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Secondary acute myeloid leukemia (sAML) presents as a complex and

multifaceted ensemble of disorders, positioning itself as both a challenge and

an intriguing frontier within hematologic oncology. Its origins are diverse,

stemming from antecedent hematologic conditions, germline predisposing

mutations, or the sequelae of cytotoxic therapies, and its development is

driven by intricate genetic and epigenetic modifications. This complexity

necessitates a diverse array of therapeutic strategies, each meticulously

tailored to address the distinctive challenges sAML introduces. Such strategies

require a personalized approach, considering the variegated clinical backgrounds

of patients and the inherent intricacies of the disease. Allogeneic stem cell

transplantation stands as a cornerstone, offering the potential for curative

outcomes. This is complemented by the emergence of innovative treatments

such as CPX-351, venetoclax, and glasdegib, which have demonstrated

promising results in enhancing prognosis. The evolving landscape of sAML

treatment underscores the importance of continued research and innovation

in the field, aiming not only to improve patient outcomes but also to deepen our

understanding of the disease’s biological underpinnings, thereby illuminating

pathways toward more effective and individualized therapies.
KEYWORDS

acute myeloid leukemia, AML, secondary AML, myelodysplasia-related, chemotherapy-
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1 Introduction

Acute myeloid leukemia (AML) represents a heterogeneous group of hematologic

malignancies characterized by the clonal expansion of myeloid precursors with impaired

differentiation and proliferation. Among these, secondary AML (sAML) emerges as a

distinct category, encompassing cases that evolve from a preexisting hematologic disorder

or as a consequence of cytotoxic therapy (1).
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Globally, the incidence of AML varies, but it is generally

considered a disease of older adults, with the median age at diagnosis

around68years. In theUnitedStates,AMLaccounts for approximately

1.1% of all cancers, with an estimated 20,240 new cases and

approximately 11,400 deaths in 2022. The age-adjusted incidence

rate is approximately 4.3 per 100,000 persons per year. AML

incidence increases significantly with age, rising sharply in

individuals over 60 years old. The disease is slightly more common

in men than in women and has higher incidence rates among

Caucasians compared with other ethnic groups (2, 3). sAML occurs

in approximately 10%–20% of all AML cases and is often associated

with poorer prognosis compared with de novo AML. It typically

develops as a late complication of cytotoxic chemotherapy or

radiation therapy used to treat other cancers, such as breast or

prostate cancer, or following exposure to environmental carcinogens

like benzene. The latency period between the primary treatment and

the onset of sAML can range from a few months to several years,

averaging approximately 3–5 years. This form of leukemia often

exhibits multidrug resistance at diagnosis, making it more

challenging to treat (4). The prognosis for sAML depends on various

factors, including patient age, comorbidities, previous exposure to

chemotherapy and radiation for other cancers, cytogenetics, access to

transplant, and molecular abnormalities. Overall survival rates have

improved modestly over the past few decades and remain poor (5, 6).

This review endeavors to dissect the intricate landscape of

sAML, underscoring its etiology, genetic landscape, clinical

implications, and the evolving therapeutic paradigms aimed at

addressing its unique challenges. The pathogenesis of sAML is

intricately linked to its precursor states, with genetic and epigenetic

alterations playing pivotal roles in its evolution.

The diagnostic landscape of sAML has been refined by the

integration of molecular and cytogenetic insights, with recent

classifications from the World Health Organization (WHO22) and

the International Consensus Classification (ICC22) offering

frameworks that reflect the disease’s heterogeneity and its prognostic

implications (7, 8). Treatment strategies for sAML are challenged by

the disease’s inherent complexity and the patients’ diverse clinical

backgrounds. Allogeneic stem cell transplantation (allo-SCT) remains

a cornerstone for potentially curative therapy, yet the approach is

tailored based on individual patient factors, reflecting the personalized

medicine ethos increasingly adopted in sAML management (9).

