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Objectives: To develop and validate a deep learning (DL) based automatic

segmentation and classification system to classify benign and malignant BI-

RADS 4 lesions imaged with ABVS.

Methods: From May to December 2020, patients with BI-RADS 4 lesions from

Centre 1 and Centre 2 were retrospectively enrolled and divided into a training

set (Centre 1) and an independent test set (Centre 2). All included patients

underwent an ABVS examination within one week before the biopsy. A two-

stage DL framework consisting of an automatic segmentation module and an

automatic classification module was developed. The preprocessed ABVS images

were input into the segmentation module for BI-RADS 4 lesion segmentation.

The classification model was constructed to extract features and output the

probability of malignancy. The diagnostic performances among different ABVS

views (axial, sagittal, coronal, and multi-view) and DL architectures (Inception-v3,

ResNet 50, and MobileNet) were compared.

Results: A total of 251 BI-RADS 4 lesions from 216 patients were included (178 in

the training set and 73 in the independent test set). The average Dice coefficient,

precision, and recall of the segmentation module in the test set were 0.817 ±

0.142, 0.903 ± 0.183, and 0.886 ± 0.187, respectively. The DL model based on

multiview ABVS images and Inception-v3 achieved the best performance, with an

AUC, sensitivity, specificity, PPV, and NPV of 0.949 (95% CI: 0.945-0.953),

82.14%, 95.56%, 92.00%, and 89.58%, respectively, in the test set.
Abbreviations: BI-RADS, Breast Imaging Reporting and Data System; ABVS, automated breast volume

scanner; DL, deep learning; US, ultrasound; AI, artificial intelligence; MRI, magnetic resonance imaging; CT,

computed tomography; AUC, area under the curve; CNN, convolutional neural network; ROC, receiver

operating characteristic; PPV, positive predictive value; NPV, negative predictive value; DC, Dice coefficient;

Grad-CAM, gradient-weighted class activation mapping.
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Conclusions: The developed multiview DL model enables automatic

segmentation and classification of BI-RADS 4 lesions in ABVS images.
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1 Introduction

Breast cancer has become the most prevalent cancer worldwide,

with 2.3 million new cases resulting in 665,684 deaths in 2022 (1).

Accurate identification and timely treatment are effective measures

to reduce its mortality. Breast Imaging Reporting and Data System

(BI-RADS) category 4 lesions (2) are suspected to be malignant

lesions (2%~95% likelihood) and are recommended for biopsies,

which results in more than 67.0% of benign lesions receiving

biopsies (3–6). This may lead to unnecessary anxiety and invasive

examination-related complications, such as pain, infection, and

needle track seeding, in patients as well as increase the burden to

the healthcare system (7). Therefore, a noninvasive method for

identifying malignant BI-RADS 4 lesions and reducing unnecessary

biopsies is an urgent issue in current precision medicine.

Ultrasound (US) is not inferior to mammography for screening

for breast cancer and has a sensitivity of up to 90% in dense breasts

with safety and low cost (8, 9). The automated breast volume

scanner (ABVS) is a novel breast ultrasound imaging technique that

overcomes many of the limitations of traditional US, provides a

three-dimensional (3D) representation of breast tissue, and allows

image reformatting in three planes (axial, sagittal and coronal) (10).

The ABVS’ unique coronal images provide an intuitive view of the

lesions and their relationships with neighboring catheters and

surrounding tissues. The retraction phenomenon, characterized

by a perinodal stripe of hypoechoic and hyperechoic radial

extension, is a unique sign on the coronal plane for malignant

breast tumors with a high specificity (91.1%~100%) (11, 12).

However, the large amount of ABVS image data is a significant

challenge for radiologists.

Deep learning (DL) is a subfield of artificial intelligence (AI),

and its emergence has increased interest in automated detection and

diagnostic tools in medicine (13). DL has achieved state-of-the-art

performance in feature recognition and classification in several

modalities, including magnetic resonance imaging (MRI),

computed tomography (CT), X-ray and US (14–17). Recent

studies have shown that DL methods using ABVS images also

have enormous potential in breast cancer (18–20). Wang et al. (18)

proposed a DL method that adopted a modified Inception-v3

architecture to extract effective features from ABVS images to

distinguish between benign and malignant breast lesions with an

area under the curve (AUC), sensitivity, and specificity of 0.945,

0.886, and 0.876, respectively. However, most of these studies were
02
designed as proof-of-concept or technical feasibility studies without

a thorough external validation of real-world clinical performance

(19, 20). To our knowledge, no studies have investigated the use of

DL methods based on ABVS images to distinguish between benign

and malignant BI-RADS 4 lesions.

