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based on serological and
demographic indices
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Primary hepatocellular carcinoma (PHC) is associated with high rates of

morbidity and malignancy in China and throughout the world. In clinical

practice, a combination of ultrasound and alpha-fetoprotein (AFP)

measurement is frequently employed for initial screening. However, the

accuracy of this approach often falls short of the desired standard.

Consequently, this study aimed to investigate the enhancement of precision of

preliminary detection of PHC by ensemble learning techniques. To achieve this,

712 patients with PHC and 1887 healthy controls were enrolled for the

assessment of four ensemble learning methods, namely, Random Forest (RF),

LightGBM, Xgboost, and Catboost. A total of eleven characteristics, comprising

nine serological indices and two demographic indices, were selected from the

participants for use in detecting PHC. The findings identified an optimal feature

subset consisting of eight features, namely AFP, albumin (ALB), alanine

aminotransferase (ALT), platelets (PLT), age, alkaline phosphatase (ALP),

hemoglobin (Hb), and body mass index (BMI), that achieved the highest

classification accuracy of 96.62%. This emphasizes the importance of the

collective use of these features in PHC diagnosis. In conclusion, the results

provide evidence that the integration of serological and demographic indices

together with ensemble learning models, can contribute to the precision of

preliminary diagnosis of PHC.
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1 Introduction

PHC includes some of the most common and fatal malignant

tumors. The most common form of PHC is hepatocellular

carcinoma (HCC), followed by intrahepatic cholangiocarcinoma

(ICC) and combined hepatocellular-cholangiocarcinoma (cHCC-

CCA). Although the exact pathogenesis of PHC is not yet fully

understood, it is clear that its etiology is diverse. Infection with

hepatitis B virus (HBV) is the predominant cause of HCC in Asia

(excluding Japan) and parts of Africa, while infection with hepatitis

C virus (HCV) is more common in Europe, the United States, and

Japan (1). Chronic hepatitis typically progresses to liver fibrosis,

cirrhosis, and eventually liver cancer, a chain reaction described as

the “liver cancer trilogy.” Globally, PHC ranks sixth in the diagnosis

of new cancer cases per year (about 906 000 new cases) and third in

annual deaths (approximately 830 000 deaths) (2). It is predicted

that the global incidence of PHC will continue to rise, reaching an

estimated incidence of 14.08 cases per 100 000 by 2030. Projections

suggest a steady increase in PHC incidence until 2030, highlighting

a continuous rise without intervention (3).

The increasing incidence of PHC and the generally poor

survival outcomes of patients with PHC are both concerning.

Approximately two-thirds of PHC patients are diagnosed at an

intermediate to advanced stage and survive for less than one year

(4). Preliminary detection during physical examinations and the

early identification of PHC can facilitate comprehensive evaluations

and prompt interventions, thereby offering a range of therapeutic

choices. Approaches such as radical surgical resection and diverse

adjuvant therapies can significantly improve the 5-year survival rate

to 70−75% (5), crucial for improving patient prognosis.

Liver ultrasonography (US) combined with the measurement of

AFP levels is commonly used as an initial screening method in

clinical settings but its diagnostic accuracy is limited. Many PHC

patients also have underlying chronic liver diseases, and the

ultrasound imaging of cirrhosis and cirrhosis-associated PHC are

strikingly similar. Thus, a sole dependence on ultrasound for PHC

diagnosis yields a sensitivity ranging from 60% to 80% (6).

Additionally, imaging results can vary due to various factors, such

as the quality of the equipment, the expertise of the physician, and

the condition of the patient, limiting its reliability. In contrast,

hematological measurements provide objective values that can be

easily analyzed in clinical settings. If biomarkers can achieve high

accuracy in PHC diagnosis, their application in primary screening

could be invaluable. It has been suggested that abnormal increases

in the levels of blood markers precede abnormalities visible on

imaging tests (7), highlighting their potential for preliminary tumor

detection. Therefore, the effective improvement of the rates of PHC

detection using a combination of biomarkers and ensemble learning

has attracted significant attention in recent years.

In the present era, the integration of artificial intelligence (AI)

technology into the medical domain has become increasingly

prevalent. In response, a plethora of scholars have fervently

dedicated themselves to the realm of deep learning, meticulously

delving into medical image segmentation techniques to yield

remarkable outcomes through the proposal of efficient and

practical models (8–11). Within this plethora of research
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endeavors, precise segmentation models tailored specifically for

liver US and CT images abound (12–14). These highly effective

segmentation techniques have played an instrumental role in

providing substantial support for clinical surgical treatments,

aiding in intervention decision-making, and enhancing

postoperative evaluations for HCC (15–17). Moreover, the

application of AI in the medical domain extends beyond imaging.

