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Young onset breast cancer (YOBC) is an increasing demographic with unique

biology, limited screening, and poor outcomes. Further, women with postpartum

breast cancers (PPBCs), cancers occurring up to 10 years after childbirth, have

worse outcomes than other young breast cancer patients matched for tumor

stage and subtype. Early-stage detection of YOBC is critical for improving

outcomes. However, most young women (under 45) do not meet current age

guidelines for routine mammographic screening and are thus an underserved

population. Other challenges to early detection in this population include

reduced performance of standard of care mammography and reduced

awareness. Women often face significant barriers in accessing health care

during the postpartum period and disadvantaged communities face

compounding barriers due to systemic health care inequities. Blood tests and

liquid biopsies targeting early detection may provide an attractive option to help

address these challenges. Test development in this area includes understanding

of the unique biology involved in YOBC and in particular PPBCs that tend to be

more aggressive and deadly. In this review, we will present the status of breast

cancer screening and detection in young women, provide a summary of some

unique biological features of YOBC, and discuss the potential for blood tests and

liquid biopsy platforms to address current shortcomings in timely,

equitable detection.
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Introduction

New evidence suggests incidence rates are increasing for breast

cancer in young patients (aged 25–39 years) and outcomes are

worse compared to older patients (1). Early-stage detection is a

strong determinant of survival and quality of life, and the earlier a

cancer is diagnosed, the lower the overall cancer-associated health

care costs (2, 3). However, breast cancer screening has been limited

to women over 50 or those at elevated risk of developing breast

cancer. This review will present an overview of young onset breast

cancer (YOBC), with a focus on postpartum breast cancer, current

gaps in screening and diagnosis, and technologies relevant to early

detection, including blood tests and liquid biopsy.

YOBC has typically been associated with poor outcomes due to

lack of early diagnoses, poor clinicopathological features, and dense

breast tissue affecting mammography sensitivity (1, 4–15). More

specifically, this includes a higher proportion of aggressive cancer

like triple negative breast cancer (TNBC), high risk of local

recurrence, metastasis and lymph node involvement and larger

tumor size (5, 6, 8, 10). Equitable care for breast cancer patients

requires a deeper understanding of the specific mechanisms

associated with breast cancer in young patients, specifically

during the postpartum period, which will allow for development

of improved diagnostic options for these groups. This review will

examine some barriers postpartum women face when accessing

breast cancer screening and early diagnosis, as well as the potential

role for liquid biopsy in expanding access.
Young onset breast cancer: clinical
and biological aspects

Although breast cancer is typically viewed as a disease of older

women, women under 45 account for a considerable portion of

overall breast cancer patients, ranging from 5% to 25%, with

estimates varying based on study, country, and ethnicity (1, 16–

26). The incidence and mortality rates for all early-onset cancers

(women under 45) have increased over the past decade, with breast

cancer leading the way (20). Despite improving outcomes in older

patients through screening and better therapies, these advances

have not improved outcomes in young patients. While there were

improvements for young patients through the late 20th century,

these trends have recently slowed (27) or even reversed (28). In

addition, developing breast cancer under the age of 45 doubles the

risk for metastasis and mortality, as compared to patients older than

45 (1, 29). This age-based discrepancy in outcome suggests that

there is an unmet need in the care of patients under 45 with

breast cancer.

Defining young-onset breast cancer (YOBC) necessitates

considering the significant differences in hormone shifts with the

start of menarche, pregnancy, postpartum and involution as well as

perimenopause, menopause, and post-menopause (27, 30, 31).

Women begin the shift from a reproductive to non-reproductive

state in their mid- to late 40s, with an overall mean age of

menopause at 49.9 (32, 33). Moreover, factors like hysterectomy
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(20% of women undergo by age 55), menopause hormone therapy

(~20–35% in peri- and postmenopausal individuals) and use of oral

contraceptive (62% of reproductive age women use worldwide) add

layers of complexity to understanding the role of hormones (both

natural and pharmaceutical), on breast cancer development and its

detection (34–38). To encompass the most studies available, this

review classifies YOBC as women under the age of 45 (37, 39).

