
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Eric Edward Sigmund,
New York University, United States

REVIEWED BY

Xin-Wu Cui,
Huazhong University of Science and
Technology, China
Anum Kazerouni,
University of Washington, United States

*CORRESPONDENCE

Yong Wang

drwangyong77@163.com

Lin Li

linlin77216@sina.com

Qian Li

754427296@qq.com

†These authors have contributed equally to
this work

RECEIVED 14 March 2024
ACCEPTED 25 April 2024

PUBLISHED 10 May 2024

CITATION

Sun C, Gong X, Hou L, Yang D, Li Q, Li L and
Wang Y (2024) A nomogram based on
conventional and contrast-enhanced
ultrasound radiomics for the noninvasively
prediction of axillary lymph node metastasis
in breast cancer patients.
Front. Oncol. 14:1400872.
doi: 10.3389/fonc.2024.1400872

COPYRIGHT

© 2024 Sun, Gong, Hou, Yang, Li, Li and Wang.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 10 May 2024

DOI 10.3389/fonc.2024.1400872
A nomogram based on
conventional and contrast-
enhanced ultrasound radiomics
for the noninvasively prediction
of axillary lymph node metastasis
in breast cancer patients
Chao Sun1†, Xuantong Gong1†, Lu Hou2, Di Yang1, Qian Li3*,
Lin Li4* and Yong Wang1*

1Department of Ultrasound, National Cancer Center/National Clinical Research Center for Cancer/
Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College,
Beijing, China, 2Department of Radiation Oncology, National Cancer Center/National Clinical
Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking
Union Medical College, Beijing, China, 3Department of Ultrasound, Affiliated Cancer Hospital of
Zhengzhou University, Zhengzhou, China, 4Department of Diagnostic Radiology, National Cancer
Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical
Sciences and Peking Union Medical College, Beijing, China
Background: This study aimed to investigate whether quantitative radiomics

features extracted from conventional ultrasound (CUS) and contrast-enhanced

ultrasound (CEUS) of primary breast lesions can help noninvasively predict axillary

lymph nodes metastasis (ALNM) in breast cancer patients.

Method: A total of 111 breast cancer patients with 111 breast lesions were

prospectively enrolled. All the included patients received presurgical CUS

screening and CEUS examination and were randomly assigned to the training

and validation sets at a ratio of 7:3 (n = 78 versus 33). Radiomics features were

respectively extracted based on CUS and CEUS using the PyRadiomics package.

The max-relevance and min-redundancy (MRMR) and least absolute shrinkage

and selection operator (LASSO) analyses were used for feature selection and

radiomics score calculation in the training set. The variance inflation factor (VIF)

was performed to check the multicollinearity among selected predictors. The

best performing model was selected to develop a nomogram using binary

logistic regression analysis. The calibration and clinical utility of the nomogram

were assessed.

Results: The model combining CUS reported ALN status, CUS radiomics score

(CUS-radscore) and CEUS radiomics score (CEUS-radscore) exhibited the best

performance. The areas under the curves (AUC) of our proposed nomogram in

the training and external validation sets were 0.845 [95% confidence interval (CI),

0.739-0.950] and 0.901 (95% CI, 0.758-1). The calibration curves and decision

curve analysis (DCA) demonstrated the nomogram’s robust consistency and

clinical utility.
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Conclusions: The established nomogram is a promising prediction tool for

noninvasive prediction of ALN status. The radiomics features based on CUS

and CEUS can help improve the predictive performance.
KEYWORDS

axillary lymph node, breast cancer, radiomics, conventional ultrasound, contrast-
enhanced ultrasound
1 Introduction

Breast cancer is the most common cancer and the leading cause

of tumor-related mortality in female patients worldwide (1). Though

about 98.6% of breast cancer patients could survive for 5 years after

the diagnosis, this rate would decrease to 84.4% in the presence of

axillary lymph node metastasis (ALNM) (2, 3). Axillary lymph node

(ALN) status is an independent prognostic indicator for disease-free

survival and overall survival in early-stage patients with breast cancer

(4). The correct preoperative staging of ALN status is of important

clinical significance for the optimization of clinical decision.