In sum, sAML represents a paradigm of the challenges and

opportunities within hematologic oncology, embodying the need

for a deep understanding of disease biology, a nuanced approach to

classification and diagnosis, and a personalized strategy for

therapeutic intervention. This review aims to elucidate the current

understanding of sAML, from its etiological factors to the latest in

therapeutic developments, highlighting the ongoing journey toward

improved patient outcomes in this complex disease landscape.
2 Definition of secondary AML

AML encompasses a range of aggressive myeloid neoplasms that

develop stochasticallyordue to certainknownpredisposing factors (1).

sAML comprehends any non-stochastic case of AML and specifically
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refers to AML that arises because of certain predisposing factors; these

factors include previous treatment with chemotherapy or radiation

(therapy-related AML), a history of a myeloid neoplasm such as

myelodysplastic neoplasms (MDS), i.e., AML secondary to MDS, or

a genetic predisposition that increases the risk of developingAML, i.e.,

AML secondary to germline predisposition (7, 8).
2.1 AML secondary to MDS or other
myeloid neoplasms

AML secondary to MDS or other myeloid neoplasms refers to

AML that evolves from previously diagnosed neoplasms (7, 8). This

transition ismarked by an increase inmyeloblasts in the bonemarrow

or blood, reflecting a progression from a primarily dysplastic disorder

to anacute leukemia.The classification anddiagnostic criteria for these

cases have been refined to better reflect their unique biological and

prognostic characteristics. The process of transformation into AML is

known to be a stepwise acquisition of alterations with a disease natural

history that begin with myelodysplasia and end with the aggressive

transformation (10, 11). Of note, the definition of myelodysplasia-

related (MR) alteration is becoming very important in clinical practice,

and MR-AML includes diseases with genetic and cytogenetic

alterations related to dysplasia. This characterization defines a

subgroup of biologically defined newly diagnosed AML that has

prognosis and characteristics similar to patients who have AML

raised after MDS (7, 8).
2.2 AML secondary to chemotherapy

AML secondary to chemotherapy, also known as therapy-related

AML (tAML), is a subtype that develops as a direct consequence of

mutational events inducedbycytotoxic therapy, such as chemotherapy

(e.g., platinum or alkylating agents) or radiation (12). However,

evidence demonstrated that a predisposition deriving from

preexistent clonal hematopoiesis of indeterminate potential (CHIP)

may contribute to disease development together or independently of

chemotherapy (13–16). Most of tAML cases are associated with

adverse genetic lesions and show a high frequency of abnormal

karyotypes. The latency period between the initial therapy and the

onset of AML typically ranges from 5 to 7 years for cases related to

alkylating agents or radiation and is characterized by a predisposition

to MDS and frequent chromosomal abnormalities (4, 17).

Furthermore, this particular set of patients is characterized by

comorbidities and frailties related to previous therapy exposure,

which often make their treatment particularly difficult; there are

significant evidence suggesting that in this subset, toxicity and non-

relapse mortality are a relevant clinical problem (4).
2.3 AML secondary to
germline predisposition

AML secondary to germline predisposition encompasses cases

where individuals have an inherited genetic predisposition to
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hematopoietic malignancies, including AML (7, 8). This

predisposition is due to mutations in genes that are critical for

DNA repair, cell cycle regulation, or hematopoiesis (18–20).

Identifying such predispositions is crucial for patient

management, especially in the context of allogeneic hematopoietic

cell transplantation (HCT) and surveillance strategies for the

patient and their relatives (20). Germline predispositions can

drive hematopoietic malignancies at any age, with some alleles

being more prevalent in older individuals (21). Germline

predisposition to leukemia is defined differently in WHO22 and

ICC22 s (Supplementary Table S1); particularly, ICC22 also

includes genetic diseases that confer a risk of a wide variety of

solid and blood cancers even if leukemia is not within the most

common manifestations, and a list of emerging genetic

predispositions (7, 8). The clinical implications of recognizing

germline predispositions to hematopoietic malignancies have

become increasingly important for personalized patient

management and family health surveillance. Recognizing these

predispositions is particularly crucial when considering allogeneic

hematopoietic cell transplantation as a treatment option. The

identification of germline risk alleles also informs health

surveillance strategies for both the patients and their relatives

who might carry the same genetic variants. In such cases,

identifying germline risk alleles is crucial as it influences donor

selection, especially to avoid using donors who may carry

deleterious variants such as those found in RUNX1 and CEBPA

genes, which are known to be associated with poor transplant

outcomes. Moreover, early genetic testing plays a pivotal role in

guiding the treatment of other family members who might be at

risk, ensuring that preventive measures and monitoring are

implemented timely (22, 23).

