by the structure of the clusters. To

select the best number of clusters, we used the silhouette score for

which the highest value was obtained for two clusters in all analysed

data subsets (k = 2). To visualise how patients with different final

diagnosis groups are distributed within clusters, we have plotted

individual points as biomarkers representing the final diagnosis on

Figure 2. The graph shows that different final diagnosis groups are

clustered within the same clusters, and a significant overlap

of clusters.
A B C

FIGURE 2

K-means algorithm applied to the input features for both genders (A), males (B) and females (C) used for classification. For all data subsets, the
highest silhouette score was obtained for k = 2. Visualisation of the clustering process showed overlap within the final diagnostic group of the
clusters, indicating poor compactness in the clusters. Individual patients are presented as a description of the final diagnosis.
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Assessment of balanced accuracy of the logistic regression

showed that single biomarkers were not specific enough to

discriminate between healthy and sick patients (Supplementary

Materials, Tables B–D). For both genders, the highest accuracy

was obtained for urine cystatin C (0.580, cubic spline), soluble

tumour necrosis factor receptor I (sTNFRI, 0.572, linear model),

and progranulin (0.516, linear model). For females, the three

biomarkers with the best scoring performance were phospho-

extracellular signal regulated kinase (pERK, 0.673, linear model),

microalbumin (0.672, linear model) and chemokine (C-X-C motif)

ligand 16 (CXCL16, 0.667, linear model). In the male data subset,

which is highly unbalanced, no single biomarker gave an accuracy

higher than 0.5.

Decision trees provided simple rule-based models based on a

maximum of 14 biomarkers (including gender) for patient

classification. The most complicated tree was built for a dataset

with patients of both genders. The first branch was built based on

the male gender; resulting in the subsequent branches being gender

specific. The male and female decision trees were similar to the

branches of the tree built for both genders, with some additional

branches. In the case of males, stratification was improved by
Frontiers in Oncology 06
adding decision boundaries based on serum hyaluronic acid

(HAD) and pERK levels, allowing additional healthy individuals

to be distinguished. In the female decision trees, the situation was

reversed; the classification was performed with a lower number of

features and some of the branches of the trees for both genders, such

as vascular endothelial growth factor (VEGF), were pruned. The

highest balanced accuracy of decision tree classification was

obtained when both genders were analysed together (0.640,

Figure 3A), even though the first split was on gender. Separate

stratification for males and females gave lower balanced accuracy

(0.551, Figure 3B and 0.623, Figure 3C), and better significance and

specificity was obtained for females as the data subset was more

balanced (Table 2).

The effectiveness of the random forest classification was also

insufficient to discriminate between sick and healthy individuals

(Table 2). The highest value of balanced accuracy was obtained for

the female data subset (0.665), lower for both genders (0.627) and

the lowest for the male subset (0.512, not statistically significant, p-

value = 0.135). The corresponding values of sensitivity and

specificity showed a bias towards the more prevalent class (sick),

which is most visible in the case of the male data subset (sensitivity:
A

B

C

FIGURE 3

Decision trees created for all three datasets: (A) both genders dataset, (B) males dataset, (C) females dataset.
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1.00, specificity: 0.024), showing that all cases of sick individuals

were correctly classified and only one healthy individual was

correctly classified. We also extracted the top 10 features for

random forest classification (Figure 4A). As can be seen in the

graph, two of the most important features are gender-specific

(serum total prostate specific antigen (tPSA) and gender),

justifying the need to separate female and male cases for analysis

purposes. Several biomarkers such as: microalbumin, osmolarity,

sTNFRI, cystatin C, CXCL16, pERK, progranulin, and patient age

were of high importance for two or three data subsets. Although the

biomarkers were common to the data subsets, as the LIME analysis

showed, the decision boundaries (levels of the biomarkers) and their

contribution (weights) to the final model were different. For

example, for age, which is one of the most important

characteristics, the lowest cut-off value in the case of both genders

was 60 and has a slightly higher influence on the classification of the

healthy category than the sick category; for the male data subset

only, this cut-off value was 61, with the same influence on the

classification. In the case of all analysed data subsets, there were

some biomarkers within certain ranges that had a clear positive or

negative influence on the classification (Figure 4B, and Table 3).