Currently, axillary lymph node dissection (ALND) is the widely

recognized method for identifying metastatic ALNs, which is

invasive and associated with a series of complications including

lymphedema, nerve injury, abnormal function (5, 6). To minimize

unnecessary body damage, the sentinel lymph node biopsy (SLNB)

has become the preferred approach for evaluating ALN status.

However, SLNB is also accompanied with a series of side effects

such as infection, allergies to tracer agents, skin staining, longer

surgical times and higher surgical trauma (7–9).

Conventional ultrasound imaging (CUS) is a commonly

recommended method for preoperative assessment of the ALN

status, owing to its convenience, radiation-free and non-invasive

advantages. However, the value of CUS in identifying ALNM is

limited, with a sensitivity ranging from 48% to 87% and a specificity

ranging from 55% to 97% (10). For the ALN involved with micro-

metastasis, it will become imperceptible on CUS images. To tackle this

issue, recent studies have attempted to exploit the ultrasonic features of

primary breast lesions to predict ALNM (11–13). These ultrasonic

features encompassed both the morphological information derived

fromCUS and the functional information derived fromCEUS (11–13).

However, the predictive performances based on these features are not

excellent. The development of more effective assessment methods for

noninvasive prediction of ALNM is imperative.

Radiomics is a widely applied technique for extracting high-

throughput features from medical images. A great amount of high-

dimensional features including shape, intensity and texture

information that were unable to observe with the naked eye can

be obtained and objectively analyzed using radiomics method

(14, 15). Based on CUS images of primary breast tumor,

ultrasound radiomics has been applied to establish prediction

model for ALN status in several studies (16–18).
02
However, there is currently no study reporting the utility of

radiomics features derived from CEUS in predicting ALN status in

patients diagnosed with breast cancer. On the basis of routine CUS

screening among breast cancer patients, it is convenient to perform

CEUS and obtain the perfusion information regarding the primary

breast lesions. In this study, we aimed to investigate whether

quantitative radiomics features derived from both CUS and CEUS

could help improve the predictive performance of ALNM.
2 Materials and methods

This was a single-center prospective study approved by the

ethics committee of the cancer hospital of the Chinese Academy of

Medical Sciences. The enrolled patients had given their informed

consent to participate this study.
2.1 Patient selection and sample
size estimation

From March 2019 to January 2022, a total of 111 breast lesions

from 111 female patients were enrolled in this study based on the

following inclusion criteria: (1) patients who were aged ≥ 18 and

diagnosed with breast malignant cancers by postoperative pathology

results. (2) with the presence of measurable lesions (≥1) proven by

conventional ultrasound (CUS) and contrast enhanced ultrasound

(CEUS) performed before any interventional treatment, including

core needle biopsy, neoadjuvant chemotherapy, or surgery. (3) with

complete baseline CUS images of breast lesions and ipsilateral axillary

lymph node (ALN) assessment based on CUS features. (4) with

complete baseline CEUS videos of breast lesions. (5) with clearly

verified ALN status by pathology after sentinel lymph node biopsy

(SLNB) or axillary lymph node dissection (ALND). The exclusion

criteria were as follows: (1) currently has or had a history of

malignant tumors besides breast cancer. (2) allergic to ultrasound

contrast agents or other contraindication for ultrasound contrast

agent application. The enrolled patients were assigned numbers and

subjected to stratified random sampling based on the pathological

status of ALNs in order to create a training set and an external

validation set at a ratio of 7:3 (Figure 1).

The sample size estimation was based on the reported axillary

lymph node metastasis (ALNM) incidence in breast cancer patients
frontiersin.org
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and the principle of 10 outcome events per variable (19–21). Using

an estimated ALNM incidence of 0.45 in the study population and

for three predictors, we aimed to enroll 67 breast cancer patients but

actually enrolled 70 in the training set.
2.2 Clinical and pathological
information collection

The clinical and pathological characteristics of the enrolled

patients, including age, breast tumor size (measured by CUS),

breast tumor histological type, pathological ALN status, breast

tumor receptor (estrogen receptor, ER; progesterone receptor, PR;

human epidermal growth factor receptor, Her-2) status, were

collected from the medical records system. All the breast lesions

were surgically removed, following by ALND. The breast tumor

histology and pathological ALN status were documented according

to the postoperative pathological results.
2.3 CUS examination procedure and CUS-
reported ALN status

The CUS was performed by two senior sonographers (5 years’

experience in CUS diagnosis of breast tumor) using Philips EPIQ5

ultrasonic diagnostic equipment (Philips, Bothell, WA) with high
Frontiers in Oncology 03
frequency linear array probes to choose the target breast lesion and

best sonographic sections for the observation. The whole breast

underwent CUS screening and the identified breast lesions were

graded based on the second edition of the American College of

Radiology Breast Imaging Reporting and Data System for US (22).