With the continuous accumulation of clinical big data, a multitude

of diagnostic models for PHC, leveraging hematological indicators,

are rapidly emerging, further underscoring AI’s transformative

potential in healthcare. Among them, a model proposed by

Johnson et al. (18) was validated on international multi-center

data and was found to correctly classify 91% of patients. However,

the incidence of PHC in China differs from that in Europe and the

United States, and an evaluation of the performance of this model in

the Chinese population by Huang et al. (19) showed reduced

diagnostic efficacy. Therefore, the development of a model that is

better suited to the Chinese PHC patients’ population would be an

effective solution to this problem.

In this study, we analyzed and modeled patient data using

ensemble learning techniques. These 11 features were modeled, and

a high classification accuracy was obtained. Diagnosing PHC is

inherently intricate, and this study endeavors to aid physicians in

predicting and diagnosing this condition by constructing a model

utilizing commonly available clinical data. In essence, our

contributions are as follows:
1. Given that physical examination is widely available and

convenient, serological and demographic indicators were

chosen as the cornerstones for building predictive models.

2. Fusion of advanced ensemble learning and commonly used

indicators of physical examination is proposed to build a

PHC primary screening model, while the highest

classification accuracy and its corresponding optimal

feature subset are obtained through feature selection and

importance ranking.
The subsequent sections of the paper are organized as follows:

“Challenges and objectives” describes the challenges we faced

during the research process and our objectives. The “Materials

and methods” section delineates the experimental framework,

elucidating details on the dataset, preprocessing techniques,

evaluation metrics, and implementation strategies. “Results and

Discussion” Section highlights the results of the empirical study and

discusses the critical observations and findings. Lastly, the

“Conclusion” section encapsulates our contributions and provides

a concise summary to conclude the paper.
2 Challenges and objectives

In the process of constructing an ensemble learning model for

PHC risk prediction, we aim to enhance the model’s predictive

capability by collecting a large amount of clinical data. However,

this process also encounters significant challenges, which are

accompanied by clear objectives. The primary challenge lies in the
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complexity and diversity of medical data. Such data often contain a

large number of missing and abnormal values, which can directly

impact the effectiveness of model training. Therefore, we must

conduct thorough data cleaning and preprocessing to ensure the

quality and integrity of the data. Furthermore, medical data is

characterized by numerous and complex features, which may have

redundancy and correlation among them, increasing the complexity

of the model and potentially affecting its predictive performance. As

a result, we need to apply appropriate feature selection methods to

reduce the feature dimension, extract the most predictive

information, and thereby enhance the accuracy and efficiency of

the model.

The core objective of building this PHC prediction model is to

improve prediction accuracy. To achieve this goal, we will take a

series of measures, including carefully selecting the most predictive

features, optimizing the model structure and algorithm, and

adopting suitable evaluation metrics to continuously test and

enhance the model’s performance. Ultimately, we hope that this

model can become a valuable assistant for clinicians, helping them

more accurately assess medical examiners’ PHC risk, provide

personalized treatment plans, and assist in evaluating

treatment outcomes.
3 Materials and methods

3.1 Study participants

The clinical data of 712 patients diagnosed with PHC and

confirmed by pathological examination in the Department of

Hepatobiliary and Pancreatic Surgery of Jinhua Central Hospital

between January 2017 and February 2023 were used as the PHC

group. The average age in the group was 61.65 ± 12.13 years and the

patients included 579 males and 133 females. Additionally, data

from the Health Management Center of Jinhua Central Hospital

from June 2019 to August 2022, consisting of 1887 physical

examinations, were used for the healthy control (HC) group. The

average age of the 1887 members of the HC group was 54.11 ±
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11.46, and the group included 1494 males and 393 females. The age

and sex distributions of both the PHC and HC group are depicted in

Figure 1. Notably, as shown in Figure 1, there was a significantly

higher number of male patients compared to females in the PHC

group, and most patients were over 50 years old. The incidence rate

of PHC among young and middle-aged individuals was lower than

that in the older population. The original contributions presented in

the study are included in the Supplementary Material.
3.2 Inclusion and exclusion criteria

Inclusion criteria: PHC group (1): Pathologic diagnosis of PHC

after examination of specimens obtained after hepatectomy or

puncture biopsy; (2) Complete clinical data. HC group: (1) Age

older than18 years old; (2) Test results of various indices in the

normal range; (3) No family history of tumors or history of the

diagnosis and treatment of liver-related diseases; (4) Abdominal

ultrasound imaging data without evidence of diseases of the liver

and biliary system; (5) No abnormalities in the results of routine

blood tests; (6) No abnormalities in the test results of liver function

and renal function; (7) Overall diagnosis of health.