CACTUS classification gave a higher balanced accuracy than

the models described above for all analysed data subsets (0.747 both

genders, 0.803 males, 0.718 females). Moreover, the obtained values

of sensitivity and specificity were more balanced, although the

sensitivity was lower, which indicated a higher false negative rate.

The CACTUS specificity was higher than the specificity for decision

trees and random forests, showing that the classification was not

biased towards the predominant group (sick individuals) (Table 2).

The 10 biomarkers with the highest CACTUS ranks for sick and

healthy individuals in all groups is shown in Figure 5. The ranks

provide information about the average difference between the

classes (sick and healthy) for the probability of the biomarkers
Frontiers in Oncology 07
being in each state (‘U’ or ‘D’), meaning that the higher the rank

value, the greater the difference in at least one of the probabilities.

Like random forest, CACTUS confirmed the need to stratify

patients into subgroups based on gender, as gender was indicated

by CACTUS as the most important factor for the whole population

studied. Additionally, the second most important biomarker was

serum tPSA, a gender-specific biomarker of prostate health and

therefore important in the classification process. Microalbumin was

reported as the third most important biomarker for both genders,

but also received a high score in the gender stratified analysis

(second for men and first for women).

In the male population, age is the highest ranked factor and was

not reported in any of the other subsets analysed. In addition, as in

the random forest analysis, several biomarkers such as serum tPSA,

microalbumin, CXCL16, urinary protein, monocyte chemoattractant

protein-1 (MCP-1), and progranulin were present with a high score

in more than two groups and are therefore more sensitive to

discovering the differences in flips which were more prevalent in

the healthy class, than the sick class. This was visible as a higher

difference in between probabilities of nodes in the healthy.

Interestingly, microalbumin was the only common biomarker in

both male and female results, suggesting a gender-specific

mechanism for haematuria development.

In CACTUS analysis, the flip probabilities indicated whether the

biomarker was generally below (‘D’) or above (‘U’) the calculated cut-

off values; we observed that the distribution of some of the

biomarkers changed significantly between classes. For example,

when looking at the dataset for both genders, we can see that male,

having a serum tPSA above the cut-off value and having high levels of

microalbumin are important factors for classification as sick.We have

also observed that some features were only important for

classification in one class and for the second class there was an

equal or almost equal probability of the flip probabilities. This was the
TABLE 2 Comparison of tested models’ performance, statistical analysis was performed with the c2 test, with significance level of 0.05.

CACTUS

Accuracy Balanced Accuracy Sensitivity Specificity p-value

Both 0.751 0.747 0.753 0.742 < 2.2e-16

Male 0.781 0.803 0.777 0.829 1.944e-11

Female 0.716 0.718 0.703 0.734 3.232e-09

Decision trees

Accuracy Balanced Accuracy Sensitivity Specificity

Both 0.822 0.640 0.922 0.358 < 2.2e-16

Male 0.894 0.551 0.963 0.140 3.238e-4

Female 0.632 0.623 0.676 0.570 1.898e-09

Random Forest

Accuracy Balanced Accuracy Sensitivity Specificity

Both 0.853 0.627 0.978 0.275 < 2.2e-16

Male 0.918 0.512 1.000 0.024 0.135

Female 0.690 0.665 0.812 0.519 3.808e-06
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case in the both genders dataset for sTNFRI, which had the same