The breast lesion with BI-RADS grade 4C or BI-RADS grade 5 was

considered as suspiciously malignant. The lesion size was measured

on CUS images. If multiple breast lesions were suspiciously

malignant in a patient, the biggest one was selected as the target

lesion. The maximum transverse and longitudinal sections of each

target lesion were respectively captured and stored, eventually

obtaining two CUS images per target lesion. The ALN status was

also evaluated by CUS. An ALN was defined as CUS-reported

positive ALN when it presented one of the following features:

irregular cortical thickness of greater than 3 mm, longest-to-

shortest axis ratio less than 2, or absence of a fatty hilum (23).

CUS images of target lesions and ALNs were initially stored in a

Digital Imaging and Communications in Medicine (DICOM)

format and subsequently converted to a Joint Photographic

Experts Group (JPEG) format for further analysis.
2.4 CEUS examination procedure

The CEUS was also performed by two senior sonographers (5

years’ experience in CEUS diagnosis) using the same ultrasonic
FIGURE 1

Flowchart for the patient selection criteria. CUS, conventional ultrasound; CEUS, contrast-enhanced ultrasound. SLNB, sentinel lymph node biopsy;
ALND, axillary lymph node dissection.
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diagnostic equipment mentioned in CUS examination. First, the

lyophilized powder of contrast agent (Sono Vue, Bracco SpA, Milan,

Italy) was reconstituted by adding 5 mL of 0.9% saline and shaking

to form a homogeneous microbubble suspension. Second, the real-

time imaging of double-frame CEUS mode was activated after the

proper ultrasonic section of the target lesion was displayed by CUS.

Then, a bolus of 4.8-mL suspension of the contrast agent was

administered via antecubital vein. The continuous storage of CEUS

imaging and chronograph were initiated immediately following the

injection of the contrast agent, lasting for a duration of 3 minutes.

The CEUS imaging data was initially stored as a dynamic video with

a DICOM format and subsequently converted to an Audio Video

Interleaved (AVI) format for further analysis.
2.5 Region of interest segmentation

Next, two CUS images (JPEG format) and one CEUS

video (AVI format) of each target lesion was used for region of

interest (ROI) segmentation. For CUS images, the ROI was

delineated around the boundary of the target lesion. If the

hyperechoic halo was present in CUS images, the boundary was

positioned outside hyperechoic halo. For CEUS videos, a series of

continuous frames of the CEUS video formed the CEUS images for

target lesion. A rectangular box was outlined in the frame that can

clearly displayed the tumor area and a computer vision algorithm

was subsequently used to track and draw the ROI sketches ac nross

the other frames in the video (24). The example of target lesion

delineation based on CUS images and CEUS video frames were

listed in Figure 2.
2.6 Feature extraction, selection and
radiomics score calculation

The radiomics features were extracted from the ROI delineated

based on CUS and CEUS images, respectively. An open-source
Frontiers in Oncology 04
pyradiomics package (http://github.com/Radiomics/pyradiomics)

was used to extract shape features, first-order statistical features,

and texture features from both the original images and transformed

images, respectively. The transformed images were generated by

performing 2D discrete wavelet decomposition and reconstruction,

or filtering by the Laplacian of Gaussian method with different

sigma parameters. Specifically, the shape features extracted from

CEUS images were excluded due to the limitations of using a

rectangular box delineation, which could not accurately capture

the shape information of target lesion.