Exclusion criteria: (1) Incomplete general information and

imperfect data of related tests and inspections in the medical case;

(2) Combinations with other malignant tumors or metastatic

hepatic carcinoma (MHC); (3) Combination with severe

cardiovascular and cerebrovascular disease or contraindications to

anesthesia; (4) Death in the perioperative period.
3.3 Observation indices and
evaluation criteria

The observational indicators and criteria for evaluation were

divided into two main categories: (1) Demographic indices: age

and BMI; (2) Serological markers: AFP, white blood cell (WBC),

Hb, PLT, ALB, glucose (GLu), total bilirubin (TBil), ALT,

and ALP.
FIGURE 1

Age and sex distribution of the PHC and HC group.
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3.4 Data extraction

Patient data were retrieved from the e-case system of the data

center. The data included the initial results of blood, biochemistry,

and tumor marker tests obtained from the patients with PHC

hospital admission. Similarly, the corresponding test outcomes of

the HC group, along with their general clinical information, were

extracted from the health management center.
3.5 Ensemble learning model

The core concept of ensemble learning lies in “group

intelligence,” in which collective decision-making is considered

superior to individual choices. In the realm of machine learning,

the achievement of satisfactory results using a single model is often

challenging, as the predictive performances of different models tend

to vary and are thus termed weak classifiers. Increasing the

predictive capability of machine models involves an important

method, namely, the use of ensembles of machine learning

models. The use of ensemble learning allows the amalgamation of

multiple weak classifiers into more robust and comprehensive

strong classifiers using specific strategies. The present study

focused primarily on four integration learning models, namely,

RF, LightGBM, Xgboost, and Catboost.

RF trains multiple decision trees through the random extraction

of features and samples. There are thus minimal or no correlations

among the trees. The final prediction results are obtained by the

summation of the predictions of each tree. This methodology is

rooted in bootstrap aggregating (Bagging) (20). The RF algorithm

specifically gauges the importance of each feature by evaluating its

contribution to the individual decision trees. These contributions

are assessed by calculations of the Gini index before and after the

branching of features on the parse node (21). While RF significantly

mitigates data overfitting, thus enhancing training accuracy, it

requires significant computational resources as multiple models

require simultaneous training.
Frontiers in Oncology 04
Gradient Boosting Decision Tree (GBDT) is a boosting method

that relies on the concept of residual reduction. It constructs a new

model aimed at reducing residuals (negative gradient), thereby

diminishing bias. Its predictive capability significantly surpasses

that of a single model (22). LightGBM, Xgboost, and Catboost are

examples and efficient implementations of GBDT.

LightGBM is an open-source gradient-boosting framework

based on decision trees that was introduced by Microsoft. It is

able to handle large volumes of data and can enhance the

computational efficiency of GBDT. LightGBM utilizes a

histogram-based algorithm and a leaf-growing strategy with a

maximum depth limit to accelerate training and minimize

memory usage. This assists in the reduction of storage and

computational costs (23).

Xgboost addresses the issue of model overfitting by the

introduction of second-order derivatives and regularization

together with increasing the speed and efficiency of the model. It

refines predictions iteratively by the continuous splitting of features

in growing the tree, and progressively fits residuals from earlier

prediction models. By the training’s conclusion, K trees are

generated. In each tree, specific features of the sample are

associated with specific leaf nodes and scores, with the scores of

individual trees summed to derive the predicted value for that

sample (24).

Catboost, a recently developed algorithm for the gradient

boosting of decision trees, highlights competitive performance,

rivaling the leading machine learning algorithms (25). It has two

major advantages. First, it can handle categorical data during the

training, rather than the preprocessing, stage, thus avoiding the

need to encode classification features for model development from

raw data. Second, it uses a novel method for calculating leaf values

during the selection of tree structure, thus helping to prevent

overfitting, a common problem that reduces the generalizability

of machine learning models (26).

As shown in Figure 2, constructing an ensemble learning model

entails several key steps. Initially, the collected clinical data undergo

preprocessing, which involves procedures such as data
FIGURE 2

The process of model establishment.
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normalization and random sampling classification. This

preprocessing ensures that the data is appropriately formatted for

subsequent machine learning algorithms. Then, the ensemble

learning algorithms (RF, LightGBM, Xgboost, and Catboost) are

selected, and three classical machine learning methods - Multi-

Layer Perceptron (MLP), Support Vector Machine (SVM), and K-

Nearest Neighbors (KNN) - are introduced as references for

baseline comparative evaluation. Next, feature selection

techniques are utilized to further optimize the model’s

performance, and finally, the optimized model is evaluated. The

hyperparameters of each model used in the study are included in the

Supplementary Material.