probability of flip for healthy individuals (0.5, 0.5), but showed higher

probability (0.836) for sTNFRI being in state (‘U’) for the patients

classified as sick. In the male population, the probability of flips

indicated that being older (0.721), with higher levels of MCP-1

(0.797), serum tPSA (0.649) and sTNFRII (0.836) and reduced

levels of D-dimer (0.676) were important factors in being sick. It is

interesting to note that in the male population, CACTUS

classification detected higher differences in the flip’s probability for

healthy individuals than in sick. In the female dataset we observed the

gradual change in the flip probabilities, i.e., the highest difference in

the flip probability, which was most important for healthy individuals

(microalbumin), had at the same time the lowest difference for sick

individuals and vice versa.
4 Discussion

In the study, we analysed the HaBio cohort, which contains data

from patients presenting with haematuria. One of the challenges

related to the analysis of this dataset is the unbalanced structure of

data, both in terms of gender (male predominance) and the different

number of patients in each disease category. The data structure
Frontiers in Oncology 08
reflects the real-world structure of the patients reporting to a clinician

with haematuria and is related to differences in diagnostic processes

and potential risks. Males, older patients, and smokers have

significantly higher malignancy risk (36–39). On the other hand,

women do not receive the same diagnostic attention, which leads to

delays in urological consultation and poorer oncological outcomes in

bladder cancer (22, 40, 41). It is therefore crucial to provide gender-

specific blood or urine biomarkers which could reduce the time and

harm associated with the current methods, while being affordable and

addressing gender inequalities in the diagnostic process.

A second element contributing to the unbalanced structure of the

dataset was the different number of patients in each category. As k-

means clustering showed it was not possible to distinguish the final

diagnostic group (bladder cancer, benign prostate enlargement,

infections, incidental haematuria, other cancers, and benign

disease) by the structure of the clusters. The best results were

obtained when clustering into two, highly unbalanced clusters

(Figure 2). Although, it is possible to computationally balance

datasets during analysis (42–44) these data reflect the true

distribution of patients presenting to clinicians with haematuria, so

no pre-processing techniques were used to balance the class

distribution. Additionally, initial stratification into healthy and sick

groups could expedite the diagnostic process by referring patients to
A

B

FIGURE 4

Random forest results. (A) Top 10 most important features selected by random forest, (B) LIME analysis results, the cut-off values are presented as
raw values for each biomarker. The value of the mean weight of the biomarkers indicates whether the biomarker, within the specified range, has a
positive (positive value) or negative (negative value) influence for being classified as a sick (S) (red colour) or healthy (H) (blue colour) individual. In
the case of both genders’ dataset analysis there were 4 biomarkers with a positive and 1 with a negative influence on sick class. In the male data
subset, there were 9 biomarkers with a positive and 2 biomarkers with a negative influence on the sick class. In the female data subset, there was 1
biomarker with positive and 1 with negative influence towards the sick class and 1 with positive influence towards the healthy class.
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Drożdż et al. 10.3389/fonc.2024.1401071
TABLE 3 Comparison of the decision boundaries for each algorithm. The cut-off values are shown as raw measurement results.

Marker CACTUS Random Forest (LIME) Decision Tree

Both Male Female Both Male Female Both Male Female

ACR – 1.74 – – –
(1.02,1.59]
(1.59,3.30]

1.31
1.82

1.77
1.31
1.82

Age – 63 –
(60,67]
(68,73]

(61,68]
(68,73]

– 61.5 61.5 –

BTA – 9.92 – – – – – – –

Clusterin – – – –
(102.33, 208.93]
(208.93, 363.08]

– – – –

Creatinine – – 48.39 – – – – – –

Cystatin B – – – (0.84, 10.56] – – – – –

Cystatin C – – –
(6.84,21.04]
(21.04, 43.45]

(20.99, 47.86]
(3.16, 12.30]
(12.30, 33.11]

1.20 1.20 0.83

CXCL16 0.03 – 0.02
(0.02, 0.04]
(0.04, 0.06]

–
(0.01, 0.03]
(0.03, 0.05]

– – –

D-dimer – 16.03 – – – – – – –

Gender M – – F, M – – M – –

HAD – – – –
(0.10, 0.16]
(0.16, 0.27]

– – 0.32 –

Haematuria – – – – – – micro – micro

IL1a – – 2.26 – – – – – –

IL7 1.59 – – – – – – – –

IL8 – – 68.12 – –
(20.89, 77.62]
(77.62, 380.19]

