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For many cancer survivors, toxic side effects of treatment, lingering effects of the

aftermath of disease and cancer recurrence adversely affect quality of life (QoL)

and reduce healthspan. Data−driven approaches for quantifying and improving

wellness in healthy individuals hold great promise for improving the lives of

cancer survivors. The data-driven strategy will also guide personalized nutrition

and exercise recommendations that may help prevent cancer recurrence and

secondary malignancies in survivors.
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Introduction: QoL issues in survivors living with
cancer and reduced healthspan in cancer–
free survivors

Due to advances in early diagnosis and treatment, together with a population with an

increasing proportion of older people, the number of cancer survivors in the US is expected to

reach 22.1 million by 2030 (1, http://cancerstatisticscenter.cancer.org. Accessed Dec 29,

2023). Most cancer survivors face varying degrees of compromised quality of life (QoL) issues,

resulting in reduced healthspan even for those for whom primary treatment was successful

and have become cancer-free (2). QoL issues stem from either damage inflicted by the cancer

itself, from toxic side effects of therapy (ies) or from a combination of both. While early

cancer detection and treatment have improved in recent years, efforts to regain wellness and

enhance healthspan in survivors has lagged behind (3). In both survivors living with cancer

and in individuals who are cancer-free, optimal wellness goals should include ensuring

maximal QoL while preventing cancer recurrence or halting cancer progression. Indeed, it

may prove that such goals are well aligned as increasing overall health may help increase

resilience to recurrence. As a case in point, in 2022, the American Cancer Society (ACS), after

ten years, updated their dietary and exercise recommendations for survivors. At least for

survivors of prostate, colorectal and breast cancers, exercise and optimal nutrition appears to
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be associated with a lower risk of disease relapse and mortality (4–7).

Thus, there’s a pressing need to quantitatively transform these

observations into personalized lifestyle recommendations for

survivors with a view towards especially dealing with

cancer complications.

Long-term and late effects are two common types of side effects

(8). Long-term effects typically start during cancer treatment and

linger on for weeks to months after termination of therapy (8). In

contrast, late effects show up only after termination of cancer

therapy (2, 9). For example, in some pediatric cancer survivors,

later-effects of treatment have manifested several decades after

treatment (3) and include cardiac problems.

Here, we briefly discuss some of the more common side-effects

of standard cancer therapies before discussing scientific wellness

strategies (10, 11) to ameliorating them, reducing risk or early

detection of cancer recurrence in survivors.
Long-term and late effects of
cancer treatment

Cancer-related cognitive impairment

Of survivors with non-central nervous system cancers treated

with chemotherapy, around 40-75% suffer from so-called

‘chemobrain’ (i.e. ‘brain fog’) (12, 13). Chemobrain refers to

problems with short term memory, inability to focus on a task,

impaired information processing, and issues with executive

function (12). Such mild to moderate cognitive impairment

following chemotherapy, is typically a long-term side effect that

lasts for a few months or even years after end of treatment.

However, it can sometimes show up as a late effect as well (12).

Several pathophysiological correlates of chemobrain have

emerged from recent studies. Some of the more proximal neural

correlates with chemobrain come from imaging studies involving

cancer survivors. For example, brain imaging studies in cancer

survivors have identified a diffuse reduction in white matter and

grey matter volume following chemotherapy (14). White matter

microstructure also seems to be affected by some chemotherapeutic

regimens (14). Other observations in chemotherapy-treated

patients include altered activation patterns of cortical networks

(15, 16), and changes in brain glucose metabolism that underlie

frontal hypometabolism (17). Distal mechanisms have been less

well elucidated in chemobrain patients, but studies in mice have

shown that commonly used chemotherapeutic regimens can reduce

cell proliferation and alter histone modification in hippocampal

neural progenitor cells (18). These changes contribute to impaired

hippocampal neurogenesis, which can lead to cognitive dysfunction

(19, 20). Other studies report that chemotherapy can enhance

protein oxidation which in turn activates neurotoxic pro-

inflammatory cascades (18, 21, 22). Additionally, genetic

polymorphisms in several genes, including those that encode

BDNF and APOE4, have been shown to modulate severity of

chemobrain (23, 24).
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Chemobrain can significantly disrupt an individual’s professional,