YOBC often exhibits aggressive tumor biology and late-stage

diagnosis, correlating with poor patient outcomes. Breast cancer in

young women presents with higher prevalence of hormone receptor

negative, triple negative and HER2+ tumors (29, 40), elevating risk

of recurrence and metastases (41). Moreover, characteristics such as

larger tumor diameter (>20mm), increased proliferation/Ki-67

expression, lymphovascular invasion and lymph node

involvement are common and correlate to increased mortality

(10, 42–44). In addition, factors relevant to young women, such

as older age at first birth and not breastfeeding may contribute to

increased risk of certain aggressive subtypes of YOBC, such as

estrogen receptor negative (ER-) (45). These dynamics may be

further amplified based on racial and ethnic predisposition. There is

also increasing evidence that certain racial/ethnic groups, such as

Black women, are at high risk of TNBC and represent a

disproportionate number of cases diagnosed in young patients

(15). In particular, young Black women (<50 years old) have a

higher breast cancer incidence than young white women, a trend

which reverses around menopause (46). Furthermore, Black women

are more than twice as likely, and Hispanic women 1.2 times as

likely, to be diagnosed with metastatic disease than white women in

the US (47). Of the TNBCs diagnosed in young patients, cancers are

often of a higher grade, are diagnosed at stage III or later, and have

elevated Ki-67 as compared to their older counterparts. Young

women diagnosed with Stage I/II cancer exhibit worse prognosis

and higher mortality rates compared to their older counterparts,

regardless of subtype (48). This may be further exacerbated by social

and structural barriers, such as limited access to healthcare, which

patients face in accessing a timely diagnosis, as reviewed extensively

elsewhere (49–51). Globally, the average risk of dying from breast

cancer before 40 years old is similar across continents except for

Africa, which has more than double the risk (52). Approximately

half of all young patients harbor a germline mutation in BRCA1,

BRCA2 or TP53 that increases the risk of developing breast cancer

(53, 54). As in older women, most breast cancers are invasive ductal

carcinoma (IDC) as compared to invasive lobular carcinoma (ILC)

(41). Epigenetic factors are also relevant, appearing to contribute to

breast cancer risk in a manner dependent on ethnic and

epidemiological factors as reviewed elsewhere (55, 56).
Postpartum breast cancer

Within YOBC, cases can be subdivided into broad categories.

Breast cancer occurring in never-pregnant (nulliparous) patients

and cases diagnosed during pregnancy, known as pregnancy-related

breast cancer (PrBC), are associated with similar outcomes (57). In

contrast, breast cancers diagnosed within 5, and up to 10 years

postpartum have increased metastasis and mortality compared to
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diagnoses in nulliparous and PrBC patients (12, 44, 58–61). Women

with PPBC are a unique and vulnerable population and like YOBC,

defining a specific age range for this group poses challenges.

Typically, ≤45 years has been used as a benchmark, but it is

crucial to recognize that this may shift due to increasing age at

first childbirth (62, 63). Notably, first pregnancy after 35 years old

(classified as geriatric pregnancy or advanced maternal age) is

considered a risk factor for breast cancer, with 50% increased risk

compared to pregnancy at 20 years old (64, 65). It is stipulated that

this is due to older women already possessing cancer-causing

mutations or abnormal cells by the time of pregnancy and

involution, thereby not benefiting from protective effects seen in

younger pregnancies, and instead contributing to metastasis (64).

The mechanism of the protective effect seen in pregnancies under

35 years old, remains unknown but is hypothesized to involve

changes in hormone levels and the mechanical forces in the

mammary gland (66–68). The poor outcomes of PPBC patients as

compared to nulliparous and pregnant patients suggest that there

are unique processes occurring in the breast after childbirth

requiring further investigation.

The mammary gland is a unique and dynamic organ, as it

largely develops postnatally and only reaches a mature state with

lactation (69). During the time of puberty, the mammary gland

undergoes cyclic proliferation, differentiation and death

corresponding to hormone changes of the menstrual cycle (70,

71). Significant tissue expansion occurs with pregnancy and

lactation, followed by regression at weaning (72). The cessation of

lactation begins the process of involution, a remodeling of the

mammary gland back to pre-pregnancy state. However, the

immune signature developed during involution has been shown

to persist up to 10 years post-childbirth (12, 73). The plasticity of

the mammary gland is a key factor to influencing its vulnerability to

the carcinogenesis process and has been reviewed elsewhere

(74–76).

Breastfeeding has shown potential in reducing the risk of some

breast cancer subtypes, but the mechanism of protection remains

under-investigated (77, 78). One meta-analysis has shown

breastfeeding associated with 10% risk reduction in estrogen

receptor (ER) negative and progesterone receptor (PR) negative

breast cancer, and a 20% risk reduction in TNBC (78–80). The risk

of ER+ cancers also appears to be decreased in women who

breastfed (80, 81). Additionally, the effectiveness of lactation may

be reduced by the decline of breastfeeding duration and

breastfeeding overall, with only 35.6% of females exclusively

breastfeeding for at least 6 months in Canada as per WHO and

Health Canada recommendations (82). Although a temporary

increase in breast cancer risk follows childbirth (13, 65), it is

succeeded by a long-term protective effect and reduced risk.