Therefore, we attempted to develop a DL model based on ABVS

images with automatic segmentation and classification capabilities,

and to explore its performance in identifying benign and malignant

BI-RADS 4 lesions and in reducing unnecessary biopsies. In

addition, since ABVS images can be visualized in axial, sagittal

and coronal views, we further compared the DL models based on

the use of single or multiple views.
2 Materials and methods

This retrospective study was approved by the Institutional

Review Board of the Affiliated Hospital of Southwest Medical

University (KY2020163) and was conducted following the

Declaration of Helsinki guidelines. All participating subjects were

informed and voluntarily signed informed consent forms.
2.1 Patients and data collection

From 1 May to 31 December, 2020, consecutive patients with

BI-RADS 4 lesions on US who were scheduled for biopsies at the

Affiliated Hospital of Southwest Medical University (Centre 1, the

training set) and Guangdong Provincial Hospital of Traditional

Chinese Medicine (Centre 2, the independent test set) were invited

to participate in this study. Further selection was performed

according to the following inclusion and exclusion criteria.

The inclusion criteria were as follows: (1) age≥18 years; (2) BI-

RADS 4 lesions identified following the 2013 edition of the BI-

RADS guidelines (21) by two senior radiologists (>10 years of breast

US experience) at both centers; and (3) completion of the ABVS

examination within one week before biopsy. The exclusion criteria

were as follows: (1) patients who were breastfeeding or had mastitis

or breaks in the affected breast; (2) patients who had undergone

previous invasive procedures for the lesion; (3) patients with poor-

quality images; and (4) patients who lacked definitive pathologic

findings. Patients with more than one BI-RADS 4 lesion were

included separately.
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Clinical data included age, menopausal status, history of oral

contraceptive use and smoking history, alcohol consumption level,

and family history of breast or ovarian cancer. The patient’s breast

density was classified as type A-D according to the mammographic

BI-RADS guidelines. The characteristics of the lesions, including

the lesion size, location (left or right), shape (regular or irregular),

orientation (parallel or nonparallel), posterior echogenicity

(enhancement, shadowing, mixed pattern, or absence of posterior

echogenicity), internal echogenicity (hypoechoic, hyperechoic, or

mixed echogenicity), and calcification (present or absent),

were recorded.
2.2 ABVS examinations

All ABVS examinations were performed by the Acuson S2000

ABVS (Siemens, Germany) ultrasound systems with the 14L5BV

probe (5–14 MHz) by two technicians (with 6 months of ABVS

training experience). For more details on the ABVS examination,

see Kim et al (22). After the examination, axial ABVS images were

sent to a dedicated workstation, and the sagittal and coronal images

were reconstructed automatically. Finally, the axial, sagittal, and

coronal ABVS images showing the largest lesions were selected for

further segmentation and classification. An example is shown

in Figure 1.

Within one week after the ABVS examination, a US-guided

core-needle biopsy was performed by experienced US doctors. In

accordance with the standard biopsy procedure, four to eight

samples per lesion were acquired via an automatic biopsy gun

with a 14G or 16G needle. The specimens were analyzed and

diagnosed by breast pathologists (>10 years of experience),

according to the World Health Organization’s standards for

breast tumor classification (23). For lesions with unclear

diagnoses by puncture, histopathologic diagnosis after surgical

removal was used as the reference standard.
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2.3 DL Framework and models

Centers 1 and 2 were divided into a training set and an

independent test set, respectively. We utilized five-fold cross-

validation on the training set to optimize the parameters of the

models and guide the choice of hyperparameters. The test set was

used to evaluate the final model performance independently. A two-

stage DL framework consisting of an automatic segmentation

module and an automatic classification module was developed.

First, the preprocessed ABVS images were input into the automatic

segmentation module for BI-RADS 4 lesion segmentation. Patches

were created as the input to the classifier. The classification model

was subsequently constructed via convolutional neural networks

(CNNs) to automatically extract the features of the lesions and

output the probability of malignancy. The overall process is

described in detail below and the whole pipeline of the DL model

is shown in Figure 2. Finally, we visualized and analyzed the

prediction results of the DL model.
2.3.1 Image preprocessing and automatic
segmentation module

Histogram equalization and median filtering were used to

remove noise and enhance the images. The black boxes in the

ABVS images were cropped using the Sobel operator (24). Online

data augmentation was performed for the ABVS images in the

training set during the training period. The augmented image pixels

were normalized and input into the ImageNet dataset

for pretraining.