The model developed in this study was a dichotomous model

that was evaluated using the confusion matrix (CM) method. The

main evaluation metrics used in this study include accuracy,

precision, recall, and F1-score, and their formulas are respectively:

Accuracy =
TP + TN

TP + FP + FN + TN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 − score =
2   *   Perscision   *  Recall

Perscision + Recall
3.6 Feature ranking and the optimal
feature subset

The Recursive Feature Elimination (RFE) algorithm was applied

in Catboost, the top-performing classification model, Catboost, for

feature selection. The RFE is designed to prevent overfitting and

increase model generalization by iterative training of the model and

the removal of weaker features until the desired number is reached.

Here, RFE was used to evaluate and rank the importance of each

feature variable. The optimal subset of features that could

distinguish between patients with PHC and healthy individuals

was examined using a classification task. Starting with a single

feature, further features were added incrementally according to

their ranking positions. This iterative process was continued until

all features were included in the classifier. This allowed the

identification of the optimal subset of features that yielded the

highest classification accuracy.
3.7 Statistical analysis

The 11 characteristics contained in the above datasets were

analyzed statistically using MATLAB 2022b software, with

comparisons between the two groups analyzed using one-way

analysis of variance (ANOVA) for multiple sets of data, using a
Frontiers in Oncology 05
test level of a = 0. 05 to assess statistically significant (P<0.05)

independent risk factors.
4 Result

A total of 2599 samples were included in this study, with 712 in

the PHC group and 1887 in the HC group. The information of the

demographics and blood indicator levels included 11 features,

which were analyzed statistically using one-way ANOVA. The

results are shown in Figure 3. Notably, no significant differences

between the groups were observed in terms of WBC counts (P >

0.05). However, there were significant differences in the GLu, BMI,

AFP, HB, PLT, ALB, TBil, ALT, and ALP values between the PHC

and HC group (P< 0.05). Thus, the “WBC” characteristic lacks a

significant reference value for distinguishing between the PHC and

HC groups, while the remaining 10 features may be independent

factors affecting the diagnosis of PHC.

The datasets for the PHC and HC group showed an imbalance

in the current classification procedure. To address this issue, a

random downsampling algorithm was adopted to acquire 712 HC

samples. The leave-out method was then used to divide the dataset

into training and test sets at an 8:2 ratio, respectively. To maximize

the predictive potential of machine learning, mainstream ensemble

learning models, namely, RF, LightGBM, Xgboost, and Catboost,

were used for classification of the PHC and HC group, using all 11

features. Furthermore, for the purpose of baseline comparison, this

paper also employs three classic machine learning methods - MLP,

SVM, and KNN - to build models. A 50-fold cross-validation

technique was used to assess the diagnostic performance of the

ensemble learning models. This involved splitting the dataset into

50 equally sized folds. The model underwent 50 rounds of training

and validation, using a different fold for validation in each iteration

and the remaining forty-nine folds for training. This iterative

process encompassed all folds, and an estimate of the overall

performance of the model was assessed by averaging the results.

This approach ensured a more reliable estimate of the performance

of the model than the use of a single train-test split, which could

introduce bias according to the specific data selected, and thus

helped mitigate overfitting concerns.

To validate the diagnostic performance of the 11 signatures, a

set of ensemble learning algorithms (RF, LightGBM, Xgboost, and

Catboost) and machine learning algorithms (MLP, SVM, and KNN)

was used to assess the model. The model was validated by

comparing the diagnostic efficiency, accuracy, and precision of

the different algorithms (Table 1). This showed that the Catboost,

XgBoost, and RF models were effective in distinguishing between

the PHC and HC groups, with all showing an accuracy above 96%.

The Catboost model was especially noteworthy, with an accuracy of

96.40 ± 0.32% and ranking top in precision, recall, and the F1-score.

In comparison to ensemble learning models, the performance of

classical machine learning models is not particularly outstanding.

These findings demonstrate the effectiveness of ensemble learning

algorithms for the precise differentiation between patients with

PHC and HC group.
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Using the top-performing classification model, Catboost, the

RFE algorithm was used for feature selection using 10 random

samples for classification. The results showing the respective

importance of the different features are shown in Figure 4.

Notably, all models identified AFP as the feature with the highest

importance, followed by, in ranking order, ALB, ALT, PLT, age,

ALP, Hb, BMI, TBil, WBC, and GLu.

The classification task involved the sequential addition of

features according to the rankings shown in Figure 4, with

incremental incorporation of individual features into each

classification run until all features were included in the classifier.