– – –

MCP_1 46.35 47.33 – – – – – – –

Microalbumin 7.87 13.43 7.87 (10.23, 41.69] – (5.38, 15.70] 7.90 – 7.90

Midkine 144.76 – 68.12 – – – – – –

NGAL – – – –
(125.89, 208.92]
(208.92, 436.52]

– – – –

pERK – – 224.38
(186.21, 288.40]
(288.40, 501.19]

–
138.04, 275.42]
(275.42, 457.0]

– 475.75 –

Osmolarity – – –
(363.08, 562.34]
(562.34, 724.44]

(407.38, 588.84]
(588.84, 741.31]

– – – –

Progranulin 6.72 – 6.72 –
(8.09, 12.94]
(12.94, 19.91]

(4.69, 16.11] – – –

serum_CD44 – – – – – – 65.22 65.22 –

serum_CEA – – – – –
(0.90, 1.65]
(1.65, 2.82]

– – –

serum_CRP – – – – 1.33 – 1.33

serum_Cystatin C – 0.98 – – – – 0.84 – –

serum_EGF – – – – –
(5.58, 12.36]
(12.36, 30.20]

23.05 – 23.05

serum_HDL – – – –
(0.92, 1.09]
(1.09, 1.30]

– – – –

serum_IL4 – – – – – – 3.36 3.36 –

(Continued)
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TABLE 3 Continued

Marker CACTUS Random Forest (LIME) Decision Tree

Both Male Female Both Male Female Both Male Female

serum_PAI_1/tPA – – 6.23 – –
(4.52, 6.67]
(6.67, 10.47]

– – –

serum_S100A4 – – – –
(28.18, 46.77]
(46.77, 72.44]

– 63.75 – 63.75

serum_tPSA 0.37 1.03 –
(0.07, 0.80]
(0.80, 2.63]

– – – – –

serum_VEGF – – – – – – 221.68 – 221.68

sTNFRI 0.3 – 0.29 (0.7, 1.16]
(0.46, 0.81]
(0.81, 1.28]

– – – –

sTNFRII – 0.34 – – – – – – –

TGFb1 – – – – – – 26.78 26.78 –

Urinary Protein 0.104 0.103 – – – – – – –
F
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For LIME results, only the mid-ranges are shown (upper and lower ranges are presented in Supplementary Materials, Table E). The decision boundaries made by LIME go as follows: below the
indicated range, as a range is presented in the table, and above the indicated range. The unit of the values presented goes as follows: BTA (U/ml), serum_CD44 (ng/ml), serum_CEA (ng/ml),
Clusterin (ng/ml), Creatinine (mmolL), serum_CRP (mg/ml), CXCL16 (ng/ml), Cystatin B (ng/ml), Cystatin C (ng/ml), serum_Cystatin C (ng/ml), D-dimer (ng/ml), EGF (pg/ml), serum_HAD
(U/l), serum_IL-4 (pg/ml), IL-7 (pg/ml), IL-8 (pg/ml), MCP-1 (pg/ml, Microalbumin (mg/l), Midkine (pg/ml), NGAL (ng/ml), Osmolarity (mOsm), pERK (pg/ml), Progranulin (ng/ml),
serum_tPSA (ng/ml), Protein (mg/ml), serum_S100A4 (ng/ml), TGF-b1 (pg/ml), sTNFRI (ng/ml), serum_VEGF (pg/ml), serum_HDL (mmol/l). "-" biomarker was not selected by
given algorithm.
A B C

FIGURE 5

CACTUS analysis results for all three data subsets: (A) both genders dataset, (B) males dataset, (C) females dataset. The top panel presents the ten
most important biomarkers according to the rank values. The bottom panel presents probability of flips for sick and healthy in descending order of
rank value.
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the most appropriate specialist or for more targeted diagnostic and

less invasive testing, which could be beneficial for patients

and clinicians.