However as discussed, this positive impact diminishes with a later

age at first childbirth, posing a unique and significant challenge as

the trend toward delayed pregnancies and increased child-bearing

age continues to increase (13, 83). As women delay pregnancy and

the age of first childbirth increases, with a historically high average

age of first childbirth of 27.3 years old in the US in 2021, 29.4 years

old in Europe in 2019 (84), 29.7 in Asia in 2003 (85), the incidence

of PPBC is expected to rise, leading to a subsequent rise in
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morbidity rates (65, 86). These trends necessitate an increased

focus on early diagnosis for patients with PPBC.
Current detection technologies and
barriers to detection

The primary obstacle to detecting YOBC and PPBC is the lack

of diagnostic technology and regular screening procedures with

demonstrated efficacy in this population. Commonly used metrics

for evaluating performance of breast cancer screening/diagnostic

tests, such as mammography and MRI, include clinical sensitivity

and specificity. Clinical sensitivity is the ability of the test to

accurately detect cancer when present; a low sensitivity indicates

a higher rate of missed cancers. Clinical specificity is the ability to

correctly determine a patient as disease-free when cancer is not

present; low specificity can lead to unnecessary downstream

procedures and patient anxiety. These parameters are determined

in clinical studies using a “gold standard” or longitudinal follow-up

of participants to capture the true positives and true negatives.

Comparing the performance of different technologies remains

difficult. For review see Hollingsworth (2019) (87). Further, the

population recruited in a study may have different characteristics

including varying breast density, racial and ethnic predisposition,

and more, that could affect performance. This produces

performance metrics that may be higher or lower than other

published studies, depending on the benchmark and population

used. The gold standard for breast screening sensitivity is MRI.

When compared to MRI, mammography sensitivity is lower

(≤ 40%) (88, 89) due to MRI’s lower limit of detection (ability to

find smaller tumors) and effectiveness of contrast agent in

enhancing visualization of breast cancer, including lobular breast

cancers. The difficulty in comparing technologies is a barrier in

development and clinical implementation of effective screening

and/or diagnostic tools for YOBC.

Mammography is the standard for breast cancer screening in

many countries but has limited clinical utility in YOBC. Specifically,

the sensitivity and specificity of mammography is reduced in young

women due to increased prevalence of high breast density (15).

Figure 1 compares the sensitivity of mammography to the breast

density of women under and over 45. Elevated breast density

[heterogeneously dense (C) or very dense (D)], decreases the

sensitivity and specificity of mammography screening (92),

resulting in detection when tumors are larger (94–96). Breast

density is elevated in over 50% of women, and this is associated

with a 2 to 5 times greater risk of breast cancer (90, 91, 97–100).

Furthermore, Black women have the highest breast densities across

all age groups (101, 102). Breast ultrasonography is often employed

in young women with dense breast tissue; however, lower specificity

and increased rates of operator error have hindered wider

deployment as a stand-alone first screen (103, 104). MRI is used

for screening in young women with elevated risk of breast cancer,

however the need for contrast agent, cost, and access challenges

limit participation and availability. Together, this evidence points to

young patients being the most at risk due to high breast density but

having limited screening options.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1398196
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Stibbards-Lyle et al. 10.3389/fonc.2024.1398196
US breast cancer screening guidelines reflect the higher

performance of mammography and higher incidence of breast

cancer in older women, with a gap in the screening and diagnosis

of YOBC. A summary of the guidelines and statistics can be found in

Table 1. Overall, breast cancer guidelines remain mostly consistent

among 21 high-income countries (including the US, UK, Canada,

etc.), with most countries recommending screening every 2 years

between 50 to 69 years old for women of average risk (112). Women

40 to 49 may participate in screening based on individualized needs

and a physician recommendation (111). Women with elevated risk
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may begin screening at earlier ages, typically using MRI. MRI has

high screening sensitivity but is not viable for broader

implementation due to high equipment and personnel costs, low

availability, and lower specificity rates resulting in higher rates of

follow-up procedures (113). The National Comprehensive Cancer

Network (NCCN) guidelines recommend women begin MRI

screening at age 25 to 40, depending on family history (first-degree

relative with breast cancer) and genetic predisposition (BRCA1/2,

p53 or pTEN mutations) (114). Similarly, the Canadian Task Force

on Preventive Health Care recommends for women 40–49 years old
FIGURE 1

Comparison of BI-RADS classification to mammography sensitivity and percent of women under/over 45. The Breast Imaging Reporting and Data
System (BI-RADS) uses mammographic density for classification of breasts based on percent of fibroglandular tissue. The four categories are
(A) predominantly fatty (≤25%), (B) scattered fibroglandular (26–50%), (C) heterogeneously dense (51–75%), and (D) extremely dense (76–100%). The
distribution of mammographic density was adapted from Checka et al. (90) and sensitivity from Lynge et al. (91). The sensitivity of mammography is
decreased with dense tissue which is predominantly found in young women (92). The density of breast tissue decreases with age making
mammography a suitable option for older women but presents a gap in screening of young women. Mammographic images originally open access
published by Pawlak et al. (2023) (93).
TABLE 1 Comparison of groups at risk for young onset breast cancer.