personal, and social life. There is clearly a need to prospectively identify

early and treat cancer survivors who are at high risk of developing

chemobrain after therapy. For such high-risk individuals, we need early

interventions employed concomitant with initiation of chemotherapy

to effectively prevent or at least mitigate chemobrain. Abnormal

circulating levels of pro-inflammatory cytokines including Tumor

Necrosis Factor-a (TNF-a), its soluble receptor and a few other

interleukins have also been correlated to chemobrain in cancer

survivors (21). However, reliable clinical biomarkers for chemobrain

do not yet exist, and there is not yet a deep understanding of the

mechanisms on which to best intervene.
Chemotherapy-induced arthralgia

Post-menopausal women treated with aromatase inhibitors can

develop arthralgia ─ pain and stiffness in their joints, as a long-term

side effect of therapy (25). The severity and persistence of arthralgia in

these patients is a major factor that drives treatment non-adherence,

and in turn leads to shortened survival (26). Exercise regimens and

treatment with non-steroidal anti-inflammatory agents (NSAIDS) for

managing CIA are typically used in the clinic but with limited

effectiveness (25). A possible etiology for CIA is reduced estrogen

level triggered by aromatase inhibitor therapy (27). However, a more

comprehensive understanding of the mechanisms that underlie CIA

are needed to develop effective interventions.
Chemotherapy-induced
peripheral neuropathy

Another long-term effect of multiple chemotherapy regimens

that contribute to treatment non-adherence is CIPN (26, 28). Onset

of CIPN in survivors seems to be dose-dependent; a minority of

patients will experience CIPN at moderate chemotherapy doses, but

most will only have CIPN at high doses (28).

The pathophysiology of CIPN is believed to be distinct from

that of other kinds of peripheral neuropathy (29). Some of the

proposed causal mechanisms include chemotherapy-induced

mitochondrial dysfunction that triggers apoptosis, altered levels of

pain mediators, and aberrant spontaneous activity in A and C fibers

(29). While there is no consensus on standard-of-care for CIPN in

cancer survivors, a number of medications have shown some benefit

in these individuals (28).
Fatigue

Fatigue is a long-term effect and can persist for years after

termination of cancer therapy. It reduces QoL and healthspan in

survivors and compounds the severity of other side effects (30).

Pathophysiological underpinnings of fatigue in cancer survivors

include elevated pro-inflammatory activity and insomnia (31, 32).
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Obesity and nutrition

Obesity and sub-optimal nutrition in cancer survivors not

only influence QoL and healthspan, but also negatively modify

prognosis and treatment outcomes (33). Obesity can feed cancer

progression and adversely modify some of the other side effects

of cancer treatment through multiple mechanisms (33). New

pharmaceuticals developed for diabetes treatment such as

tirzepatide and semaglutide have recently shown remarkable

ability to reduce weight in obese patients without diabetes (34,

35). It remains to be tested how well such interventions might be

tolerated in cancer survivors and what the benefit and side effect

trade-offs of such treatments might be. Muscle loss and increases in

Thyroid cancers are amongst the concerns. Physical activity and

nutrition guidelines have been proposed to address obesity and

malnutrition in cancer survivors (36). However, since energy

balance, metabolism, and nutritional needs for each survivor is

different, a personalized, quantitative and continuous approach to

address this problem is warranted.
Stress and anxiety

High levels of stress and anxiety are prevalent among cancer

survivors, and adversely affect QoL and healthspan (37). The few

stress-reduction programs employed in the clinic to date have met

with varying degrees of effectiveness (38). As with nutrition, a

continuous, personalized approach to monitoring and managing

stress in cancer survivors is needed.
Cardiovascular disease and
metabolic syndrome

CVD develops as a serious late effect in between 4 to 30% of

long-term survivors of childhood and adult malignancies treated

with anthracyclines, certain targeted therapies, and radiotherapy

(39, 40). Patients treated with anthracyclines are at risk for

developing congestive heart failure due to drug-induced

cardiomyopathy (41). Cardiac arrhythmias and myocarditis

constitute other treatment-related cardiotoxicities (42).

CVD risk in cancer survivors is compounded by metabolic

syndrome, which arises from a cluster of factors including

dyslipidemia, hypertension, and insulin resistance. Multiple

studies have found a higher prevalence of metabolic syndrome in

long-term cancer survivors as compared to the general population

(43). It has also been suggested that metabolic syndrome in cancer

survivors may have a different pathophysiology from that observed

in the general population. An altered hormonal axis triggered by

radiation- or chemotherapy might partly explain a cancer survivors’

increased risk of developing CVD (43).