In the case of decision trees and random forests we observed a

strong influence of the unbalanced nature of the dataset on the

classification process, while CACTUS was the most robust. As the

imbalance between sick and healthy increased (111:79 for females,

152:523 for both genders and 41:444 for males) the discrepancies

between the model metrics (specificity, sensitivity, accuracy, and

balanced accuracy) also increased (Table 2). This was particularly

evident for the male random forest analysis, where the balanced

accuracy was 0.512 and the specificity 0.024, meaning that in this case

only one healthy individual was classified as healthy. This result was

not statistically significant, meaning that there was no difference

between the classification result and random chance. A possible

explanation for this was that random forests build each constituent

tree from a bootstrap sample of the training data. There was a

significant chance that bootstrapped samples from extremely

unbalanced datasets could contain few or even none of the

minority class, resulting in a model with poor performance. On the

contrary, CACTUS despite the high prevalence of sick classes in the

males dataset, obtained very high specificity (0.829), meaning that

the algorithm was able to detect a high number of healthy patients

and could potentially exclude them from subsequent invasive

diagnostic procedures. The high performance of CACTUS was a

result of its design. The classification process was based on the

probability of each feature being in the state “U” or “D” for the

given class which was not influenced by the number of cases in each

class. Therefore, when the imbalance was high (both genders and

males dataset) CACTUS generates the statistically significant

improvement in the classification (Table 4) when comparing to

random forest and decision trees.

Logistic regression, showed that single biomarkers were not

effective in identifying sick or healthy patients (Supplementary

Materials, Tables B-D). It has been shown that the use of multiple

biomarkers can improve the stratification of patients with bladder

cancer (22), which has been confirmed by our analysis. The highest

improvement in balanced accuracy was obtained for the male subset

with the CACTUS classifier (0.803 versus 0.500 for single biomarker

analysis). We also observed improvements in balanced accuracy for
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both genders (from 0.572 for the best single marker to 0.747) and

for females (from 0.672 to 0.718) when using CACTUS.

Interestingly, this improvement was not as significant using the

other two methods (Table 2).

The aim of the study was not only to classify patients, but also to

identify potential biomarkers and their decision boundaries

(Table 3). As shown in Table 3, the most important biomarkers

differ widely between the algorithms and the data subsets tested. For

the dataset of both genders, the most important features for all

algorithms were gender and microalbumin. Microalbumin has been

described in the literature as a marker of renal dysfunction (45, 46).

There is some evidence that elevated levels of microalbumin may be

associated with some types of cancer, including cancer of the

urinary tract (47). In the literature, values of microalbumin below

20 mg/mL are considered physiologically normal, but according to

our analysis, the decision boundaries could be much lower, >5.38

mg/mL or >13.43 mg/mL depending on the model and dataset

(Table 3). The values above the decision boundaries are classified as

important for the stratification process and are more indicative of

sick individuals. Therefore, when using the official reference values,

it is possible to miss some individuals with developing pathology.

Another important biomarker selected by random forest and

CACTUS algorithms for both genders dataset was serum tPSA. The

decision boundaries for serum tPSA were underestimated when

analysed in the both genders dataset due to the presence of female

samples, where in most cases the serum tPSA level was below the

detection limit. For the male dataset, serum tPSA was only indicated

by CACTUS, with a level of 1.03 ng/mL being indicative of a

pathological state. This is well below the reference values even in the

youngest men. PSA is prostate specific antigen and elevated levels of

PSA could be caused by conditions that lead to disruption of the

epithelial cells of the prostate basal membrane, such as prostatitis,

benign prostatic enlargement (BPE), prostate biopsies and surgery

or decreased by medication, including 5-alpha reductase inhibitors

(48–51). As the male dataset includes patients with different

underlying causes of haematuria, not all of which affect PSA

levels, observed values may be lower than reference levels even in

the presence of BPE in the study group. Gender stratification is also

strongly associated with age, which was identified as one of the

important features by decision trees when analysing the whole

dataset, and by CACTUS and random forest when analysing males

only. It is known that biomarkers (such as cytokines, lipids or

organ-specific biomarkers such as PSA (52–54)) change with age, as

does the likelihood of developing age-related conditions such as

prostate enlargement (55) or bladder cancer (56). According to our

results patients over 60 years of age, and especially males over 63

(CACTUS estimation) should receive special attention during the

diagnostic process, as risk of developing disease increases. These

results are in line with current American Urological Association

(AUA) guidelines (4), which place male patients over the age of 60

at high risk of malignancy.