The DeepLab-V3 algorithm introduced by Google was used to

build the automatic image segmentation module. DeepLab-V3 uses

the atrous spatial pyramid pooling (ASPP) structure to expand the

receptive field, mining context information, and the improved

Xception module to reduce the number of parameters and

achieve the best effect of the current segmentation network.
FIGURE 1

An example of a BI-RADS 4 lesion on ABVS images.ABVS images of the largest sections of a lesion in the coronal (A), axial (B), and sagittal (C) planes.
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2.3.2 Automatic classification module
The segmented images of the lesion and its surrounding area

were as patches to input to the classification module to extract

features and automatically output the probability of malignancy.

For the reasons that manually labelling masks has a certain degree

of subjectivity; the segmentation results of the segmentation model

also have certain biases; and the differences between the lesion area

and nearby normal tissues may help AI classify more accurately. To

construct the optimal DL model, we explored the performances of

CNN models based on single-view (axial, sagittal, and coronal) and

multiview (combined axial, sagittal, and coronal) images, as well as

different backbone networks (ResNet50, MobileNet, and Inception-

v3) in differentiating benign and malignant BI-RADS 4 lesions.

Transfer learning was applied to ensure a strong feature extraction

capability. Because of the limited number of samples, pretrained

knowledge was effectively applied to a specific task from a mega

database such as ImageNet, and the model was then retrained using

a small amount of data, which could achieve satisfactory results

(25). Each model was fine-tuned on the dataset of ABVS images to

reduce overfitting. The convolutional structure was used as the

backbone network, consisting of multiple convolutional layers,

average pooling layers, and convolutional modules in series for

feature extraction. In the multiview models, each view of the input

images corresponds to a backbone network branch, and three
Frontiers in Oncology 04
branches are concatenated to form the total feature vector. A

CNN framework example of Inception-v3 is shown in Figure 3. A

dropout layer (with deactivation rate of 0.5) was added behind the

vector to mitigate overfitting. Finally, the fully connected layer was

normalized to output the probability of malignancy of BI-RADS 4

lesions (a cut-off value of 50%).

The image preprocessing methods and DL algorithms with the

parameters and software settings are detailed in Supplementary File 1.

2.3.3 Testing and visualization of the DL model
The fine-tuned parameters were used in the segmentation and

classification models of the independent test set to evaluate the

effectiveness and final performance of these models. The results

were analyzed and assessed by the area under the receiver operating

characteristic (ROC) curve. The sensitivity, specificity, positive

predictive value (PPV), and negative predictive value (NPV) were

calculated at the maximum Youden index. The performance of the

automatic segmentation network was evaluated via the Dice

coefficient (DC). Additionally, we set a decision point in the ROC

curve based on the final model where sensitivity is 100% to evaluate

the value in reducing the unnecessary biopsies and this would allow

no lesions to be missed.

Gradient-weighted class activation mapping (Grad-CAM) was

used on the final convolutional layer of the classification model to
FIGURE 2

The whole pipeline of the deep learning (DL) model. The illustration shows the image input and the main processing stages for the two-stage DL
framework model, which consists of an automatic segmentation module and an automatic classification module. The preprocessed ABVS images
were used as input for the segmentation module for segmenting lesions. The classification module was constructed on the basis of single-view
(axial, sagittal, and coronal) and multiview (combined axial, sagittal, and coronal) images, as well as different backbone networks (ResNet50,
MobileNet and Inception-v3), and outputs the probability of malignancy. In the multiview model, each view of the input images corresponds to a
backbone network branch, and three branches are concatenated to form the total feature vector. Five-fold cross-validation was utilized on the
training set to choose the hyperparameters. The test set was used to evaluate the final performance.
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visualize the extent of each region on the ABVS image that

contributed to identifying malignant BI-RADS 4 lesions. The

critical areas predicted by the model are highlighted.
2.4 Statistical analysis

IBM SPSS Statistics (version 26.0, IBM Corp., USA) and Python

software (version 3.6.8, https://www.python.org/) were used for the

statistical analysis. SPSS software was used to analyze the differences

between the training and test sets and between benign and

malignant lesions. Continuous variables (age and tumor size)

were compared via t-tests. Categorical variables (breast density,

BI-RADS 4 subclasses, and family history of breast cancer) were

compared via the chi-square test.