In clinical practice, the recognition of germline predispositions

to hematopoietic malignancies necessitates specific indicators for

testing. Key clinical features prompting the consideration of

germline testing include a personal history of multiple cancers,

with at least one being a hematopoietic malignancy; a personal or

familial history of early-onset cancers (diagnosed at age 50 or

younger); the detection of deleterious gene variants during tumor

profiling that persist during remission, suggesting a germline origin;

and the diagnosis of a hematopoietic malignancy at an unusually

early age, such as myelodysplastic syndromes diagnosed in patients

younger than 40 years. Furthermore, the presence of a variant in

tissues unlikely to undergo somatic mutations, such as cultured skin

fibroblasts or hair follicles, or its detection in multiple relatives,

strengthens the case for a germline origin (9, 23). These criteria are

vital for clinicians to identify patients who may benefit from

germline testing, thereby facilitating targeted surveillance and

management strategies for both the patients and their at-

risk relatives.

Virtually, all patients diagnosed with hematopoietic

malignancies should be considered for germline testing, regardless

of age, due to the potential for some alleles, like those in DDX41, to

drive malignancies in older age (9, 20). The new frontier in the field

will be the assessment of the impact of somatic polymorphism on

leukemia risk; we previously identified a significant risk locus for

leukemia at 11q13.2 (rs4930561; KMT5B) (24), and there is
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increasing evidence of germline predisposition to clonal

hematopoiesis (25, 26).
2.4 WHO22 and ICC22 classification
of sAML

A proper diagnosis of sAML highlights the importance of

considering the patient’s treatment history, genetic background,

and the presence of preexisting hematologic conditions in diagnosis

and management. Unfortunately, the two available classifications

present significant differences in sAML-related definitions, thus

posing difficulties in reaching homogeneity in this sector (27). The

WHO22 and ICC22 both offer frameworks for classifying myeloid

neoplasms, including sAML, with a strong emphasis on genetic

abnormalities and their impact on disease phenotype and outcome.

ICC22 is notable for its hierarchical structure, where genetic

aberrations are prioritized in defining AML disease classification.

Additional predisposing features such as therapy-related, prior

myelodysplastic syndrome (MDS) or MDS/myeloproliferative

neoplasm (MPN), and germline predisposition are maintained as

“anamnestic qualifier” and appended as qualifiers to the primary

diagnosis (8). In WHO22 classification, myeloid neoplasms that

arise secondary to exposure to cytotoxic therapy or germline

predisposition are grouped in a separate category. AML

transformation of MPN is retained in the MPN category, whereas

AML transformation of MDS and MDS/MPN is kept under AML-

MR (7).

The main difference between the WHO22 and ICC22

classifications lies in the approach to defining and classifying

AML, with ICC22 focusing more on genetic aberrations and

using a hierarchical structure that emphasizes genetic

characteristics over clinical history for classification (Table 1).

This shift highlights the importance of genetic profiling in

diagnosing and treating AML, including secondary AML, and

reflects a move toward more personalized medicine approaches in

hematology. Both the WHO22 and ICC22 classifications cover the

broad spectrum of secondary AML, recognizing the impact of

therapy-related factors, prior myeloid neoplasms, and germline

predispositions. However, the ICC’s more detailed approach to

classifying AML based on genetic aberrations and its inclusion of

specific diagnostic qualifiers might result in a more nuanced

identification of sAML subtypes (28). Both ICC22 and WHO22

acknowledge that bone marrow blast cell number at diagnosis is not

the main determinant of AML biology (29), however with

different approaches.

At our center, we did not manage to create (another)

personalized classification that includes most relevant aspects of

bothWHO22 and ICC22. Our approach is to classify all the patients

according toWHO 2016 (12), WHO22, and ICC22 classifications in

our reports, and we will presumably maintain this approach up to

the moment in which undisputable agreement will be found with an

appropriate scientific discussion. Of note, as long as drug

prescription is of concern, we should remember that all the

demonstration of benefits that we had in clinical trials are based

on older classifications (e.g., WHO 2016 for gilteritinib, venetoclax
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+azacitidine, ivosidenib+azacitidine, CPX351; older classifications

for all the other drugs). The benefit of interventions in 2022

classifications’ newly defined AMLs should be a matter of

research instead of an Aristotelian assumption.
3 Genetic of sAML

The emergence of secondary sAML presents a complex

interplay of cellular dynamics and oncogenetic events. Unlike

primary AML, which arises de novo, sAML develops because of a

predefined event, manifesting diverse pathways of transformation

(Figure 1). Understanding the multifaceted nature of sAML genesis

is essential as it engenders distinct hierarchies within cellular

populations, influencing disease progression, therapeutic response,

and clinical outcomes (30). In this chapter, we delve into the varied

mechanisms underlying the evolution of sAML, exploring how

these disparate pathways shape the cellular landscape and

delineate hierarchical structures within the leukemic population.
3.1 AML deriving from catastrophic events