Next, the max-relevance and min-redundancy (MRMR) and

least absolute shrinkage and selection operator (LASSO) analyses

were used to respectively select the most effective CUS and

CEUS feature subsets for the prediction of ALNM in the training

set. Finally, two sets of radiomics scores based on CUS or CEUS

images were respectively constructed with corresponding

selected features.
2.7 Development and validation
of nomogram

Before prediction model construction, the multicollinearity

was analyzed by assessing the variance inflation factor (VIF)

among involved variables. Multicollinearity was considered to

exist when a VIF value was above 3. The clinical characteristic

with P <0.05 in the univariate analysis was incorporating with

radiomics scores based on CUS and CEUS images to construct a

nomogram as a quantitative tool to predict ALNM using

multivariable logistic regression analysis. The discriminatory

ability of the model was evaluated using receiver operating

characteristic (ROC) curve analysis and the area under curve

(AUC) in the training data and validation date. The Delong

algorithm was used to compare AUC of different models (P <

0.05). The predictive accuracy of the model was evaluated by

calibration curve. A decision curve analysis was performed to

determine the clinical usefulness.
FIGURE 2

Example of the ROI segmentation in CUS image and CEUS videos. (A) The ROI segmentation on the CUS image (Left) and CEUS frame (Right) of
malignant breast lesion with ALNM. (B) The ROI segmentation on the CUS image (Left) and CEUS frame (Right) of malignant breast lesion
without ALNM.
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2.8 Statistical analysis

R software (ver.1.4.1717, R Development Core Team) and SPSS

22.0 software (IBM Corporation, NY, USA) were used for statistical

analysis. The c2 test or Fisher’s exact test were used for the

comparison of classification variables, whereas the independent-

sample t test was used for the comparison of continuous variables. A

P value<0.05 was considered statistically significant. SPSS was used

for binary logistic regression analysis and a series of packages in R

software were used to develop the predictive model and test the

diagnostic performance of the model. The corresponding packages

included the rsample, mRMRe, glmnet, caret, corrplot, survival,

ggplot2, rms, pROC, tidyverse, rmda and ggDCA packages.
3 Results

3.1 Baseline characteristics of training set
and external validation set

A total of 111 patients with 111 breast malignant lesions were

enrolled in this study from March 2019 to January 2022. Table 1

summarizes the baseline clinical characteristics of 78 patients in the

training set and 33 patients in the validation set. These baseline

characteristics included the age of each enrolled patient, size,

histology type and receptor status of each breast tumor, as well as

the pathological status of ALNM. A total of 27 (34.6%) patients with

ALNM were included in the training set and 12 (36.4%) patients

with ALNM were included in the external validation set. Both sets

had comparable ALN prevalence rate (p = 0.86). Additionally, there

are no significant differences in the other baseline characteristics

between two sets.
3.2 Radiomics features selection and
radiomics score calculation

A total of 1530 radiomics features (CUS-rad-features) were

extracted from CUS images, while 1395 radiomics features (CEUS-

rad-features) were extracted from CEUS images. Next, top 30

features were respectively selected from these CUS-rad-features

and CEUS-rad-features using MRMR algorithm. Finally, two

CUS-rad-features and two CEUS-rad-features with non-zero

coefficients were respectively identified by LASSO regression
Frontiers in Oncology 05
model (Table 2, Figure 3). The radiomics scores based on CUS

images and CEUS images were respectively calculated using the

final selected features to generate CUS-radscore and CEUS-radscore

for model construction.
TABLE 1 Baseline characteristics of patients in training set and external
validation set.

Characteristic
Training set
(n = 78)

External
validation set

(n = 33)

P
value

Age (year) 50.3 ± 10.76 53 ± 7.91 0.068

Pathological
ALN status

0.86

Positive 27 (34.6%) 12 (36.4%)

Negative 51 (65.4%) 21 (63.6%)

Histological type 0.349

IDC/ILC/IDLC 69 (88.5%) 27 (81.8%)

DCIS 9 (11.5%) 6 (18.2%)

Receptor status

ER 0.143

+ 56 (71.8%) 28 (84.8%)

- 22 (28.2%) 5 (15.2%)

PR 0.112

+ 55 (70.5%) 28 (84.8%)

- 23 (29.5%) 5 (15.2%)

Her-2 0.833

-/+ 47 (60.3%) 20 (60.6%)

++ 17 (21.8%) 5 (15.2%)

+++ 14 (17.9%) 8 (24.2%)

Primary tumor
size (cm)