The DC, recall, and precision were introduced to evaluate the

automatic segmentation performance objectively. ROC curves were

constructed to assess the classification performance and to calculate

the sensitivity, specificity, PPV, NPV, and AUC. The AUCs were

compared via the DeLong test. All the statistical calculations were

performed with 95% confidence intervals (95% CIs). All tests were

two-sided, and P<0.05 was considered statistically significant.
Frontiers in Oncology 05
3 Results

3.1 Patient characteristics

A total of 251 BI-RADS 4 lesions in 216 patients from two

centers were included. The flow chart is shown in Figure 4. Among

them, 178 lesions from 157 patients (mean age 49.0 ± 11.8 years) at

Centre 1 were included in the training set, and 73 lesions from 59

patients (average age 46.8 ± 10.5 years) at Centre 2 were included in

the independent test set. The proportions of malignant lesions

between the two sets were not significantly different (45.5% vs.

39.7%, P=0.402), and there were no significant differences in patient

age, lesion size, lesion location, BI-RADS 4 subclassifications, breast

density, or family history (Table 1).
3.2 Performance of the automatic
segmentation module

The Dice coefficient curves (Supplementary File 2) for assessing

segmentation performance revealed 474 (88.7%) ABVS images with

DCs greater than 0.90 in the training set and 165 (75.3%) ABVS
FIGURE 3

A convolutional neural network (CNN) framework example of an automatic classification model with Inception-v3 as the backbone network. (A) The
backbone network: The input ABVS image in three views (axial, sagittal, and coronal) passed six convolutional layers and one average pooling layer,
followed by three Inception A modules, one Inception B module, four Inception C modules and one Inception Lite module as defined in this study.
The Inception Lite module consists of an average pooling layer in tandem with two convolutional modules of different kernel sizes. (B) The modified
version of Inception-v3.
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images in the test set. Example plots are provided in Supplementary

File 3. The automatic segmentation model has the best

segmentation performance in axial views with DCs, recall rates,

and precisions of 0.908 ± 0.077, 0.996 ± 0.067, and 0.974 ± 0.123 in

the training set and 0.890 ± 0.152, 0.972 ± 0.167, and 0.948 ± 0.198

in the test set, respectively. Among all the views, the segmentation

module displayed the worst performance in the coronal views, with

DC, recall and precision values of 0.784 ± 0.120, 0.825 ± 0.188, and

0.825 ± 0.188, respectively, which is still a satisfactory result. The

detailed segmentation statistics of the different ABVS views in the

two sets are shown in Table 2.
3.3 Performance of the automatic
classification module

The automatic classification of BI-RADS 4 lesions was

performed after automatically segmenting the lesions.
TABLE 1 Baseline data of the benign and malignant BI-RADS 4 lesions in the training and test sets.

Characteristics

Training set (n=178) Test set (n=45) P *

Malignant (n=81) Benign
(n=97)

P Malignant (n=29) Benign
(n=44)

P

Age (years, ±) 54.6 ± 12.5 44.1 ± 9.9 <0.001 57.5 ± 9.4 45.4 ± 11.7 <0.001 0.229

Lesion size (cm, ±)* 2.3 ± 0.9 1.6 ± 0.9 <0.001 2.5 ± 1.2 1.6 ± 0.7 0.005 0.549

BI-RADS 4 category (n, %)

4a 11(13.3%) 73(76.0%) <0.001 2(6.9%) 35(79.5%) <0.001 0.593

4b 16(19.3%) 20(20.0%) 4(13.8%) 9(20.5%)

4c 54(67.4%) 4(4.0%) 23(79.3%) 0(0.0%)

Breast density (n, %)

A 11(13.2%) 4(4.0%) <0.001 4(13.8%) 0(0.0%) 0.319 0.878

B 38(45.8%) 26(27.0%) 12(41.4%) 17(38.6%)

C 26(45.8) 42(44.0%) 9(31.0%) 20(45.5%)

D 6(7.2%) 25(25.0%) 4(13.8%) 7(15.9%)

Menopausal status (n, %)