The results are shown in Figure 5. Initially, the model achieved

85.60% accuracy when only AFP was used. However, after the

inclusion of ALB, ALT, and PLT, the accuracy rose significantly to

95.01%. Notably, the accuracy of the model increased incrementally
Frontiers in Oncology 06
on the addition of the features, although the accuracy was observed

to decrease after the incorporation of TBil, WBC, and GLu. Figure 5

illustrates the incorporation of the top 8 features based on their

importance to yield the highest accuracy value, namely, 96.62%.

This surpassed the 96.40% accuracy obtained using Catboost as the

classification model, while also demonstrating higher precision,

recall, and F1-score values. At the same time, we have plotted the

receiver operating characteristic (ROC) curve for the optimal

feature subset containing eight features, as shown in Figure 6.

This curve visually demonstrates the performance of the model,

and its high AUC (Area under the Curve of ROC) value

convincingly proves that through the method of ensemble

learning, we have successfully built a relatively accurate predictive

model. This optimal subset of features, namely, AFP, ALB, ALT,

PLT, age, ALP, Hb, and BMI, indicates their significant roles in the

diagnosis of PHC and suggests their potential value as biomarkers

in PHC classification.
5 Discussion

This study established a model for the diagnosis of PHC

through the collection and processing of clinical data, using

ensemble learning techniques. The key findings include the initial

use of Catboost and the RFE algorithm to identify an optimal subset
FIGURE 3

Statistical analysis of 11 characteristics in the PHC and healthy control groups. ns, indicates non-significant (p>0.05), **p<0.001, and ***p<0.0001.
TABLE 1 Machine learning model ratings.

Model Accuracy Precision Recall F1-score

Catboost
Xgboost
RF
LightGBM
MLP
SVM
KNN

96.40 ± 0.32
96.33 ± 0.47
96.08 ± 0.41
95.80 ± 0.41
95.13 ± 0.39
94.35 ± 0.58
91.31 ± 0.75

96.61 ± 1.21
96.21 ± 1.32
95.85 ± 1.59
95.61 ± 1.52
94.83 ± 1.31
95.03 ± 1.56
93.98 ± 4.55

94.40 ± 4.76
94.57 ± 4.15
94.31 ± 4.17
93.85 ± 4.56
92.95 ± 5.15
90.81 ± 8.15
84.73 ± 14.95

95.41 ± 2.20
95.34 ± 2.27
95.03 ± 2.38
94.67 ± 2.56
93.81 ± 2.92
92.62 ± 3.71
88.00 ± 6.44
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including eight features, which showed a classification accuracy of

96.62% in distinguishing between the PHC and HC group.

Additionally, ensemble learning also identified critical

hematological indicators, AFP, ALB, ALT, PLT, ALP, and Hb,

together with two general clinical indicators, age and BMI. These

findings present valuable insights for the preliminary screening for

PHC and its subsequent diagnosis.
5.1 Ensemble learning was effective for
PHC diagnosis

In recent years, preliminary detection of PHC has largely relied

on US and AFP. However, the specificity and sensitivity of these

methods remain suboptimal. To address this issue, many studies
Frontiers in Oncology 07
have focused on extracting features from imaging data to construct

machine learning models. Recent literature reviews have shown the

emergence of various US-based algorithms designed to differentiate

between benign and malignant focal liver lesions (FLLs). These

algorithms have demonstrated accuracy levels comparable to those

of radiologists (27). Yang et al. designed a deep convolutional neural

network (DCNN-US) to aid radiologists in distinguishing between

benign and malignant FLLs using US. The model exhibited

promising performance in a validation cohort, with a

classification accuracy of 84.7%. However, it was found that the

accuracy of the DCNN-US model was slightly inferior to that of

enhanced MRI, which showed an accuracy of 87.9% (28). AI

utilizing contrast-enhanced ultrasound (CEUS) was found to

achieve a notable classification accuracy of 91% in distinguishing

between benign and malignant FLLs, surpassing the performance of

radiologists (29). However, when the model was compared to US,

CT, and MRI, both CT and MRI showed higher resolution and

superior contrast enhancement capabilities. Thus, machine learning

models based on CT and MRI tend to yield higher classification

accuracy (30–32). Despite this advantage, enhanced CT and MRI

examinations are commonly used as definitive diagnostic modalities

rather than for the preliminary screening for PHC.

As described above, while machine learning significantly

reduces human influence and demonstrates a high accuracy in

image recognition for the assessment of imaging test outcomes, the

need to perform imaging tests such as US, CT, and MRI for every

PHC diagnosis is a time-consuming process requiring experienced

radiologists. Moreover, the unequal distribution of healthcare

resources across geographical regions leads to challenges in

making prompt and effective clinical decisions. Furthermore, not

everyone can undergo enhanced CT or MRI due to potential allergic

reactions to contrast agents, which can adversely affect kidney

function. In contrast, screening methods based on serological data

offer advantages such as cost-effectiveness, convenient sampling,

and specific test result values that easily be integrated into
FIGURE 5

Classification performance after addition of the ranked features.
FIGURE 4

Importance rankings of 11 features based on Catboost and the RFE
feature selection algorithm..
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algorithms. Additionally, these methods allow the combination of

multiple indicators to enhance the accuracy of the test, the reason

for the use of serological data in the present study.