Group PrBC PPBC Black Women Women under 45

Prevalence • 0.04% of pregnancies (105)
• 0.2–3.8% of all newly
• diagnosed breast cancer (106)

• 50% of breast cancers arising
within 10 years of last
childbirth (107)

• Higher incidence rates of women
under 40 compared to White
women (42, 108)

• 5 -25% (1, 16–26)

5-year OS • Increased risk of
• death, pooled hazard ratio of
1.45 (95% CI 1.30–1.63) (58).

• 77.5% (44) • 75% (109) • 72–84% (25)

Stage at diagnosis • Advanced stages • Advanced stages
• 2 – fold increase in metastasis
(107, 110)

• Advanced stages
• High risk of TNBC (15)

• Advanced stages
• Excess risk at early stages (8)

Current
US guidelines

• Mammography only if an
underlying malignancy is
suspected or has been proven
by tissue biopsy

• No specific guidelines • No specific guidelines • Biennial mammography for
women >40 (111)
• MRI screening in women with
elevated risk
PrBC, pregnancy related breast cancer; PPBC, postpartum breast cancer; OS, overall survival; TNBC, triple negative breast cancer.
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to not screen with mammography and only undergo screening based

on the “relative value a woman places on the possible benefits

and harms from screening” (115). There are currently no

recommendations for screening of women with dense breasts,

leaving clinical diagnosis to occur following self-detection,

indicating advanced disease progression, and contributing to

unfavorable outcomes due to delayed intervention. Current

guidelines do not address broad groups of individuals at risk of

YOBC, including those with high breast density, recent childbirth, or

racial/ethnic genetic predisposition.

Globally, there are population disparities for breast cancer

incidence, diagnosis, access to new technologies, and consequent

outcomes. Lebanon, for example, has the highest incidence of breast

cancer in the Middle East, with diagnosis occurring at a younger age

than its Western counterparts (52 years compared to 63 years

respectively), as well as more aggressive and fatal outcomes (116).

Access to and participation in screening technologies is a

contributing factor to late detection in some geographical regions.

Approximately 80% of deaths from breast cancer occur in low to

middle income countries according to the World Health

Organization (WHO), prompting the formation of the Global

Breast Cancer Initiative Framework (117). Notably, among young

women, regions across the world with comparable incidence rates

have very different mortality rates, which is not the case for older

women, where greatly different incidence rates have comparable

mortality rates (52). There could be many reasons for this including

differences in the availability of screening, healthcare and

treatments (118). Current literature is limited regarding

characterization, screening and treatment of YOBC, and the role

of race and ethnicity. This is compounded by studies focusing on a

specific demographic or being too broad as well as adopting varying

definitions of YOBC and PPBC, making it difficult to compare

patient outcomes (6, 8, 10, 26, 58, 119–121). More diversified

studies using a population under 45 with information on parity

status, breast density and ethnicity would highly benefit research

within this area.

There are many barriers to implementation of screening in young

women including physical access, procedural costs, and post-

diagnosis care expenses. The deterrents for not seeking

postpartum/postnatal care and breast cancer screening overlap, and

depending on location, commonly include public transportation

access, distance to facility, travel time, lack of trained professionals

and lack of awareness (122–124). In higher income countries,

immigrant and refugee women, in particular, face significant

hurdles in access resulting in increased risk of mortality and

morbidity related to pregnancy as compared to the rest of the

population (125, 126). Furthermore, women of all racial/ethnic

backgrounds living in rural areas have higher breast cancer

mortality than women living in urban areas, illustrating the critical

impact of accessibility on care and screening (47). Racial disparities in

access also persist with Black women having three times the maternal

mortality of White women in the United States (127). While it is

difficult for early diagnosis and screening to eliminate these barriers,

emphasis on community resources and education have

been identified as an effective approach (128). Exploring the

incorporation of early breast cancer screening alongside postnatal
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and postpartum care, which is widely implemented in many

countries, could potentially enhance accessibility.
Early detection and liquid biopsy

Blood tests or liquid biopsies offer the potential to address many

of the gaps in early detection of breast cancer for young women

such as increased accessibility, higher participation, and

complementarity to imaging. Liquid biopsy involves the use of a

body fluid (such as blood, breast milk, nipple aspirate fluid or urine)

for identifying the molecular characteristics of the disease.