Premenopausal 33(41.0%) 73(74.0%) <0.001 6(20.7%) 29(65.9%) 0.010 0.054

Postmenopausal 48(59.0%) 24(26.0%) 23(79.3%) 15(34.1%)

Family history (n, %)

Yes 8(9.6%) 8(8.0%) 0.705 6(20.7%) 13(29.5%) 0.793 0.153

No 73(90.4%) 89(92.0%) 23(79.3%) 31(70.5%)

Location of lesion (n, %)

Left 51(62.7%) 52(55.05) 0.208 15(51.7%) 26(59.1%) 0.302 0.992

Right 30(37.3%) 45(45.0%) 14(48.2%) 18(40.9%)
fr
*P values between the training set and the test set.
Lesion size was defined as the maximum diameter on ABVS images. Family history referred to breast or ovarian cancer in first-degree relatives. The differences in characteristic variables (age and
lesion size) between the two cohorts were compared via two-sample t-tests, whereas chi-square tests were conducted on the other variables. P<0.05.
BI-RADS, Breast Imaging Reporting and Data System.
FIGURE 4

Flow chart of the study.
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Among the DL models on the various views, the multiview

models had better classification performance than the single-view

models in different backbone networks (ResNet50, MobileNet, and

Inception-v3). Moreover, all three single-view models and the

multiview model achieved the best classification performance in

the Inception-v3 network on both sets. The statistics for the training

set are shown in Supplementary File 4, and the performance results

for the test set are shown in Table 3, Figure 5. Among them, the

multiview model with the Inception-v3 backbone had the best

performance, with an AUC, sensitivity, specificity, PPV, and NPV

of 0.949 (95% CI: 0.945–0.953), 82.14%, 95.56%, 92.00%, and

89.58%, respectively. However, the coronal single-view model

based on ResNet50 had the worst classification performance, with

an AUC, sensitivity, specificity, PPV, and NPV of 0.807 (95% CI:

0.779–0.836), 85.71%, 57.78%, 55.81%, and 86.67%, respectively.
3.4 Value in reducing unnecessary biopsies
and visualizations

The confusion matrix of all the DL models with the test set is

shown in Figure 6. The Inception-v3-based multiview DL model

performed the best, with a missed diagnosis rate and misdiagnosis

rate of 17.85% (5/28) and 4.44% (2/45), and with the unnecessary

biopsy rate reducing from 61.64% (45/73) to 8.00% (2/25)

compared to the conventional US. The sagittal single-view and

multiview models based on the MobileNet network achieved similar

performance, with missed diagnosis rates and misdiagnosis rates of

21.43% (6/28) and 2.22% (1/45) on the sagittal view, and 17.85% (5/
Frontiers in Oncology 07
28) and 6.67% (3/45) on the multiview, respectively. With a decision

point of 100% sensitivity in the ROC curve based on multiview

Inception-v3 model, the specificity, PPV, and NPV were 58.1%,

58.9%, and 100%, respectively (The confusion matrix is shown in

Supplementary File 5). And the unnecessary biopsy rate of it is

40.42% (19/47), which is 21.22% lower than conventional

ultrasound (61.64%, 45/73) without missing any malignant lesions.

The saliency map highlighted the lesion location and

surrounding region, both in benign and malignant lesions

(Figure 7). This finding indicated that the multiview DL model

focused on the lesion itself and surrounding structures when

categorizing BI-RADS 4 lesions.
4 Discussion

In this study, we developed an ABVS-based DL model with

automatic segmentation and classification capabilities to explore its

diagnostic performance in single-view and multiview images for

identifying breast cancer in BI-RADS 4 lesions. We found that our

DL model can accurately segment multiple views of ABVS images

and further differentiate benign and malignant BI-RADS 4 lesions,

which could reduce unnecessary invasive biopsies.

DL, a technique used in artificial intelligence, has achieved

significant advances in automatic medical image analysis of breast

cancer through CNNs. In addition to segmenting (26) and

categorizing (27) various modalities of ultrasound images of

breast cancer, DL can also predict metastasis (28) and patient

prognosis (29). The BI-RADS 4 lesion is the watershed for

whether to perform a biopsy, with a 5%–98% likelihood of being

benign (3). Therefore, accurately differentiating the benign and

malignant natures of BI-RADS 4 lesions is the key to minimizing

noninvasive manipulation of breast lumps and is a pressing issue.