Several biomarkers important for bladder cancer screening were

also indicated in the models in the male dataset, i.e., BTA

(CACTUS), HAD (random forest and decision tree), and S100

calcium-binding protein A4 (S100A4) (random forest), however

they were not among the most important features in the respective
TABLE 4 Pairwise comparison of the model’s performance for the data
subsets with McNemar test.

Both genders Decision trees Random forest

Cactus 2.2e-16 2.2e-16

Decision trees 2.51e-05

Males Decision trees Random forest

Cactus < 2.2e-16 < 2.2e-16

Decision trees 0.088

Females Decision trees Random forest

Cactus 0.088 4.93e-07

Decision trees 0.078
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models. This may be due to the wide variety of diseases underlying

haematuria in the datasets. BTA (12, 13), HAD (57) and S100A4

(58) are closely related to tumourigenesis, so the addition of samples

from individuals without malignant disease could influence the

distribution of these features, making them less important for the

classification process.

For the female stratification process, many of the most important

characteristics differ from the male and both genders datasets. One of

the selected biomarkers is interleukin-8 (IL-8) measured in urine. IL-

8 is an angiogenic factor associated with inflammation and

carcinogenesis. It has been shown that elevated urinary levels of IL-

8 are associated with urothelial cell carcinoma (59, 60). In the study of

Urquidi et al. (61) it has been shown that the urinary level of IL-8 in

patients is elevated when compared to healthy controls with the

median value of 128.43 pg/ml vs. 0 pg/ml, respectively. Our analysis

set the decision boundaries at 68.12 pg/ml (CACTUS) and above

20.89 pg/ml (random forest), which is comparable to previously

obtained data and allows a more detailed classification of patients. It

is important to note that IL-8, as a pro-inflammatory cytokine, is also

elevated in the samples of patients with urinary tract infections (59),

so it should be used more as a biomarker of pathological conditions

rather than specific diseases.

Other biomarkers that are important in stratifying women are

the phosphorylated form of ERK and epidermal growth factor

(EGF). ERKs are members of the mitogen-activated protein

kinase (MAPK) family and are involved in cell cycle regulation

and tissue proliferation. MAPK signalling is active in both early and

advanced stages of tumourigenesis and promotes tumour

proliferation, survival, and metastasis (62). EGF has also been

shown to activate the MAPK/ERK pathway (63, 64). EGF, acting

through the EGF receptor, promotes cancer development (65). EGF

has been shown to promote bladder cancer cell proliferation (66).

To the best of our knowledge, this is the first time that EGF has been

described as a potential biomarker for the detection of the pathology

related to urinary tract cancer, providing an initial estimate of the

possible concentration of the biomarker for decision making.

Several biomarkers were common to more than one group

including CXCL16, cystatin C and microalbumin (described above).

CXCL16 is a cholesterol receptor and a chemokine with a potential

role in vascular injury, angiogenesis, and inflammation. CXCL16

has previously been described to be elevated in patients with

urothelial cancer (67, 68) and diabetic kidney disease (69). As

CXCL16 is not a routinely studied biomarker, reference values for

it have not yet been described, but according to our studies, elevated

levels are associated with the pathological causes of underlying

haematuria. Urinary levels of CXCL16 higher than 0.1 ng/mL or 0.3

ng/mL (depending on the gender and the model, Table 3), may be of

use in the stratification of patients presenting with haematuria.

Cystatin C was also suggested as a potential biomarker by

several models, when measured in urine and serum (Table 3).