2.3 ± 1.41 2.3 ± 1.20 0.689

CUS-reported ALN status

Suspicious 27 (34.6%) 14 (42.4%) 0.436

Unsuspicious 51 (65.4%) 19 (57.6%)
fron
ALN, axillary lymph node; IDC, invasive ductal carcinoma; ILC, invasive lobular carcinoma;
IDLC, mixed invasive ductal and lobular carcinoma. DCIS, ductal carcinoma in situ; ER,
estrogen receptor; PR, progesterone receptor. Her-2, human epidermal growth factor receptor
2; CUS, conventional ultrasound.
TABLE 2 List of the selected radiomics features extracted from CUS and CEUS images via LASSO analyses.

Image source Image Type Feature Class Feature Name Coefficient

CUS Log_sigma GLSZM GrayLevelNonformity 0.0014277

CUS Log_sigma firstorder InterquartileRange -0.027179

CEUS Wavelet_LH GLCM ClusterProminence 0.0134133

CEUS Wavelet_LL GLSZM SmallAreaLowGrayLevel
Emphasis

8.9129928
CUS, conventional ultrasound; CEUS, contrast enhanced ultrasound. GLSZM, Gray Level Size Zone Matrix; GLCM, Gray Level Co-occurrence Matrix.
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3.3 Development and validation of
the nomogram

The baseline characteristics that were accessible prior to the

surgical operation included age, primary tumor size and CUS-

reported ALN status. The multivariate analyses further showed

that CUS-reported ALN status was statistically related to ALNM

(Table 3). Thus, a total of three predictors including CUS-reported

ALN status, CUS-radscore and CEUS-radscore were obtained. The

VIFs of these three predictors ranged from 1.269 to 1.439,

indicating no multicollinearity existed among them. Next, three

prediction models were respectively established by incorporating

different amounts of predictors using logistic regression analysis

(Model 1: CUS-reported ALN status; Model 2: CUS-reported ALN

status + CUS-radscore); Model 3: CUS-reported ALN status + CUS-

radscore + CEUS-radscore). The AUC values of three models in

both training and external validation set were summarized

(Table 4). Model 3 showed better performance than model 2 or

model 1 in both the training set (AUC: 0.845 vs. 0.826 or 0.773, P =

0.4581 and P < 0.01) and external validation set (AUC: 0.901 vs.

0.889 or 0.821, P = 0.738 and P = 0.0283). Additionally, a better

performance was also observed by adding CUS-radscore on the
Frontiers in Oncology 06
basis of CUS-reported ALN status in the training set (AUC: 0.826

vs. 0.773, P < 0.001) and the external validation set (AUC: 0.889 vs.

0.821, P = 0.013).Therefore, a nomogram was constructed using

model 3 (Figure 4). The ROC curves of both the training and

external validation set all showed excellent results (Figure 5). By

incorporating three predictors, model 3 yielded an AUC value of

0.845 [95% confidence interval (CI), 0.739-0.950] with a sensitivity

of 0.74.1% and a specificity of 92.2% in the training set, and an AUC
A B

C D

FIGURE 3

Selection of radiomics features by the LASSO analyses. (A) Selection of the tuning parameter l in the LASSO analysis among candidate CUS
radiomics features via 10- fold cross-validation based on the 1 standard error of the minimum criteria (1 – SE criteria). The value of l that derived the
minimum average binomial deviance was used to select features. Dotted vertical lines were drawn at the values using the minimum criteria and the 1
– SE criteria. (B) LASSO coefficient profiles of the 30 candidate CUS radiomics features. (C) Selection of the tuning parameter l in the LASSO analysis
among candidate CEUS radiomics features via 10- fold cross-validation based on the 1 standard error of the minimum criteria (1 – SE criteria). The
value of l that derived the minimum average binomial deviance was used to select features. Dotted vertical lines were drawn at the values using the
minimum criteria and the 1 – SE criteria. (D) LASSO coefficient profiles of the 30 candidate CEUS radiomics features.
TABLE 3 The multivariate logistic analysis to identify independent
predictor for ALNM among baseline characteristics in the training set.