After chemotherapy, or due to other predisposing factors,

genomic events may characterize at once. We previously

described that complex karyotype alterations and catastrophic

events may be acquired in a single step instead of via stepwise

acquisition of multiple alterations (31–33). Overall, the acquisition

of complex genomic events or localized hypermutations is rare in

AML (34, 35). Complex genome events include chromothripsis,

chromoanasynthesis, and chromoplexy. Chromothripsis involves

massive rearrangements within localized chromosomal regions,

caused by catastrophic events leading to micronuclei formation or

DNA bridge fragmentation. In AML, it is strongly linked to TP53

mutation and development of marker chromosomes, thus

conferring a very adverse prognosis (36, 37). Chromoanasynthesis

results from defective DNA plication, leading to regional copy-

number gains and insertion of short nucleotide sequences;

chromoplexy is characterized by chains of translocations

involving multiple chromosomes, which arises from DNA double-

strand breaks. Although their impact on AML is less clear due to

limited studies. Exposure to chemotherapy and radiation therapy

can also select for hematopoietic clones harboring mutations

associated with CHIP, thereby increasing the risk of developing

therapy-related myeloid neoplasms (t-MNs). This selection occurs

because the mutations confer a survival advantage to the clones in

the face of genotoxic stress, leading to their preferential expansion

(14, 15, 38, 39).
3.2 AML deriving from
clonal hematopoiesis

AML can arise after an acquired event in a clonal hematopoiesis

context. CHIP specifically refers to somatic mutations accumulating

in hematopoietic stem cells over time in the absence of any
Frontiers in Oncology 04
cytopenia or myeloid malignancy. This phenomenon is due to

aging bone marrow, in which Darwinian-selected dominant

clones acquire proliferative capacity, primarily leading to

inflammation and systemic distress and consequently to overt

disease (40–42). CHIP-related mutations can be found in platelets

and red-blood cell progenitors, but also in immune cells like

monocytes, granulocytes, and lymphocytes; mutations affect

immune function and increase inflammation (41, 43–45).

The development of myeloid neoplasms from CHIP is

influenced by various molecular mechanisms:
- Genetic mutations: Mutations in genes like PPM1D, ASXL1,

TP53, IDH1, and IDH2 increase the risk of myeloid

neoplasms by promoting clonal expansion and

dysregulation of hematopoietic differentiation (46–48).

- Epigenetic alterations: Epigenetic modifiers play a significant

role in CHIP progression to myeloid malignancies by

affecting gene expression and cellular identity (13, 45,

49, 50).

- Cellular stress responses: Cellular stresses, including DNA

damage and inflammatory signals, can select for clones with

mutations that confer a survival advantage, thereby

increasing the risk of transformation. CHIP progression

can also be influenced by external factors such as

environmental exposures, systemic inflammation, and the

bone marrow microenvironment (51–53).
These factors can create selective pressures that favor the

expansion of mutated clones or contribute to the acquisition of

additional mutations that drive progression toward malignancy. Of

note, AML may branch from previous myeloid disorders; in these

circumstances, bone marrow populations are more likely to be

polyclonal and with multiple mutations and chromosome

alterations, since the genotoxic stimuli are extreme in a

pathological condition (11, 54–56). There is evidence that

complex clonality and harboring more than one myelodysplasia-

related mutation impact outcome (57, 58).
3.3 Relevance of specific mutations

Of relevance, druggable mutations are underrepresented in

sAML (Figure 2), ranging from 10% to 16% of the total

population. Thus, therapies that include target drugs are

nowadays significant only for a small fraction of the

total population.