Typically, liquid biopsy tests have been used for treatment

selection and risk monitoring of recurrence, but emerging multi-

biomarker blood-based tests are focusing on early detection (129–

137). Key criteria to consider in the implementation of liquid biopsy

tests for early detection of breast cancer include analytical and

clinical performance metrics in targeted patient populations,

accessibility, and scalability. Detection technologies used in first

pass screening typically have high diagnostic specificity with the

intention of limiting the number of false positives and unnecessary

downstream procedures. However, diagnostic sensitivity is also

important due to the inevitable risk of false negatives. In most

cases, stringent specimen collection and handling requirements

have a significant effect on sample stability, integrity, and overall

performance of the test. Molecular processing of samples in the

laboratory is usually performed by certified professional laboratory

users or automated solutions, with an effect on the cost and ability

to scale operations.

Early liquid biopsy tests encompassed analysis of circulating

tumor cells (CTCs), circulating tumor DNA (ctDNA) or

other genetic material such as micro-RNAs from plasma for use

in prognosis and treatment selection [for review see (129, 130, 132,

136, 137)]. Some tests have obtained FDA clearance including the

CellSearch test by Veracyte that is indicated for cancer prognosis and

the Guardant360DX test for treatment selection. The FoundationOne

Liquid CDx (Foundation Medicine) test is an FDA-approved test

indicated for breast cancer gene profiling for treatment selection (138,

139). As the CellSearch test is based on the expression of epithelial cell

adhesion molecule (EpCAM) on CTCs and with EpCAM

demonstrated to be downregulated in most aggressive breast cancer

cells undergoing epithelial-to-mesenchymal transition (EMT), the

ability of the test to accurately detect disease even in advanced stages

might be limited (140, 141). First generation screening tests have

shown limited sensitivity for breast cancer, particularly in the early

stages, given the limited ctDNA and CTC that is shed from the breast

tumor among other technical limitations (142–144). As an example,

the ctDNA based multicancer early detection (MCED) screening

blood test Galleri (Grail) showed limited detection of early breast

cancer as part of breast screening. However the test identified cases of

recurrence (145). TruCheck (Datar Genetics) is a blood test that

measures 5 markers by immunofluorescence microscopy of CTCs

isolated and expanded from a blood sample. Clinical performance

results based on 141 participants (112 cancers, 29 no cancer) from

women aged 18–81 revealed a specificity of 93.1% and a sensitivity of

94.64% (146). The Syantra DX™ Breast Cancer test (Syantra Inc.) is
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based on qPCR and machine-learning based software analysis of a

proprietary panel of 12 target mRNA markers from whole blood.

Clinical performance for this test revealed an overall accuracy of 92%

(specificity of 94% and sensitivity of 79%) in blinded, independent

clinical studies on a test set of 695 women (aged 30–75) screening for

breast cancer (147).

To date, a limited number of studies have examined liquid

biopsy technologies for breast cancer detection in young women.

Lourenco et al. (148) examined the utility of a proteomic biomarker

assay (Videssa Breast) to rule out breast cancer in women with

inconclusive or suspicious imaging findings. The study focused on

women under 50 with high breast density (BI-RADS 3 or 4), and

reported sensitivity of 87.5% and specificity of 83.8% in a cohort of

545 women (148). The Syantra DX™ Breast Cancer test also

evaluated clinical performance in women under 50, for which

enhanced performance was reported with clinical sensitivity and

specificity rates of 91.7% and 99.0%, respectively (147). Further

clinical studies in this area will expand populations of women

evaluated and evidence to support use in younger women.

Research-based approaches for breast cancer detection are

demonstrating potential. Nipple aspirate fluid has been used for

biomarker detection at the earliest stages of breast cancer, prior to a

visible tumor mass (149). However, this strategy exhibits low yield,

requires a local anesthetic, and cannot be collected from pregnant or

lactating women. As a result, it is a promising option for the

screening of young women in general, but not PrBC and PPBC.

Jang et al. (150) demonstrated that miRNA multiplex analysis from

plasma may be useful for diagnosing women under 50 with dense

breasts. Most recently, Saura et al. (2023) demonstrated that breast

milk contains ctDNA and surpasses the yield found in plasma (151).