Variables
Odds
ratio

95% CI
P

value

Age 1.026 0.967-
1.088

0.403

Primary tumor size 1.496 0.986-
2.270

0.058

CUS-reported ALN
status (Suspicious)

12.719 3.808-
42.489

< 0.01
fron
ALNM, axillary lymph node metastasis; CUS, conventional ultrasound; CI,
confidence interval.
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of 0.901 (95% CI, 0.758-1) with a sensitivity of 91.7% and a

specificity of 85.7% in external validation set.

Calibration curves of the nomogram based on the training and

external validation set were plotted to evaluate the consistency

between the predicted probability of ALNM and actual pathological

results of ALN (Figure 6). The calibration curves of our established

nomogram showed a good fitting with the ideal curve in both

training and external validation set. The decision curve analysis

displayed a positive net benefit for the nomogram when a threshold

probability was greater than 0.1, indicating a good clinical

utility (Figure 7).
3.4 Representative examples of the
nomogram in clinical practice

Then, we listed two examples of the clinical practice of our

proposed nomogram. Patient 1, a 46-year-old woman, was assessed

without ALNM by CUS, while an ALNM probability over 0.7 was

calculated by the nomogram (Figure 8A). Pathology results

confirmed metastatic ALNs were present in this patient. Patient 2,
Frontiers in Oncology 07
a 49-year-old woman, was assessed with ALNM by CUS, while an

ALNM probability around 0.42 was calculated by the nomogram

(Figure 8B). Pathology results confirmed metastatic ALNs were

absent in this patient.
4 Discussion

In this study, we developed and validated a nomogram to

predict ALNM by combining CUS-reported ALN status and

radiomics features that were derived from both CUS and CEUS

images. A good performance was achieved by our proposed

nomogram, with an AUC of 0.845 in the training set and 0.901 in

the external validation set.

The ALN status holds significant prognostic value for breast

cancer. For invasive breast cancer accompanied with ALNM, ALND

is an important treatment option in clinical practice. However,

ALND may not suitable for all the patients with breast cancer due

its associated complications (5, 6). SLN serves as the first station for

lymph node metastases of primary tumors. SLND is considered as

an alternative to ALND to determine the ALN status. For SLN

negative patients, ALND is not recommended (25, 26). However,

SLND is also associated with potential side effects and longer

operation time, as well as a certain rate of false negative (7–9, 27).

In the background of precision medicine, it is urgent to more

effective method for uninvasive prediction of ALNM.

CUS is the routine method for noninvasive assessment of ALN

status in breast cancer patients. The presence of irregular cortical

thickness, longest-to-shortest axis ratio less than 2, and the absence

of a fatty hilum were considered as ultrasonic features suggestive for

ALNM on CUS images (23). However, it is difficult for CUS to

achieve high accuracy depend on these CUS features for identifying

ALNM, especially in pathological N1 patients (10, 28). Recently,

several studies have found that the CUS features of primary breast

lesions, including tumor size, margin, location and echogenicity

were correlated with the tumor biological behavior and thus can

help predict ALN status (29–33). Additionally, other studies have

reported a potential association between CEUS findings and the

prognosis of breast cancers (34, 35). CEUS is also a noninvasive

imaging modality that can be conveniently performed on the basis

of CUS screening. Different from contrast enhanced CT or MR

imaging, CEUS used true intravascular contrast agents without

deposition into extravascular space and was capable of reflecting the

micro-vascular distribution. In common, the proliferation of vessels
TABLE 4 Performance of different models in training and external validation set.

Model Training set External validation set

AUC 95% CI AUC 95% CI

1 0.773 0.672-0.875 0.821 0.682-0.961

2 0.826 0.719-0.932 0.889 0.750-1.00

3 0.845 0.739-0.950 0.901 0.758-1.00
Model 1, the model incorporating CUS-reported ALN status alone as the predictor; Model 2, the model incorporating CUS-reported ALN status and CUS-radscore as the predictors. Model 3, the
model incorporating CUS-reported ALN status, CUS-radscore and CEUS-radscore as the predictors; AUC, area under curves; CI, confidence interval.
FIGURE 4

The nomogram developed in the training set using CUS-reported
ALN status, CUS-radscore, and CEUS-radscore as predictors. The
nomogram plot provides a visual way to calculate the risk of ALNM
for breast cancer patients.
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would drive the aggressive growth of tumors (36). It was reported

that coarse or twisted vessels and enhanced range of the primary

tumors were independent predictors for metastatic ALNs (12, 13).