The accumulation of medical data, including big data, and

advances in ensemble learning methods invite their integration

for the establishment of efficient models for the diagnosis of PHC.

Johnson et al. (18) conducted a case-control study involving 331

patients with HCC and 339 patients with chronic liver disease

(CLD) from a UK center. The study resulted in the development of

a GALAD model, incorporating gender, age, the alpha-fetoprotein

heteroplasmy ratio (AFP-L3), AFP, and Des-gamma-carboxy

prothrombin (DCP), for the early diagnosis of PHC. The

performance of the model was validated further in the UK,

Germany, and Japan (33, 34). Liu et al. (35) assessed the

performance of the GALAD model in the Chinese population and

established a revised version, the GALAD-C model, using the same

five variables as GALAD. They also introduced the GAAP model
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that incorporated gender, age, AFP, and protein induced by vitamin

K absence or antagonist-II (PIVKA-II). In the test set, the GAAP

model was found to have a classification accuracy of 89% in

distinguishing between patients with HCC and HC, although this

did not apply to HCC patients infected with HBV. Notably, the

GALAD model, which was developed based on cohorts in the UK,

was found to have higher pooled sensitivity and accuracy for the

identification of HCC in Western countries compared to East Asian

countries (36). As described above, the etiology of PHC is not the

same in all parts of the world, with HBV infection being the

predominant cause in China, HCV infection in Japan, and

alcoholic hepatitis and non-alcoholic fatty liver disease (NAFLD)

predominating in Western countries. To address this issue, Yang

et al. (37) devised the ASAP model specifically within the context of

an HBV-infected population. This model incorporated four

independent risk factors as predictive variables, namely, patient’s

age, sex, AFP and PIVKA-II levels. In the test set, this model

exhibited a sensitivity of 87.8% and a specificity of 81.0%. However,

the model was not validated further, necessitating additional

investigation into its performance. Numerous studies have

demonstrated the superiority of machine learning models over

traditional approaches in the identification and prediction of

PHC. For instance, Audureau et al. (38) and Ioannou et al. (39)

used machine learning algorithms to predict HCC risk in patients

with cirrhosis caused by HCV infection, both concluding that the

algorithms enhanced the accuracy of prediction. Wong et al. (40),

utilizing five machine learning methods, developed the HCC

ridge score (HCC-RS), which was found to surpass the predictive

performance of existing HCC risk scores. Comparative information

on some of the above mentioned PHC prediction models can be

found in Table 2. In the present study, an ensemble learning

approach yielded a prediction model with robust predictive

ability, achieving an accuracy of 96.62% and an AUC of 0.9837.

This model outperformed the already reported models listed in

Table 2, indicative of its superior predictive efficacy. Moreover, the

ensemble learning model has potentially broad applications as it

uses fundamental and easily accessible clinical indicators. This

model can not only be applied to the HBV-infected population

but can also analyze and predict biological indicators of individuals

undergoing health checkups. Such versatility would reduce the

burden on both patients and examiners.
TABLE 2 The comparison of PHC prediction models.

GALAD (18) GALAD-C (35) GAAP (35) ASAP (37) HCC-RS (40)

Algorithm Logistic regression Logistic regression Logistic regression Logistic regression Ridge regression

Components
Gender, Age, AFP-L3,

AFP, DCP
Gender, Age, AFP-L3,

AFP, DCP
Gender, Age, AFP,

PIVKA-II
Age, Sex, AFP, PIVKA-II

Liver biochemistries,
hematological and

virological parameters

Accuracy 91.00 85.30 89.00 86.30 95.60

Sensitivity 93.00 82.60 87.20 87.80 52.00

Specificity 89.00 98.00 98.00 81.00 90.00

AUC 0.966 0.982 0.979 0.902 0.842
FIGURE 6

ROC curve of the optimal feature subset containing eight features.
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5.2 Ensemble learning identifies
PHC biomarkers

The present study included 11 features, leading to the ultimate

selection of AFP, ALB, ALT, PLT, age, ALP, Hb, and BMI as the

optimal subset of features after ensemble learning and feature

selection. AFP was originally discovered in human fetal serum by

Bergstrand and Czar (41) and represents the first serological marker

used in the clinical diagnosis of HCC. It is also the most widely used

adjunctive test clinically employed for the screening, diagnosis, and

evaluation of PHC (42). Recent studies have reported that patients

with certain benign liver diseases (such as active hepatitis and

cirrhosis) might also exhibit elevated levels of AFP in their blood.