Interestingly, the samples with the highest ctDNA concentration

demonstrated a loss-of-function variant of E-cadherin, consistent

with decreased tumor cell junction tightness due to mutations in

this gene. They also presented two cases in which breast cancer was

detected via breast milk prior to diagnosis by imaging. Testing of

breast milk did not produce any false positive results, though the

numbers were small – limiting statistical analysis (n<30). These

studies indicate that screening technologies for breast cancer in

young women is an emerging field with great promise.

Artificial intelligence (AI) is expanding in use in existing

imaging modalities and emerging detection tests (152). Published

in 2023, an AI model “Sybil” was developed to analyze low-dose CT

scans and predict future lung cancer risk, achieving a success rate

over 86% (153). This capability to predict an individual’s future

cancer risk from a single scan supports personalized screening and

monitoring. Improved and automated image analysis is a primary

application of AI (154–156). Radiologists assisted with AI have

improved sensitivity and specificity in making clinical decisions

than either approach alone (157). Despite the progress in this area,

challenges in cancer detection and clinical adoption persist,

including model bias, data security, data size limitations and

variable methodology standards, as discussed elsewhere (158).

Additionally, AI assisted image analysis remains constrained to

the sensitivity and specificity of current imaging modalities and has

limited enhancement ability. Liquid biopsy tests often incorporate

machine learning and advanced data analytics for performance
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enhancement. Advances in AI and data analytic technology hold

promise for enhancing detection and management of breast cancer.
Biomarkers for screening/diagnosis of
postpartum breast cancer

Previous research has identified PPBC as a unique population of

breast cancer patients based on molecular phenotype and has

suggested that this distinct phenotype may persist for up to 10

years (12, 59). As a result, biomarker identification and validation

are important in this population. PPBC represents an opportunity

to identify specific and sensitive biomarkers suitable for screening/

diagnosis, based on processes solely associated with the postpartum

period that are thought to promote breast cancer progression.

Involution may involve processes promoting tumor cell

dissemination and upregulation of molecular markers associated

with poor prognosis. In the initial phase of involution, there is an

upregulation of acute immune response genes including STAT3 and

interleukins (159–162). Leukocyte chemoattractants are also

upregulated during this time, leading to the recruitment of large

numbers of macrophages (163, 164). Mammary epithelial cells enter

apoptosis and are further responsible for the continuation of this

inflammatory, albeit immune regulatory phenotype. In the

later phase of involution, there is an active T-cell presence,

followed by T-cell exhaustion/suppression and resulting immune

avoidance (59). Cycloxygenase-2 (COX2), a well-known

inflammatory mediator, has been shown to mediate persistent

lymphangiogenesis up to 10 years postpartum, suggesting that the

unique immune signature present during mammary gland

involution persists long after involution has concluded (12, 73).

The increased lymphatic density observed during mammary gland

involution is consistent with increased rates of lymph-node

metastasis in PPBC, as compared to nulliparous cases.

Dynamics of the extracellular matrix (ECM) are equally

important to the pro-tumorigenic effects of involution (Figure 2).

Culturing of tumor cells on ECM isolated from involuting rat

mammary glands leads to disruption of cell-cell adhesion

junctions and loss of apical-basal polarity, consequently

enhancing the invasive capacity of breast cancer cells.

Furthermore, there is an increase in collagen, tenascin C, and

proteolysis of collagen, fibronectin, and laminin (165–168).

Increased fibrillar collagen density and radial alignment of

collagen are observed in invasive breast tumors and observed in

physiologically normal breast involution and in PPBC (169–171).

These ECM-based mechanisms inherently improve the motility and

invasiveness of breast cancer cells, however, there are also well-

documented interactions between ECM dynamics and the immune

system, suggesting further downstream effects of the local

mechanical involution environment (172, 173). Beyond ECM

dynamics, there is a distinct role for direct mechanical forces in

regulating involution. Some groups have hypothesized that milk

accumulation induces a stretching force on cells lining breast

lobules, triggering the release of STAT3 and subsequent initiation

of involution (174). Furthermore, there are likely changing fluid

dynamics between interstitial fluid flow and inflammation, and the
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role of mechanical forces in regulating lymphatic expansion during

involution. Consistently, many markers associated with the

tumorigenic effects of mammary gland involution, such as

fibronectin, Semaphorin 7A, matrix metalloproteinases, collagen I

and more, have been shown to be flow-regulated by our group and

others. Our group has previously demonstrated that fluid shear

stress (FSS) upregulates S100 genes and fibronectin, and promotes

epithelial-to-mesenchymal transition, motility, and adhesion of
Frontiers in Oncology 07
breast cancer cells (175, 176). These studies further highlight the

important interactions between fluid dynamics and the immune

microenvironment during involution (175, 177–186).

