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Precision prognosis of colorectal
cancer: a multi-tiered model
integrating microsatellite
instability genes and
clinical parameters
Yonghong Wang*, Ke Liu, Wanbin He, Jie Dan, Mingjie Zhu,
Lei Chen, Wenjie Zhou, Ming Li and Jiangpeng Li

Department of Gastrointestinal Surgery, The People's Hospital of Leshan, Leshan, China
Background: Prognostic assessment for colorectal cancer (CRC) displays

substantial heterogeneity, as reliance solely on traditional TNM staging falls short

of achieving precise individualized predictions. The integration of diverse biological

information sources holds the potential to enhance prognostic accuracy.

Objective: To establish a comprehensive multi-tiered precision prognostic

evaluation system for CRC by amalgamating gene expression profiles, clinical

characteristics, and tumor microsatellite instability (MSI) status in CRC patients.

Methods: We integrated genomic data, clinical information, and survival follow-

up data from 483 CRC patients obtained from The Cancer Genome Atlas (TCGA)

and Gene Expression Omnibus (GEO) databases. MSI-related genemodules were

identified using differential expression analysis and Weighted Gene Co-

expression Network Analysis (WGCNA). Three prognostic models were

constructed: MSI-Related Gene Prognostic Model (Model I), Clinical Prognostic

Model (Model II), and Integrated Multi-Layered Prognostic Model (Model III) by

combining clinical features. Model performance was assessed and compared

using Receiver Operating Characteristic (ROC) curves, Kaplan-Meier analysis, and

other methods.

Results: Six MSI-related genes were selected for constructing Model I (AUC =

0.724); Model II used two clinical features (AUC = 0.684). Compared to individual

models, the integrated Model III exhibited superior performance (AUC = 0.825)

and demonstrated good stability in an independent dataset (AUC = 0.767).

Conclusion: This study successfully developed and validated a comprehensive

multi-tiered precision prognostic assessment model for CRC, providing an

effective tool for personalized medical management of CRC.
KEYWORDS
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1 Introduction

Colorectal cancer (CRC) is a malignant neoplasm that arises

from the mucosal epithelium of the colon or rectum, constituting a

significant global public health concern (1). Global statistics from

the International Agency for Research on Cancer indicate that CRC

has emerged as the second leading cause of cancer-related mortality,

with over 1.9 million new cases being reported in 2020. Projections

suggest that by 2040, there will be a staggering 3.2 million new cases

of CRC worldwide, imposing a significant burden on both patients

and society (2).

The pathogenesis of CRC is notably complex, often

encompassing multiple stages of genetic and epigenetic changes

within colonic epithelial cells (3). Notably, the inactivation of tumor

suppressor genes, including APC, KRAS, TP53, and the activation of

DNA mismatch repair genes are regarded as pivotal mechanisms in

the formation of CRC (4). These traditional markers have been

pivotal in understanding CRC’s development but offer limited

prognostic precision due to their common alterations across

many patients with diverse outcomes. Furthermore, factors such

as age, obesity, smoking, and alcohol misuse play critical roles in the

increased incidence of CRC (5–7).

Despite advancements in CRC screening methods and the

introduction of innovative therapies providing hope to patients, the

prognostic assessment of CRC still carries a degree of uncertainty due

to the intricacies of individual variations. While the widely employed

TNM staging system in clinical practice categorizes the risk of CRC,

its predictive performance for patients’ prognosis remains variable.

Research has indicated that even among patients within the same

TNM staging, differences in the 5-year survival rate can be as

substantial as 30% (8). This primarily arises from the complexity of

individual physiological conditions, making reliance solely on TNM

staging insufficient for precise prognostication. Consequently,

researchers have endeavored to establish more precise and

comprehensive predictive models to facilitate individualized

assessments. Nevertheless, prior models have predominantly

depended on individual clinical markers or specific biomolecules

(9–11). For example, certain studies have applied molecular biology

analyses and biomarker identification techniques to evaluate distinct

genes, assessing their influence on the survival and prognosis of CRC

(12, 13). However, these studies have not comprehensively accounted

for the intricacies of tumor biology. Concurrently, some

investigations have narrowed their scope to clinical indicators,

overlooking alterations at the molecular level (14). These studies

have not comprehensively addressed the multi-tiered biological

characteristics of the disease, consequently restricting their accuracy

and applicability.