Additionally, malignancies such as gonadal and gastrointestinal

tumors can also contribute to increased AFP levels (43, 44).

However, despite being discovered over 60 years ago, AFP

remains widely used today. Notably, in China, AFP demonstrates

a good detection rate due to variations in causal factors (45).

Additional reasons are differences in treatment modalities and the

awareness of citizens’ health concerns. In China, patients are often

diagnosed when PHC is at an advanced stage, presenting with

noticeable symptoms and signs, when AFP levels are known to be

elevated especially during the middle and advanced stages of PHC.

Additionally, as indicated in Figure 5, it is apparent that the use of

AFP only has an accuracy of only 85.60%. This underscores the

issue that the use of single tumor markers for classification is less

accurate. Thus, the present study included additional features to

enhance the classification accuracy.

ALB, ALT, and PLT, together with AFP, were found to be the most

significant features. Notably, significant improvements in accuracy

were observed when these three features were included in the

classifier. ALB and ALT are frequently used as clinical indicators of

liver function, where ALB mirrors the level of synthesis in the liver and

ALT indicates the extent of parenchymal damage. Hypoalbuminemia,

prevalent in cirrhosis, is associated with decreased survival rates (46). In

contrast, most patients with PHC have associated CLD, which

progresses from liver disease to cirrhosis and finally to PHC.

Currently, the commonly used clinical tools for assessing liver

function in PHC are the Child-Pugh class assessment and the

albumin-bilirubin (ALBI) classification, both of which incorporate

ALB. ALT levels are positively associated with the degree of liver

injury and serve as an additional predictive factor for PHC progression.

Previous studies (47–49) have demonstrated that sustained

abnormalities in serum ALT levels are an independent risk factor for

PHC, consistent with the findings of the present study. Furthermore,

Kim et al. (50) confirmed that rapid normalization of ALT levels

through continuous antiviral therapy may mitigate the risk of HCC in

individuals with HBV-related cirrhosis. Notably, approximately 90% of

confirmed PHC cases showed elevated levels of both ALT and ALB in a

previous case-control study (51). It has been a long-standing and

widely accepted view that abnormal changes in PLT are associated with

tumor progression and resistance to chemotherapeutic agents through

multiple mechanisms (52). Cirrhosis eventually leads to portal

hypertension and hypersplenism and causes thrombocytopenia.

Thrombocytopenia has been identified as a key risk factor for the

development of cirrhosis and hepatocarcinogenesis in CLD (53, 54).
Frontiers in Oncology 09
Recent studies on PLT level in PHC patients have focused on the

relationships between PLT count or morphological changes and PLT-

related ratios and their prognostic predictions. For instance, it has been

found that PLT acts as a simple, cost-effective, and efficient predictor of

survival in PHC patients (55). Additionally, the PLT level has been

shown to be a predictor of recurrence in patients with PHC after

surgical resection (56). Fan et al. (57) not only confirmed the role of

PLT in the tumormicroenvironment of PHC but also showed that PLT

count were proportional to tumor size. Many studies have shown that

anti-PLT therapy reduces both PLT activity and CD8+ T-lymphocyte

infiltration, preventing liver fibrosis and the development of PHC (58–

60). These findings are consistent with the results obtained in the

present study, confirming that PLT is a potential marker for PHC.

Although the inclusion of age, ALP, Hb, and BMI did not notably

enhance the classification accuracy compared to the initial four

features, the classifier achieved its peak accuracy of 96.62% with the

selected eight features. Thus, these eight features were designated the

optimal feature subset. Age and BMI represent general clinical

information. Figure 1 shows that the patients with PHC were

predominantly concentrated in the middle and older age groups,

indicating an increased likelihood of developing PHC with advancing

age. This underscores the role of age as a notable risk factor in the

development of PHC. It has also been found that obesity is a risk factor

for PHC (61–63), and current data indicate a rapid increase in the

incidence of NAFLD-associated HCC throughout the world. The BMI

value, which is closely related to the total amount of body fat, is a

commonly used measure of how fat or thin the body is and whether it

is healthy or not, and was therefore included in our study, finding that

BMI was a potential marker for PHC. ALP is elevated in metabolic

disorders, inflammation, and tumorigenesis (64). It is mainly used

clinically for the diagnosis and differential diagnosis of diseases of the

skeletal and hepatobiliary systems. Many researchers consider ALP to

be an independent prognostic factor for PHC after partial hepatectomy

(65, 66). Hb, which is commonly used clinically for the evaluation of

anemia, was introduced as a new potential marker to predict the

clinical course and outcomes of patients with various cancer types in a

meta-analysis, which concluded that cancer patients with lower Hb

levels were more likely to experience disease progression and

recurrence (67). While these features may not represent individual

markers for PHC screening, the diagnostic efficacy of the models in the

present study was found to markedly improve after their inclusion.