Collectively, these data suggest a unique opportunity to identify

biomarkers of PPBC by leveraging knowledge of mammary gland

involution, focusing on a distinct inflammatory and wound healing

signatures and the mechanical cell environment. Further research

regarding the interactions between the mechanical and immune
FIGURE 2

Visual representation of differences in the microenvironment of nulliparous YOBC and PrBC or PPBC. The top panel represents full view and ductal
view of normal, undifferentiated (nulliparous) mammary gland, prior to pregnancy. As indicated, the basement membrane and basic structure of the
duct remains intact, compared to the parous state. In the bottom panel, a full view and ductal view of the parous mammary gland is presented. The
mammary gland undergoes cyclical remodeling prior and post-childbirth. Involution is a remodeling process that occurs post-lactation. It involves
process such as matrix metalloproteinase (MMP) activation, immune cell recruitment and dysregulation, lymphatic expansion, extracellular matrix
(ECM) degradation, epithelial-to-mesenchymal transition (EMT) and other activities that allow breast cancer cells to escape the primary tumor more
easily, migrate into circulation and establish secondary sites in other locations.
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microenvironments during mammary gland involution present an

excellent opportunity to develop diagnostic biomarkers exclusively

associated with and aimed at sensitive detection of PPBC.
Accessing liquid biopsy for women in
the postpartum period

As discussed above, one barrier to breast cancer screening

participation is difficulty in accessing transportation to centralized

imaging facilities (187–191). Further, the lack of awareness of the

prevalence and risks of PPBC results in a decreased likelihood of

women receiving referrals and access to traditional diagnostic

methods like more sensitive diagnostic imaging or tissue biopsy.

While these concerns cannot be directly addressed without a larger

transition to community-based medicine, the existence of an early

detection liquid biopsy test would be compatible with integration

into a community-based approach and existing postpartum care

(Figure 3). During pregnancy and the postpartum period, many

patients will have more exposure to the health care system through

their OB/GYN provider. This presents an opportunity to integrate

early steps in the preventative cancer care pathway. Routine

postpartum care already involves blood-based testing, providing

an efficient and streamlined approach for incorporating PPBC

screening especially with blood collection being available in many

locations. Milk samples are also often collected as a part of routine

postpartum care, particularly in cases of mastitis etc. Furthermore,

if a patient is diagnosed with PPBC, liquid biopsy presents an

opportunity for treatment surveillance and minimal residual disease

(MRD) assessment (192), which may be beneficial given the unique

reproductive concerns related to PrBC and PPBC (1, 107, 193).

Additionally, there may be opportunities for integration into annual
Frontiers in Oncology 08
OB/GYN care for those who are not pregnant. Implementation of

liquid biopsy tests in the context of breast cancer screening/

diagnosis benefits from a sensitive imaging modality for

downstream referrals in the event of a positive result. MRI is the

gold-standard for sensitivity, however contrast-enhanced

mammography and other imaging technologies are advancing. As

we look to improve women’s health care, there are likely to be many

combinations of technologies that may work to address the varied

needs of women of different characteristics and life situations.

Finally, limitations exist for disadvantaged communities in

accessing all types of postpartum care, particularly evident in less

developed countries and countries that operate without universal or

public health care models, including the US (188). These systemic

issues would need to be considered and addressed for liquid biopsy

to fulfill its full potential in aiding the detection of YOBC across

all communities.

Few studies have examined the feasibility of collecting liquid

biopsy specimens in routine, first-line clinical settings. Pilot studies

during the pandemic have shown mobile collection of blood based

liquid biopsy to be beneficial and cost-effective in delivering cancer

care to patients (194, 195). In the case of milk-based liquid biopsies,

there is a lack of guidelines for adequate storage and handling,

appropriate collection containers, temperature control, and other

factors (196). It is likely that immediate freezing would be required

to prevent degradation of RNA and miRNA relevant to molecular

diagnostics. Though milk-based liquid biopsies may be an attractive

alternative to blood-based liquid biopsies for analytic reasons

discussed, the practical implementation requires further

investigation. For blood-based liquid biopsies, the National

Cancer Institute currently recommends maximum storage times

from 4 hours for EDTA tubes and up to 3 days for preservative

tubes at ambient conditions determined from manufacturer
FIGURE 3

The potential of liquid biopsy to improve breast cancer screening accessibility through primary, community-based care. The current breast cancer
screening guidelines do not have recommendations for several at-risk populations due to lack of diagnostic technology. Implementation of liquid
biopsy early detection tests may allow for breast cancer screening to be accessed through a primary physician instead of a specialized clinic. This
would address barriers of distance to facility, travel time and transportation. There is still a need for improvement of imaging modalities such as MRI,
PET and QT ultrasound to be used complementary to liquid biopsy.
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stability tests (197–199). Longer times are available for samples that

can be stored and transported at -20C or -80C. CTC-based assays

continue to be limited in this context, with very few suitable

collection tubes on the market (200). Current limitations

associated with collection tubes could impact remote collection,

depending on location, and would require efficient delivery of

samples to processing locations. Other options to mitigate these

issues include Point-of-Care (lab-on-chip) solutions, which have

been reviewed extensively elsewhere (201–203).