The presence of specific genetic variants, female sex, and other pre-

existing co-morbidities are all risk factors that can predispose cancer

patients to developing cancer treatment-induced cardiotoxicities (40).

However, biomarkers to prospectively identify cancer patients at high
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risk of developing treatment-induced cardiotoxicities do not exist (44,

45). The etiology of metabolic syndrome in cancer survivors also needs

to be understood in more detail to enable the development of better,

more rational interventions.
Secondary malignancies

Treatment-related secondary malignancies are a rare but

serious late-effect of certain cancer therapeutic regimens (46, 47).

Prospectively identifying survivors at high-risk for developing

treatment–associated second cancers can prioritize them for

early screening.
Other long-term effects

Lymphedema after surgery (48), and chemotherapy-induced

persistent diarrhea are other long-term effects in survivors (49). The

role of gut microbiota in modulating irinotecan (an anticancer

drug) induced diarrhea has been documented (50). A recent study

found that chemotherapy can bring about severe compositional

changes in the gut microbiome, in turn triggering intestinal

dysbiosis, which eventually leads to gastro-intestinal mucositis

(51, 52). The role of the intestinal microbiome in modulating

toxic effects of cancer therapy needs to be further explored.
Cancer recurrence

Chances of cancer recurrence depend on various cancer, patient,

and treatment related factors including the grade, stage of tumor at

diagnosis and, the type of cancer. Recurrence rates range from a low

5% for estrogen positive breast cancers (53) to nearly 100% for

glioblastoma multiforme (54), with other tumor types falling

somewhere in between. Except for a handful of cancer types,

including prostate, chronic myeloid leukemia (CML) and colorectal

cancer, useful markers of cancer recurrence do not exist. Dietary and

exercise recommendations for cancer prevention often prevent disease

recurrence as well. Again, wellness biomarkers that vary longitudinally

could serve not only as early biomarkers of recurrence but guides to

personalized diet and physical activity recommendations to prevent

the complications. Cancer survivors free of disease are excellent

candidates to study longitudinally to identify blood biomarkers for

early disease reoccurrence. Detecting early re-emergences of cancers

when they are simple in their disease complexity, offers an excellent

opportunity to explore effective preventive treatments.
Personal, dense, dynamic data clouds
as a path to wellness in survivors

Given the myriad issues detailed above for cancer survivors, and

their growing numbers, better, and more global, solutions are

needed than just attempting to treat individual symptoms. Many
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of these can be achieved by leveraging data-driven approaches to

enhancing health. The feasibility and utility of gathering

longitudinal, multi-tiered data from individuals has been

demonstrated in recent studies (10, 55–57) and focused on the

development of what we call scientific wellness (58).

In 2014, the first of these cohort studies, the Pioneer 100

Wellness Project (P100) was carried out at the Institute for

Systems Biology. The P100 generated personal, dense, dynamic

data clouds from a cohort of 108 individuals, sampled on a quarterly

basis over 9 months (10). Each participant had their whole genome

sequenced as well as longitudinal sampling at 3-month intervals of a

large battery of over 100 clinical blood tests, metabolomics and

proteomics from the blood, and microbiome from the stool.

Additionally, Fitbits were used to track daily activity and tracking

of goals and results was monitored and facilitated individually with

a health coach. The authors identified thousands of molecular

correlates across the various datatypes, including effects of

genetics on the metabolome and proteome. Further, when these

data were used to guide highly personalized behavioral coaching,

participants improved their clinical biomarkers of health and

wellness (10).

From 2015-2019, a similar ‘scientific wellness’ program

was offered by Arivale (co-founded by L.H. and N.D.P) that

generated longitudinal multi-omic datasets on approximately

5000 people who gave consent for their de-identified data to

be used for research purposes. Similar to the P100 study,

the program participants, on average, achieved sustained,

significant improvements in clinical markers of cardiometabolic

risk, inflammation, nutrition, and body mass index (BMI).

Improvements in HbA1c levels matched those observed in other

landmark clinical trials (59). By finding genetic markers associated

with longitudinal changes in such clinical markers, the study also

concluded that genetic predisposition impacts clinical responses

to lifestyle change in distinct manners for individuals of high and

low genetic risk (60).