Overall, prominent characteristics of sAML genetics are the

presence of complex genome events, and the presence of mutations

that disrupt mechanisms of transcriptional regulation, chromatin

organization, RNA splicing, and DNA repair; however, fusions and

mutations specifically reported as consequence of chemotherapy

exposure and secondary activating mutations are common

(Table 2). Patterns of evolution will be a significant determinant

for future studies, since accumulating evidence suggests differences

in disease evolution dynamics (66, 67).
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3.3.1 TP53 mutations
TP53 mutations are emerging as a highly unmet need and have

high prevalence in sAML (approximately 22% of therapy related

AML and 15% of myelodysplasia related AML). TP53 mutation

remains the most significant challenge to manage this disease,

identifying a subgroup of patients with particular short survival

with the main available treatments. Specifically, the poor median

survival that is expected for patients receiving intensive

chemotherapy or hypomethylating agents alone (raging between 5

and 7 months) was not ameliorated by CPX-351 5.0 months or
Frontiers in Oncology 05
venetoclax + azacytidine; merely considering the complete

remission rate, venetoclax seemed to confer a slightly

amelioration of probability of remission (from roughly 30% to

50%) that was not translated into better survival in current

experiences, whereas CPX-351 did not augment remission

probability compared with standard 3 + 7 (68–71). A possible

explanation of this resistance may rely in the fact that there is no

gain of function of TP53 protein that is essential for AML cell

survival; TP53 loss generates an identical phenotype when

compared with TP53 mutations and the molecular alteration stay
TABLE 1 Differences on sAML classification within WHO22 and ICC22.

Classification
criterion

WHO22 ICC22 Remarks

Genetic
aberrations

Used for classification; however, secondary
myeloid neoplasms have a separate
category basing on remote history.

Genetic aberrations are prioritized in defining
AML. “Anamnestic qualifiers” may be appointed
to any AML diagnosis

ICC22 gives overriding importance to
genetic abnormalities.

Blast threshold for
AML diagnosis

≥20% blasts (except for molecular-
defining cytogenetics abnormalities)

≥10% blasts for certain genetic abnormalities The blast threshold is inconsistent between
ICC22 and WHO22 classifications.

Therapy-
related AML

Considered a separate entity basing on
remote history

Used as a diagnostic qualifier. ICC22 shifts focus from clinical history to
genetic profile.

Germline-
predisposition
AML

Considered a separate entity basing on
remote history/genetics

Used as a diagnostic qualifier. There are minor differences in genes
acknowledged to give germline predisposition;
genes causing some complex syndromes are
not accounted in WHO22 classification.

Myelodysplasia-
related AML

Used for classification within AML; AML
with myelodysplasia-related abnormalities
is classified as an AML subcategory
(MR-AML)

Used as a diagnostic qualifier. Biological entities
of myelodysplasia-related cytogenetics and
myelodysplasia-related mutations are accounted as
MDS/AML and AML subcategories.

Reflects ICC22’s emphasis on genetic features
over clinical history.

AML evolution of
other chronic
myeloid disorders

It is maintained in the chronic
myeloproliferative neoplasms category
unless evolutions come from MDS/MPN;
in this case, it is classified as MR-AML.

Used as a diagnostic qualifier. Biological entities
may be assigned irrespective to remote history if
patient has criteria.

WHO22 classification tends to maintain
evolution of non-MDS chronic diseases within
the chronic disease category.
Time, Genotoxicity

Dysplasia

LeukemiaA B C D

FIGURE 1

Mechanisms of sAML ontogenesis. Myeloid mutations are spontaneously acquired in the bone marrow with ageing, due to natural genotoxicities;
specific genotoxic events may exacerbate the rate of mutations. Leukemic transformation happens toward different putative mechanisms. (A) sAML
alterations may be acquired via a one-step catastrophic event in an elsewhere normal stem cell. (B) A cell containing a single leukemia-predisposing
alteration may evolve via a leukemia-promoting “second hit”. (C) Time-dependent accumulation of several myeloid alterations may cause sAML via
acquisition of a leukemia-promoting event. (D) A leukemia-promoting event may be acquired in a subclone in an oligoclonal bone-marrow with
plenty of myeloid genes mutations.
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—in fact—undruggable (72). In TP53 mutant AML, the search of

innovative strategies of transcriptional reprogramming, as

tamibarotene, or of immunological activity remain pivotal to pave

the way for innovative treatments (73, 74).
4 Therapeutic strategies

Nowadays, sAML presents unique therapeutic challenges

compared with primary AML, and outcomes remain poor (75).

Treatment modalities for secondary AML are tailored to the

individual’s specific situation, considering factors such as the

patient’s age, general health, and cytogenetic and molecular

abnormalities. Allogeneic stem cell transplantation (allo-SCT)

remains the cornerstone for potentially curative therapy,

especially for those in remission and with suitable donors.
4.1 Induction therapy

Liposomal formulation of cytarabine and daunorubicin (CPX-

351) represent the cornerstone of sAML induction therapy. In a

seminal study, CPX-351 demonstrated to improve prognosis over

standard “3 + 7” chemotherapy in chemotherapy-suitable patients

over the age of 60 (76). Notably, long-term survival was obtained by
Frontiers in Oncology 06
18% of CPX-treated patients vs. 8% of 3 + 7 treated patients (77).