Cystatin C is a biomarker produced by all nucleated cells and is

freely filtered by the kidney with almost complete reabsorption in

the proximal tubule and no significant urinary excretion. It has been

postulated that serum cystatin C levels may be a more stable

alternative to creatinine for glomerular filtration rate (GFR) (70)

and a potential new biomarker of renal dysfunction (71, 72). In
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addition, some studies have shown that decreased serum cystatin C

levels may be present in bladder cancer (73). There is also some

evidence of increased expression of CST3 mRNA in higher-risk

prostate cancer patients compared with those at lower-risk (74), but

the utility of cystatin C (both serum and urine) requires further

study. Our analysis showed that upper decision boundary for

urinary cystatin C levels could be set up between 0.83 ng/ml

and1.2 ng/ml (decision trees) and 6.84 ng/ml (random forest) are

indicative of disease status. For men, the values are 1.2 ng/ml and

20.99 ng/ml (depending on the gender and the model, Table 3). As

there are no officially established values for urinary cystatin C,

reference values have been suggested at the level of 0.119-0.213 mg/

L (75) or 0.06 - 0.16 mg/L (76) which is much higher than our study

suggested. There are well established reference values for serum

cystatin C which are around 0.58 - 1.02 mg/L (77). This is similar to

the decision limits given by CACTUS for males (0.98 mg/L) and

decision trees for both genders (0.84 mg/L).

Other biomarkers which were not common to all datasets or

were only indicated by one of the algorithms are involved in

different biological pathways, including inflammation (C-reactive

protein (CRP), HAD, IL-8, MCP-1, Midkine, sTNFRI, neutrophil

gelatinase-associated lipocalin (NGAL)) and metastasis (cluster of

differentiation 44 (CD44), carcinoembryonic antigen (CEA),

cystatin B, IL-8, NGAL, transforming growth factor beta-1 (TGF-

b1)) which, after additional investigation, could also lead to the

discovery of new clinically useful biomarkers.

In the study, we identify several biomarkers that have not been

studied in relation to haematuria, or biomarkers without established

reference values. Although this is a retrospective study, it may point

the way for future research. We believe that several of the selected

biomarkers (CXCL16 for both genders, HAD and S100A4 for males

and IL-18, pERK and EGF for females) may have the potential to be

introduced into routine diagnostics in the future, but this will

require further work not only to establish reference values but

also to better understand underlying mechanisms.

Notably some guidelines no longer recommend invasive testing

for microscopic haematuria, and this seems to improve general

patient management (78, 79). Given the challenges described in the

diagnostic process, including the high cost (economic and personal)

the proposed pre-stratification of patients with biomarker screening

could be a further improvement. However, for people with

macroscopic haematuria, cystoscopy is still recommended. In the

HaBio cohort, 48% of patients with macroscopic haematuria did not

have malignancy and had to undergo invasive diagnosis. Non-

invasive methods based on biomarker screening could change the

approach to the initial assessment of haematuria, reducing the

number of false-positive and false-negative cases and providing

affordable and time-efficient diagnostic procedures.
5 Conclusions

In this work, we addressed the challenging problem of

diagnosing patients presenting with haematuria into two

subclasses (healthy or sick), which could enable the introduction

of improvements in patient management, allowing for a more
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efficient use of healthcare resources. With multiple possible causes

and large variations in the number of patients with each condition,

we addressed the problem of analysing unbalanced datasets in a

medical setting and showed that by carefully selecting the models

applied, it is possible to perform meaningful analysis even on

challenging datasets. We focused on both classification and

explanatory power to aid decision making. Although we were able

to classify patients with satisfactory accuracy and provide decision

boundaries for each of the biomarkers, our analyses were based on a

retrospective study and further work is required to introduce the

proposed biomarkers into clinical practice. Nevertheless, the

classification obtained and the selection of biomarkers provided

could be used to inform guidance for healthcare professionals to

develop less invasive, faster and more economical strategies for

patient disease management.
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