Subsequent studies using these identified 766 multi-omic

associations in the blood related to polygenic risk scores for 54

diseases and traits to provide clues about prevention strategies for

prodromal disease (61), discovered early candidate protein

biomarkers of cancer and cancer metastasis (62), proposed multi-

omic models of biological age as a measure of wellness (55),

identified microbiome-derived candidate biomarkers of

cardiovascular disease (63) and revealed a key role for the

microbiome in healthy aging (Wilmanski et al). Specifically, the

Magis et al. study identified carcinoembryonic antigen-related cell

adhesion molecule 5 (CAECAM 5), as a persistent, longitudinal

outlier, showing up as early as 26 months before individuals were

diagnosed with breast, lung or pancreatic cancer. CAECAM 5 is

known to be overexpressed in the primary versions of these three

cancers and also in metastatic disease. In this case, the scientific

wellness data enabled the discovery that such biomarkers of cancer

metastasis rose well before diagnosis. Additionally, the study found

two additional persistent outliers – calcitonin-related polypeptide

alpha (CALCA) and delta-like 1 homolog (DLK1), for metastatic

pancreatic cancer. All three proteins would serve as candidate early

biomarkers for metastatic disease.
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Similar datasets in cancer survivors could provide critical

insights to improving health in these populations as well.

Actionable discoveries from the scientific wellness approach offer

promise to shape choices of intervention for reducing toxic side-

effects. This is especially relevant since radiation therapy, hormone

therapy and chemotherapy are all known to accelerate biological age

in patients (Jacob 64). Their success can be measured using a range

of metrics, including objective and subjective measures of QoL,

biological age estimates (physiology-based, mutli-omic) and

established measures of cognition and wellness. In addition, in

cancer survivors, longitudinal phenomic analyses will be useful in

detecting reoccurrences early.

Another recent study (56) used integrative omics and data from

wearable monitoring to demonstrate the usefulness of longitudinal

molecular and physiological deep profiling in precision health. The

study authors assayed the genome, transcriptome, proteome,

metabolome, immunome and the microbiome, all paired with

quarterly enhanced clinical tests, of 109 individuals up to 8 years.

These individuals were at elevated risk for developing type II

diabetes. Importantly, they were able to discover “molecular

pathways associated with metabolic, cardiovascular and

oncological pathophysiologies”. Additionally, they made 67

clinically actionable discoveries, developed an omics-based model

for insulin resistance and fomented healthy dietary and exercise

behaviors in the study participants.

The feasibility and stability of building longitudinal,

personalized omics profiles of wellness was demonstrated by

another recent study in which 100 healthy subjects not only

showed the surprising stability of blood plasma protein profiles

over time but also their significant association with blood chemistry

(57). For example, the authors found a strong association between

C- Reactive Protein (synthesized by the liver and a biomarker of

inflammation) and Interleukin – 6 (an immune system cytokine

related to inflammation). In agreement with other recent studies,

the intra-individual baseline variability of omics profiles was low

compared to the inter-individual ones.

Thus, longitudinal, high-throughput multi-omic data

generation and analysis can be used to (1) define omics baselines

of wellness, (2) define early wellness-to-disease and disease-to-

wellness transitional omics signatures, (3) discover molecular

pathways that underlie specific pathology, (4) find potential

biomarkers of disease and (5) help guide and optimize

personalized wellness coaching for individuals.

Cancer survivors stand to benefit from such a scientific wellness

approach for several reasons as discussed below. Survivors make up

a specific group with limited traits, which improves the ability to

find meaningful information in a long-term study of large data sets,

even with relatively small sample size.

First and foremost, the longitudinal, multi-tiered data collection

will enable us to build an integrated baseline in this population.

Deviations from this baseline can inform the discovery of novel

diagnostic and prognostic biomarkers of various toxic side-effects of

therapy discussed above and equally importantly, those of cancer

recurrence. For example, data from survivors can be mined to

potentially discover new temporal signatures (consisting of

metabolites, peptides, proteins or microbiota) that correlate with
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known prognostic or diagnostic biomarkers (e.g. PSA and BCR

ABL, respectively, for prostate and CML recurrence) (65, 66). The

same approach can also be used in survivors to find novel, more

effective biomarkers to monitor the effectiveness of maintenance

therapy used in some cancer patients even after achieving

complete remission.

Second, scientific wellness approaches can be a powerful tool to

assess and eventually better tailor, diet and physical activity protocols

for survivors with a goal of preventing cancer recurrence and

accelerating their return to wellness. This is a corollary to the

previously mentioned, new and revised guidelines from the NCI,

with regard to diet and physical activity, for cancer survivors.