Therefore, we used a deep learning approach to solve this problem

noninvasively. To our knowledge, the development of ABVS-based

DL models for the automatic segmentation and classification of BI-

RADS 4 lesions, as well as the application of such an approach for

reducing the possibility of biopsy, has not been reported.

This study used the DeepLab-V3 model to segment BI-RADS 4

lesions automatically, and the high DC values reflected its powerful

segmentation performance. The segmentation effectiveness was the

worst in the coronal plane. This may be because the artefacts caused

by the nipple are extremely similar to the echogenicity of the lesion

in the coronal plane, and the adipose tissue in the breast, which is

morphologically similar to some breast nodules, is also in a

restricted distribution in this plane. The model achieved the best

segmentation performance in the axial single section, which is

consistent with recent research results (30). Therefore, the

DeepLab-V3-based segmentation module actually has excellent

segmentation efficacy, self-learning ability, and self-adaptation for

ABVS image segmentation (31, 32). Moreover, high-quality

automatic segmentation lays a foundation for the subsequent

standardization of feature extraction and classification

accuracy (33).

ABVS can provide 3D images and reconstruct the images to

axial, sagittal, and coronal views. Thus, we explored the
TABLE 2 Automatic segmentation results of different ABVS views in the
training and test sets.

Clusters Dice coefficient
(mean ± SD)

Recall
(mean ± SD)

Precision
(mean
± SD)

The training
set (n=534)

0.874 ± 0.173 0.911 ± 0.185 0.893 ± 0.195

Coronal
view
(n=178)

0.804 ± 0.121 0.894 ± 0.207 0.883 ± 0.216

Sagittal
view
(n=178)

0.824 ± 0.154 0.926 ± 0.163 0.905 ± 0.177

Axial
view
(n=178)

0.908 ± 0.077 0.996 ± 0.067 0.974 ± 0.123

The test
set (n=219)

0.817 ± 0.142 0.903 ± 0.183 0.886 ± 0.187

Coronal
view (n=73)

0.784 ± 0.120 0.825 ± 0.188 0.825 ± 0.188

Sagittal
view (n=73)

0.801 ± 0.119 0.883 ± 0.157 0.888 ± 0.165

Axial
view (n=73)

0.890 ± 0.152 0.972 ± 0.167 0.948 ± 0.198
SD refers to the standard deviation, and the bolded portion is the group with the
best indicator.
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performance of the classification module based on three single

views and the combined views. Among the single-view models, the

diagnostic performance on the coronal view was the lowest, whereas

it was the best on the axial view, which is inconsistent with previous

perceptions (34). These authors (34) suggested that the ABVS-

specific coronal view maximizes the understanding of the

relationship between the breast lesion and the surrounding tissues

and is more conducive to identifying benign and malignant lesions.

In particular, the retraction phenomenon on the coronal view has a

high sensitivity (80%~89%) and specificity (96%~100%) for

detecting breast cancer (11, 35). The main reasons for this

contradiction may be that the classification module in this study
Frontiers in Oncology 08
was constructed on the basis of automatic segmentation, and the

relatively poorer segmentation results on the coronal plane led to a

subsequent decrease in classification performance. This finding is

consistent with a recent view (36) emphasizing that accurate

segmentation is a prerequisite for precise classification in DL

models. This, in turn, explains the better classification

performance of the axial sections. The multiview models

simultaneously fused the features of the three views and

demonstrated the best diagnostic performance.

Since different CNN backbone network structures may affect

the classification performance of the model (37), three common

backbone structures (Inception-v3, ResNet50, and MobileNet) were
FIGURE 5

The ROC curves of the (A) single-view models and (B) multiview model based on different backbone networks (ResNet50, MobileNet, and
Inception-v3) on the test set. ROC, receiver operating characteristic; AUC, area under the receiver operating characteristic curve.
TABLE 3 Diagnostic performance of the single-view and multiview models based on different backbone networks (ResNet50, MobileNet, and
Inception-v3) on the test set.