Even with similar complete remission rates, CPX diminished

toxicity significantly augment the probability of transition to allo-

SCT and consequently the access to the only known procedure that

is potentially curative in this patient population (78, 79).

Furthermore, CPX-351 was comparable with “high intensity”

FLAG-Ida in a population of cytogenetically defined high-risk

AML and MDS, with an advantage of survival in patients with

myelodysplasia-related mutation (80). Consequently, the

administration of CPX-351 is suggested in any sAML suitable

patient. Of note, venetoclax added to chemotherapy may abrogate

the prognostic impact of some myelodysplasia-related mutations

(81); however, randomized comparisons between CPX-351 and

venetoclax-containing inductions are not available. Feasibility

studies that combine venetoclax and CPX-351 (NCT03629171)

and midostaurin and CPX-351 (NCT04075747) are ongoing.

In the AML18 trial, a percentage of clinically defined and

mutational defined sAML patients were treated with gemtuzumab

in combination with daunorubicin and cytarabine. The trial

confirmed a low likelihood of response to this therapy for sAML,

including a lower probability of MRD negative CR when compared

with de novo patients. Furthermore, a signal toward increased

platelet toxicity was noted for patients with myelodysplasia

mutations; analysis of OS according sAML status is pending (82).

Overall, these data confirmed a poor applicability of gemtuzumab
A

B

FIGURE 2

Incidence of mutations in genes relevant for hematopoiesis and in 1,154 myelodysplasia-related AML (A) patients and in 389 therapy-related AML
patients (B). Query on the Genie 15.0 dataset of 7,156 leukemia patients (59).
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ozogamicin in the sAML population (83, 84). In the setting of CPX-

351 or venetoclax + FLAG-Ida unavailability, standard induction

regiment should be preferred over the addition of gemtuzumab.

The use of hypomethylating agents, eventually with the addition

of venetoclax (VEN), is gaining interest as a bridge to transplant,

particularly in this population. In a randomized study that

compared a general population of AML older than 60 years 3 + 7

and 10-day decitabine, a trend toward a better functioning was

noted for decitabine in sAML (85). Furthermore, the ALFA group

generated a prognostic classifier that identifies patients over the age

of 60 that were biologically unfit for chemotherapy, thus paving the

way for a personalized, low-intensity-based, induction approach

(86). Studies that will compare VEN and hypomethylating agents

(HMA) with the standard-of-care induction chemotherapy are

highly warranted, but up to the results of these studies, a low-

intensity approach as induction in sAML is hard to be suggested in

patients suitable for chemotherapy; however, boundaries of clinical

fitness should be carefully evaluated, especially in this population.
4.2 Transplant

The role of allo-SCT in the treatment of sAML is pivotal,

serving as a cornerstone for achieving a potentially curative

outcome (87). Thus, Allo-SCT is uniformly suggested in the first
Frontiers in Oncology 07
complete remission in any suitable patient (9). This therapeutic

strategy is particularly significant in the context of secondary AML

due to the disease’s complex nature, arising from prior hematologic

disorders or the aftermath of cytotoxic therapies. The efficacy of

allo-SCT hinges on its ability to provide a healthy, donor-derived

hematopoietic system capable of eradicating malignant cells, a

process greatly facilitated by the graft-versus-leukemia effect (88–

90). The selection of allo-SCT as a treatment modality requires a

nuanced approach, considering the patient’s remission status,

general health, and the presence of suitable donors, which are

critical for the transplant’s success and the minimization of

associated risks, such as graft-versus-host disease. Thus, allo-SCT

represents a vital, albeit complex, therapeutic option within the

arsenal against secondary AML, necessitating careful patient

selection and optimization of timing to maximize its curative

potential while minimizing risks (91). Of note, sAML exhibits an

inferior prognosis when transplanted in first complete remission

compared with de novo patients. This disparity is quantitatively

supported by augmented cumulative incidence of relapse and non-

relapse mortality and may be independent from measurable

residual disease and demand for better and innovative approaches

in this population (5, 92, 93). Since measurable residual disease may

not have a pivotal role in selecting low-relapse risk patients within

sAML, myeloablative conditioning should be suggested in any

suitable patient (94–96).
TABLE 2 Cytogenetic changes and gene mutations common in sAML.