Third, the longitudinal multimodal data gathering, along with

clinical records, will allow us to ask questions around correlative

links between other comorbidities like obesity, diabetes or chronic

inflammation and cancer recurrence. While the associations

between conditions such as obesity and risk of cancer are known,

data from our approach will provide a quantitative framework to

better assess risks and make new biological discoveries.

Finally, the data clouds from survivors who go on to develop

recurrences, could offer insights into tumor evolution from a new

point of view (67) and yield new insights into transitions to a state

of cancer recurrence. As was true with the other wellness studies, it

appears that malignant lesions of the same cancer type, from the

same patient are more alike than those from different patients (67).

A longitudinal, big data approach will provide a foundation for

future studies in this area, and it will represent a first of its kind

resource that can provide a foundation for future studies in this

direction. This approach will generate virtual and dynamic clouds

myriad data points that provide unique and personalized insights

into the wellness and disease of each individual (see Figure 1). We

are engaged in two such trials currently focused on cancer survivors:

one is a collaboration between Mayo Clinic and Thorne HealthTech

and the other is a collaboration between the Institute for Systems

Biology and the Swedish Cancer Institute of Providence Health.

As a specific example, metabolomic data for each survivor along

with relevant clinical lab data enables monitoring of integral

components of metabolic syndrome. Using these dynamic data, a

shift towards the metabolic state can be identified and may open up

opportunities for early intervention. The data will also allow the effects

of physical activity and other medical interventions on the various

health metrics of the cancer survivor to be assessed. Other covariates

from the data cloud can also be identified in the cohort of survivors,

and these will open-up new avenues for intervention and exploration.

Another instance of the translational potential of this approach

is the monitoring of pro- and anti-inflammatory cytokines in the

blood of cancer survivors. Inflammation is thought to underlie

many of the long-term and late-effects after cancer treatment

including chemobrain, arthralgia, fatigue, and the metabolic

syndrome (18, 25, 32, 43). Therefore, analyzing cytokine levels

from each survivor across the cohort will enable discovery of

prognostic and predictive biomarkers for these effects.

The longitudinal multi-omic protocol will complement existing,

state-of-the-art tumor sequencing methods that provide predictive,

prognostic and diagnostic value. Examples of these approaches

include the Oncopanel by Eurofin and some other custom panels
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offered by some cancer centers and clinics in the US (Mayo clinic,

MD Anderson and Memorial Sloan Kettering Cancer Center). The

scientific wellness approach will bring additional value since it is

longitudinal, multi-tiered (not just sequencing) and not tumor

tissue specific. The combined value of enriching existing methods

that offer a snapshot, with multi-parametric measurements spread

over several time points can be evaluated in clinical trials.

Additionally, the dense, dynamic, personal data clouds will

contain data from blood proteins which are emerging as potential

biomarkers for organ function, especially the heart (45). Importantly,

such biomarkers, taken together with physiological data from the same

data clouds, will not only yield clues to discover underlying

pathophysiological pathways, but will also identify time-points for

early medical intervention. Finally, microbiome data from these data

clouds can lead to discovery of new associations with disease, wellness,

and ways to improve survivor health via the microbiome (68).

We anticipate that moving from carefully selected cohorts to a

patient-centric personalized treatment plan will be a multi-step

process, requiring carefully planning and evaluation all along the

way. The number of studies and patients that would be required to

arrive at a clinically translatable recommendation will depend on a

variety of factors – robustness of biomarker validation, clinical trial

outcomes and other regulatory considerations. The sample sizes

provided by the initial exploratory studies provide clues on the

effect sizes and can help estimation of the number of participants for

future clinical trials.
Concluding remarks

In summary, robust molecular correlates do not exist for most of

the long-term and late effects of cancer treatment; the identification of

molecular signatures and biomarkers underlying such effects will

enable early interventions, and subsequently to their better

management in the clinic. Beyond cancer diagnosis and treatment

that are rightly the primary focus, further work is needed to improve

wellness and quality of life in the increasing number of cancer
FIGURE 1

A dense, dynamic personalized data cloud path to wellness for
cancer survivors.
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survivors, including reduction in their co-morbidities and the early

detection of transitions back to a cancerous state. Themulti-parameter

data from the cancer survivor cohort will allow the generation of

sophisticated and highly accurate predictive models for such toxic

side-effects and for cancer recurrence. These models can catalyze the

discovery of new genetic modifiers for many of the treatment effects,

predict high-risk sub-populations, and will help pave a more certain

and accelerated path back to wellness for cancer survivors.
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