The findings of these studies provide support for the feasibility of

utilizing radiomics features based on CUS and CEUS to predict the

ALN status.

Radiomics can objectively extract and quantitatively analyze

features from medical images. In this study, radiomics features were

separately extracted from CUS images and CEUS videos. An auto-

tracer ROI segmentation technology was applied to outline target

region on a continuous series of frames of CEUS video for each

target lesion (24). Specifically, Gray Level Size Zone GLSZM

(GLSZM) feature was selected as the preferred option among

either CUS-radiomics or CEUS-radiomics features. GLSZM

measures the size of homogeneous zones for each gray level in an

image (37). Previous study demonstrated CLSZM was the optimum

texture feature for breast lesion characterization (37, 38). The

feature selection results obtained in our study have demonstrated

that GLSZM is also optimum feature for the predicting ALNM. It is

worth noting that the finally selected CEUS-radiomics features were
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all generated from images after wavelet transformation. The wavelet

transformation is a mathematical algorithm which can mine the

hidden patterns from various data, which is not visible to the naked

eye (39). Compared with applying CUS-reported ALN status alone,

the introduction of either CUS-radiomics features (CUS-radscore)

or combined radiomics-features (CUS-radscore and CEUS-

radscore) significantly increased the predictive performance.

Furthermore, the combination of CUS-radscore, CEUS-radscore

and CUS-reported ALN status achieved the highest AUC value,

demonstrating the potential value of CEUS for ALNM prediction.

Despite an improvement in AUC values for either the training set or

external validation set was observed after the incorporation of the

CEUS-radscore, the result of Delong test did not reveal a significant

difference in AUC values between model 2 (CUS-reported ALN

status + CUS-radscore) and model 3 (CUS-reported ALN status +

CUS-radscore + CEUS-radscore).This could potentially be

attributed to the relatively limited sample size in this study and

the N stage of enrolled patients. Given that CUS-reported ALN

status exhibits lower diagnostic efficacy in pathological N1 patients

(10, 28), integrating predictors derived from CUS or CEUS
A B

FIGURE 5

(A) The ROC curves of the nomogram in the training set. (B) The ROC curves of the nomogram in the external validation set.
A B

FIGURE 6

(A) The calibration curve of the nomogram in the training set. (B) The calibration curve of the nomogram in the external validation set.
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radiomics into constructing a predictive model holds greater

potential for improving AUC values among pathological N1

patients. However, the relatively small sample size of this study

restricted the screening of pathological N1 patients for further

analysis. A multi-center study with a larger sample size would

help to better elucidate the value of CEUS-radscore in predicting

ALNM. In clinical practice, the proposed nomogram in our study

provides a practical method to quantitatively evaluate the ALNM

probability among breast cancer patients. The ALNM probability

calculated by the nomogram can serve as a valuable reference for

clinicians in determining the necessity of implementing ALND.

There are some limitations of this study that should be

mentioned. First, as we mentioned above, the sample size is

relatively small and a multi-center study with larger sample size

need to be further implemented. Second, a rectangular box was

outlined for the ROI segmentation based on CEUS videos. Thus, the
Frontiers in Oncology 09
shape features derived from CEUS videos could not be used as

candidate features. Third, certain ultrasonic sections for target lesions

were used to present the whole 3-dimensional lesion for radiomics

feature extraction. Fourth, the inter-observer and intra-observer

agreement during ROI delineation was not assessed in this study.
5 Conclusions

This study has established and validated a nomogram for the

prediction of ALNM in patients with breast cancer. On the basis of

CUS-reported ALN status, the introduction of CUS and CEUS

radiomics features derived from primary breast lesions can further

improve the predictive performance. Our proposed nomogram is

very important in guiding clinical decision and avoid unnecessary

invasive operation.
FIGURE 7

Decision curve analysis in external validation set.
A B

FIGURE 8

(A) Examples of nomogram evaluation of ALNM in patients with false-negative CUS findings. (B) Examples of nomogram evaluation of ALNM in
patients with false-positive CUS findings.
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