Altered
pathway/
feature

Mutations/cytogenetic changes Description

Cytogenetic
abnormality

Complex karyotype, unbalanced clonal
abnormalities (e.g., 5q deletion, monosomy 7, 17p
deletion, 12p deletion, isochromosome 17q) *

Includes complex karyotypes and specific deletions or unbalanced translocations affecting
various chromosomes, indicative of genomic instability and associated with poor prognosis.

Recurrent translocations (KMT2A rearrangements
and MECOM rearrangements) **

Atypical rearrangements of KMT2A or MECOM are frequently reported in patient exposed to
chemotherapy (60, 61).

Marker chromosomes ** Marker chromosomes arise from mitotic crisis and are hallmarks of macroscopic genomic
stress (36).

Transcriptional
regulation

RUNX1 *, ASXL1, BCOR, WT1 (62) ** Mutations disrupt transcription factors and corepressors, altering gene expression crucial for
hematopoietic differentiation and the suppression of leukemogenesis.

Epigenetic
regulation and
chromatin
modification

ASXL1, EZH2, IDH1/2 **, TET2 ** Involves alterations in chromatin remodeling and histone methylation, impacting gene
expression and contributing to the progression of myeloid malignancies.

RNA splicing SF3B1, SRSF2, U2AF1, ZRSR2 Mutations in components of the splicing machinery lead to aberrant RNA splicing, frequently
associated with myelodysplastic syndromes and progression to sAML.

Cohesin
complex
component

STAG2 Mutation in STAG2 disrupts the cohesin complex, affecting cell division and genomic stability,
which is crucial in the pathogenesis of several cancers including sAML.

DNA damage
response **

TP53, PPM1D (63) Mutations in DNA damage response proteins confer resistance to apoptosis and are crucial for
cancer persistence.

Signaling
pathways **

FLT3, NRAS, KRAS, CBL, CSF3R, PTPN11 Activating mutations in signaling pathways are often a second event in AML ontogenesis.
These mutations are frequently reported in secondary leukemia, especially leukemia arising
after myeloproliferative or myeloproliferative/myelodysplastic neoplasms (42, 64, 65).
*Full agreement has not been reached between WHO22 and ICC22 on cytogenetics changes or genetic mutations that define MR-AML. For the interest of the reader, WHO22 and ICC22
definitions of MR-AML and key differences are reported in Supplementary Table S2.
**These changes do not define MR-AML; however, they are common in sAML.
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4.3 Treatment of unfit patients

The treatment of unfit patients is mainly based on the

venetoclax and azacytidine (AZA) combination, which proved

superiority compared with single agent azacytidine (97). Within

unfit sAML, myelodysplasia-related mutations do not significantly

confer a negative prognosis during VEN+AZA therapy (98).

Of note, also glasdegib and cytarabine combination seems to be

particularly effective in sAML and may be less toxic if compared

with VEN+HMA (99, 100). However, since there is no study

comparing VEN+AZA with glasdegib+cytarabine, and since the

control arm in the phase 3 study of glasdegib is low-dose cytarabine

(101), the use of glasdegib is often restricted to frail patients that are

supposed to not tolerate venetoclax, or to patients that were

previously exposed to azacytidine and/or venetoclax (e.g.,

for myelodysplasia).

Decitabine was entitled an interesting approach in the

population, mainly after the preliminary demonstration that 10-

day exposure might circumvent the negative impact of TP53

mutations (102). However, a small experience on a patient

population particularly enriched of sAML (and genetically defined

MR-AML) failed in demonstrating any superiority of prolonged

exposure (103). Up to now, there is no clinical evidence that

suggests decitabine administration over other treatments in

this population.
4.4 Boundaries of unfitness and
biological fitness

The boundaries between clinical and biological fitness are

particularly significant in sAML population, especially for patients

that are between 60 and 75 years old. As an example, preliminary

results from a large study do not demonstrate significant advantage

for standard chemotherapy over less intensive 10-day decitabine as

long as patients were transplant candidates (85).

Commonly acknowledged and well-validated clinical criteria

are based on organ dysfunction unrelated to leukemia and on

general clinical conditions (104, 105); strictly, any choice about

drug prescriptions should be based on these criteria, since there

were the criteria used for assessment of patients during drug

experimentation and on which are based clinical-graded evidence

that we have. Geriatric assessment and comorbidity-based scores

remain an important research effort but are not commonly adopted

today for AML treatment decisions (106–109).