Clinician education is critical to the implementation of any new

technology into clinical practice, however implementation of liquid

biopsy in the primary care setting is further complicated by the

number of primary care physicians and their high workload/wide

breadth of practice (200, 204). As outlined, liquid biopsy for early

cancer detection is an emerging field with different technologies

becoming available. Interpreting results within the context of

patient characteristics alongside available tests and imaging data

adds an additional layer of complexity. Clinicians must not only

understand the indicated populations for use of liquid biopsy tests,

but also the performance metrics and limitations of standard of care

imaging for screening and diagnosis. This comprehensive

understanding is essential for effective use of available

technologies and facilitating early-stage detection. Many clinical

blood tests report the amount of a biomarker, while cancer

detection tests usually report a positive or negative signal

informing a recommendation for follow-up diagnostic imaging.

Appropriate options for downstream referral will also be

paramount in providing primary care physicians with options for

their patients in the event of a positive result. While patients with

PPBC represent a uniquely suitable cohort for liquid biopsy early

detection tests, clinician awareness of screening technology

limitations is critical to quality care. This is particularly true in

situations where OB-GYNs and other primary care providers with

less knowledge of oncology are responsible for administering these

tests and communicating with patients. Knowledge dissemination

to clinicians to support this new aspect of postpartum care will

facilitate widespread adoption.

The economics of liquid biopsy for breast screening appear

promising but will vary based on target population, test

performance, test cost and current standard of care. Emerging

early detection liquid biopsy tests will likely enter the market with

small target populations and low coverage by payers, and expand

populations and coverage with time as more clinical validation

and usage data is obtained. Liquid biopsy may benefit from an

economy of scale model, wherein centralized labs are able to

conduct large numbers of tests from multiple regional facilities

(200). This model may lead to decreased costs, however the benefit

may not trickle down to individual patients, depending on the

market. Preliminary data suggests that liquid biopsies can be a

cost-effective option with faster turnaround time, compared to

conventional diagnostics (205–207). These estimates, however,

can vary greatly, and further research is needed in this area (208).

An understanding of the health economics of liquid biopsy for

YOBC is currently limited by several factors. As previously

discussed, the comparison of screening technology performance

parameters, such as sensitivity, is difficult due to inconsistent
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“gold standards”. Additionally, when considering the population

of women under 50, the availability and participation in screening

are limited, resulting in inadequate performance data. Though the

prevalence rates of breast cancer are lower in young women, liquid

biopsy may be more cost effective as breast density is elevated in

over 50% of young women, reducing mammography sensitivity,

increasing risk of breast cancer, and delaying diagnosis (65–70).

Liquid biopsy would likely improve early stage diagnosis thereby

reducing disease burden which is increased with advanced stages

(209). However, no studies have examined the cost-effectiveness of

liquid biopsy in this specific population. Future studies to address

this knowledge gap are imperative if we are to reverse the current

trends of increased incidence of lethal breast cancer in young

women worldwide.
Discussion/Conclusions

This review highlights the practical, clinical, and technological

gaps that currently exist in early detection and screening of YOBC.

Lack of detection options for young women, as well as their unique

biology, make early-stage detection challenging. Challenges include

lack of inclusion in screening recommendations, difficulties

accessing screening, low awareness of breast cancer in women

under 50 and screening technology limitations for this

population. Emerging liquid biopsy tests may be able to address

barriers in accessing screening through implementation of

community-based (de-centralized) approaches in primary and

integrated gynecological/postpartum care. Expanded clinical

studies recruiting women under 50 for liquid biopsy early

detection tests will support test approvals and reimbursement,

increasing availability and awareness. Improved understanding of

the mammary gland microenvironment during all stages of

development may lead to identification of biomarkers particularly

effective for this population for the next generation of tests. Further

research investigating the cancer biology of YOBC, tests utilizing

biological advancements, and clinical studies focused on YOBC and

PPBC are needed to advance the available technologies and address

the current gaps in care of these underserved populations.
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