Backbones View AUC (95%CI) Sensitivity (%) Specificity (%) PPV (%) NPV (%)

ResNet50 Axial view 0.880 (0.857-0.903) 71.43 91.11 83.33 83.67

Sagittal view 0.898 (0.880-0.915) 82.14 82.22 74.19 88.10

Coronal view 0.807 (0.779-0.836) 85.71 57.78 55.81 86.67

Multiview * 0.922 (0.905-0.939) 82.14 84.44 76.67 88.37

MobileNet Axial view 0.909 (0.886-0.931) 78.57 93.33 88.00 87.50

Sagittal view 0.910 (0.890-0.930) 78.57 97.78 95.65 88.00

Coronal view 0.827 (0.802-0.854) 67.86 73.33 61.29 78.57

Multiview 0.933 (0.914-0.952) 82.14 93.33 88.46 89.36

Inception-v3 Axial view 0.910 (0.888-0.933) 82.14 91.11 85.19 89.13

Sagittal view 0.946 (0.932-0.961) 78.57 91.11 84.61 87.23

Coronal view 0.921 (0.905-0.937) 85.71 77.78 70.59 89.74

Multiview 0.949 (0.945-0.953) 82.14 95.56 92.00 89.58
*Multiview is the combination of axial, sagittal, and coronal planes. The bolded portion is the group with the best indicator.
AUC, area under the curve; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1399296
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2024.1399296
compared for our DL classification modelling. Inception-v3, a CNN

improved by the third-generation GoogLeNet, uses multiple regular

convolutional layers for feature extraction and concatenates the

features as an output, which can help the model learn different-sized

lesions efficiently (38). The Inception-v3-based model can handle

more and richer spatial features, increase feature diversity, and

reduce the number of computations, with an error rate of only 3.5%

(39). It actually achieved the highest classification accuracy in the

single- and multiview automatic classification models in this study,

which may reduce the unnecessary biopsy rate. The optimal DL

model in this study could reduce unnecessary biopsies by 53.64%,

significantly outperforming previous approaches using contrast-

enhanced US (40) and elastography (41), which also have more

complicated procedures and rely on the experience of the

examining sonographer (42). However, the DL model still had a

missed diagnosis rate of 17.85%, which would delay treatment and

affect the outcomes and prognoses of patients (43). Although the

sagittal single-view model on the MobileNet backbone could reduce

the rate of unnecessary biopsies more (57.29%), it was more likely to

miss diagnosis (21.43%) than the optimal model was. Therefore, the

Inception-v3-based multiview DL model was selected as the final

model. On this basis, we further set a decision point with the
Frontiers in Oncology 09
sensitivity of 100% in the ROC curve which could reduce

unnecessary biopsy rate by 21.22% without missing any lesions.

However, more comprehensive research and optimization are

needed before its application in the clinic. Additionally, previous

studies (44, 45) have shown that both the breast lesion itself and its

periphery contribute significantly to the interpretability of breast

lesions, which is consistent with our Grad-CAM visualization

results. To some extent, this may explain the discrimination

ability of this DL model.

In conclusion, our work indicated that the ABVS-based DL

model can reduce radiologists’ manual intervention through

automatic segmentation and automatic classification and improve

the performance of benign and malignant discrimination of BI-

RADS 4 lesions. With further improvements in the model in the

future, it will hopefully be promoted and applied in clinical practice,

which could significantly impact the management of BI-RADS 4

lesions, reduce biopsies, and promote the development of

precision medicine.

There are several limitations. First, the total number of cases of

BI-RADS 4 lesions was relatively limited, which may have affected

the reliability of the model. Datasets with more centers and larger

samples need to be included for further validation and optimization.
FIGURE 6

The confusion matrix of the deep learning models with the test set. The confusion matrix of the models is based on single view (axial, sagittal, and
coronal) and Multiview images, as well as different backbone networks (ResNet50, MobileNet, and Inception v3) with the test set. The correct
predictions are shown on the diagonal from the top left to the bottom right of each matrix.
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Second, only the largest section of each BI-RADS 4 lesion was used for

analysis, which did not fully utilize the advantages of ABVS 3D

imaging. The overall information of the lesions is also potentially

valuable for predicting their benignity and malignancy. Therefore, the

volume of interest in the lesions will be analyzed in a later study. Third,

only a single automatic segmentation method from the relevant

literature was used in this study. Subsequent studies will explore

different automatic segmentation methods to increase the accuracy

of model segmentation and further improve model performance.
5 Conclusion

The developed DL model can achieve automatic segmentation

and automatic classification of BI-RADS 4 lesions in multiview

ABVS images with satisfactory performance. This DL model could

reduce the number of unnecessary biopsies of BI-RADS 4 lesions

without missing any malignant lesions and simplify the workflow

for differential diagnosis, indicating its significant potential for

clinical applications.
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