Biological fitness, on the other hand, refers to the aspects of an

individual’s disease and overall health that make them suitable

candidates for intensive therapies. This includes good performance

status and adequate organ function, the presence of only limited

and manageable comorbidities, and favorable genetic and molecular

profi les (that predict good probability of response to

chemotherapy). The more interesting approach in personalizing

the treatment plan currently comes from the ALFA group, as

previously mentioned (86). Of note, the chemotherapy of choice

in the population was i.v. administered, 3 + 7 like standard

chemotherapy, and thus did not include CPX-351, which has a
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completely different safety profile. In the near future, approaches

that try to delineate between unfitness and biological fitness in AML

will be crucial for decision-making in the treatment strategy,

guiding the use of intensive treatment modalities versus less

intensive or supportive care approaches. This could ensure that

treatment plans are both effective and manageable for the patient,

ultimately aiming to achieve the best possible outcomes with an

emphasis on the patient’s overall health and quality of life.
4.5 Treatment of relapse

Treatment of relapse is particularly complicated in sAML since

most of the patients have primary resistance or post-transplant

relapse. Furthermore, target therapies are hardly applicable to this

population, due to the incidence of druggable mutations (Figure 2).

Our opinion is to prefer a target treatment whenever it is available,

eventually in combination with VEN (110–112). All the other

patients should be candidate to a clinical trial, due to the lack of

effective treatments and the poor outcome. Whenever a clinical trial

is not available, the most intriguing alternatives are represented by

HMA-based therapies, eventually combined with an immunological

therapy such as donor lymphocyte infusion (113–120). In patients

with previous exposure to HMA and VEN, the space for non-

experimental treatments is unfortunately limited, and this

population represents the most significant with a spot for active

treatment (121, 122). At the other end of the spectrum, we do not

see as for now any reason to avoid a VEN+HMA salvage to patients

that were exposed to chemotherapy+VEN, due to the well-known

metabolic synergism of VEN+HMA combination, an effect that is

different from the apoptosis priming that we experience

administering VEN with chemotherapy (123, 124).
5 Conclusions

In conclusion, this review has delved into the intricate

landscape of sAML, illuminating the progress in understanding

its pathogenesis, and the significant strides made in its treatment

modalities. Within sAML, genetics seems to maintain a pivotal role

if compared with anamnestic classifiers; thus, karyotype alterations

and mutations should cover the main role in refining the

prognostication and personalizing therapeutic strategies.

However, challenges persist, including resistance mechanisms and

the need for strategies to manage relapsed or refractory disease.

Future research directions should focus on unraveling these

complexities, enhancing the efficacy of existing therapies, and

exploring innovative treatment combinations (125, 126).

Immune-system-based therapies as checkpoint inhibitors,

immune-cell engagers, and engineered cell therapies have been

invested to be the gamechanger in the field, especially in some

subtypes of sAML (e.g., TP53 mutant AML). Unfortunately, we do

not manage at the current date a mature approach. Even if

al logeneic transplant outcomes strongly suggest that

immunotherapy is the way to follow, the keystone remains hard

to be found due to antigen and microenvironment-related
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limitations. Hopefully, research efforts will be better directed in low-

burden or measurable residual disease positive AML soon (127).

The goal remains to translate these scientific advancements into

clinically meaningful benefits, ultimately improving survival rates

and quality of life for sAML patients.
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evaluation of allogeneic hematopoietic stem-cell transplantation from matched related
and matched unrelated donors in younger adults with high-risk acute myeloid
leukemia: German-Austrian trial AMLHD98A. J Clin Oncol. (2010) 28:4642–8.
doi: 10.1200/JCO.2010.28.6856

90. Lanza F, Rondoni M, Zannetti BA. New horizons in immunology and
immunotherapy of acute leukemias and related disorders. Cancers. (2023) 15:2422.
doi: 10.3390/cancers15092422

91. Nilsson C, Hulegårdh E, Garelius H, Möllgård L, Brune M, Wahlin A, et al.
Secondary acute myeloid leukemia and the role of allogeneic stem cell transplantation
in a population-based setting. Biol Blood Marrow Transplant. (2019) 25:1770–8.
doi: 10.1016/j.bbmt.2019.05.038
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