The remaining TBil, WBC, and GLu factors were ranked as the

least important, and the accuracy of the model decreased after their

addition to the classifier. TBil is an indicator of bilirubin metabolism,

and significantly elevated TBil levels are associated with jaundice,

which is often observed in moderately advanced PHC and in 5−44%

of PHC patients (68). However, it is important to note that jaundice is

not exclusive to PHC. Typically, TBil is combined with ALB to

generate an ALBI score, which is used as a tool for the assessment of

liver function and prognostic prediction in patients with PHC (69).

WBC count, as a central component of the body’s defense system,

typically has its fluctuations closely related to the presence of

inflammation or infection. However, in the early stages of PHC,

infection is not a primary or significant clinical manifestation. While

we have observed that PHC patients sometimes experience

hypersplenism, which may lead to a decrease in WBC count, this
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change is not specific to PHC, as various other diseases can also cause

similar phenomena. Additionally, through statistical analysis, we have

found that WBC count does not exhibit statistical significance. There

are a growing number of epidemiological studies that suggest that

diabetes may increase cancer risk but the association between type 2

diabetes mellitus (T2DM) and PHC has focused on NAFLD (70–72),

which does not confirm the diagnostic value of GLu for PHC. This

argument supports the conclusion that TBil, WBC, and GLu do not

have sufficient discriminatory power in the classification and

diagnosis of PHC.
5.3 Significance of the study

After a thorough investigation into the application of ensemble

learning algorithms in the prediction and diagnosis of PHC, we have

established its significant and indispensable importance in the field.

This groundbreaking discovery has furnished clinicians with a robust

auxiliary tool, significantly enhancing their ability to make precise

and reliable diagnostic assessments. With the incremental integration

of ensemble learning algorithms in PHC prediction and diagnosis,

existing screening techniques have undergone substantial

optimization and advancement. Looking forward, we anticipate

that ensemble learning algorithms, grounded in serological and

demographic indicators, will assume an increasingly pivotal role in

advancing medical prediction and diagnostic technologies, enabling

the primary detection of PHC signs. This will afford patients an

earlier window for therapeutic intervention, improving the timeliness

and efficacy of treatment, and ultimately leading to a significant

increase in the success rate of PHC treatment.
5.4 Limitations

The results obtained using ensemble learning to analyze clinical

data provide a method for the diagnosis and risk assessment of PHC,

thus potentially introducing innovative avenues for PHC diagnosis and

screening. Nevertheless, the study has several limitations. First, the data

were sourced from a single medical center, potentially introducing the

problems of bias and unbalanced sample distribution. Thus, the

collection of additional data using multi-center studies would

enhance the generalizability of the findings. Secondly, the included

PHC patients lacked clinical staging information, which is crucial for

assessing the disease status, treatment strategies, and predicting

prognosis of PHC patients. Therefore, we need to supplement and

improve the patients’ clinical staging information in our future work.

Thirdly, due to the lack of data from patients with hepatitis and

cirrhosis in the control group, we have been unable to delve deeply into

the differences between hepatitis, cirrhosis, and PHC. Given the limited

data we have collected on other similar PHC diseases, the current

validation of our method’s effectiveness remains inadequate. Therefore,

we will continue to work on addressing this issue in order to better

verify and refine our method. Moreover, external validation of the

model and prospective studies to verify its efficacy, together with

imaging data, are needed in future research.
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PHC is a common malignancy that presents significant health

risks. In the era of medical big data, the harnessing of hidden

information through the use of algorithmic tools such as ensemble

learning has gained prominence. The present study aimed to derive

quantifiable and precise biological markers using ensemble learning

techniques, achieving a peak accuracy of 96.62% in the detection of

PHC. Feature selection and ranking were also performed to identify

the optimal subset of features delivering the highest classification

accuracy. This process identified a subset of biomarkers with high

diagnostic efficacy, specifically, AFP, ALB, ALT, PLT, age, ALP, Hb,

and BMI. These findings underscore the importance of employing

ensemble learning algorithms in the prediction and diagnosis of

PHC. The results have the potential to assist clinicians in decision-

making, thereby advancing techniques used for PHC screening.

During physical examinations or routine blood tests, early warnings

can be issued to prompt further investigations, thus reducing the

missed diagnosis rate. This will provide patients with an earlier

opportunity for treatment, significantly improving the success rate

of treatment, and injecting new vitality into the prevention and

control of PHC.
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