In light of the limitations of the aforementioned models, the

pursuit of markers that reflect the intricacies of tumor genomics has

emerged as a primary focus of research. We have identified
Abbreviations: AUC, Area under the curve; CRC, Colorectal cancer; DEGs,

Differential expression genes; GEO, Gene Expression Omnibus; MSI,

Microsatellite instability; ROC, Receiver operating characteristic; TCGA, The

Cancer Genome Atlas; TOM, Topological overlap matrices; WGCNA, Weighted

Gene Co-expression Network Analysis.
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Microsatellite Instability (MSI) as a characteristic indicative of

DNA repair deficiencies. This manifests as instability in DNA

microsatellite repeat sequences, leading to DNA mismatches and

the accumulation of mutations within tumor cells. Presently, MSI

has been comprehensively investigated and presents distinctive

biological and clinical attributes in numerous cancer types (15,

16). Unlike the broad variations involving traditional markers such

as APC and TP53, MSI provides a more direct indication of tumor

behavior, particularly in terms of response to certain therapies and

survival rates, making it an invaluable tool for enhancing

personalized medicine. Through the examination of genes and

biological processes linked to MSI, we can attain a more

profound understanding of the biological features of CRC.

Therefore, in this study, we employ MSI-related genes to build a

predictive model, integrating them with clinical parameters to

augment the precision and comprehensiveness of CRC prognostic

prediction. We assess the effectiveness of gene models, clinical

models, and integrated models. Additionally, we employ

visualization tools to augment the clinical applicability of our

models. The research process is shown in Figure 1. This

innovative approach not only holds the potential to enhance the

accuracy of treatment and survival outcomes for CRC patients but

also to deepen our comprehension of its prognostic mechanisms.
2 Methods

2.1 Data acquisition and preprocessing

The Coad dataset from the Cancer Genome Atlas (TCGA)

database was employed, encompassing gene expression profiles,

clinical characteristics, and prognosis information of 483 CRC

patients. Data from TCGA were accessed between September 18,

2023, and September 26, 2023, ensuring the use of the most

current data available at the time of analysis. A series of

preprocessing steps were applied to the data, including the

removal of duplicate samples, exclusion of genes and clinical

features with missing proportions exceeding 30%, and

imputation of remaining missing data using mean values.

Ultimately, we obtained an integrated dataset comprising 19,937

genes and 9 clinical features. To facilitate external validation, the

GSE39582 dataset from the Gene Expression Omnibus (GEO)

database, which includes 557 samples, was also utilized.
2.2 Construction of model I

2.2.1 Differentially expressed genes selection
The “limma” package in R was employed to calculate DEGs

between cancerous and normal tissues. Our selection criteria

included a fold change > 2 and an adjusted P-value < 0.05. This

threshold was selected based on established practices in oncological

research (17), where such a level of expression change is considered

significant enough to potentially contribute to cancer pathogenesis

and progression. It allows for the discrimination of genes most

likely to have substantial biological effects, focusing on changes that
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are more likely to influence disease outcomes and patient prognosis.

Choosing a P-value < 0.05 helps balance sensitivity and specificity,

effectively reducing the risk of Type I errors while still capturing

genes with potentially significant biological differences (18). This

approach not only aligns with standard practices in oncological

research but is particularly suited to exploratory studies aimed at

mapping comprehensive gene expression landscapes and

identifying novel targets for further validation.

2.2.2 Weighted gene co-expression
network analysis

To identify gene modules and core genes associated with MSI, the

WGCNA algorithm was employed. Initially, the gene expression

matrix was transformed into a matrix containing pairwise mRNA

similarity among genes. Subsequently, this was converted into an

adjacency matrix using Pearson correlation coefficients. The

construction of a scale-free network ensured the adjacency matrix

adhered to scale-free topological criteria. Topological overlap matrices

(TOM) and dissimilarity TOM (diss TOM) were then created for

further analysis. Lastly, dynamic tree cutting was utilized to identify

modules, with the minimum module size set at 20 to obtain highly

similar modules, combined with thresholds for each dataset.

2.2.3 Univariate Cox regression analysis
In this step, an intersection was taken between DEGs and MSI-

associated genes identified through WGCNA, followed by selection
Frontiers in Oncology 03
through univariate Cox regression analysis. Genes with P-values

below 0.05 were included in the final gene list.

2.2.4 Construction of multivariate COX model
To construct the gene prognosis model, a forward stepwise

regression method was employed, which retained genes associated

with independent prognosis and formed gene weights.
2.3 Construction of model II

2.3.1 Univariate survival analysis
Univariate Cox regression analysis was conducted on clinical

features, with features having P < 0.05 selected.

2.3.2 Multivariate COX model
Utilizing forward stepwise regression, a multivariate Cox model

was built, preserving clinical features associated with independent

prognosis, thereby forming the clinical feature prognosis

assessment model.
2.4 Construction of model III

In this step, MSI-related genes selected from Model I were

combined with the clinical model constructed in Model II, creating
FIGURE 1

Research workflow of construction of the CRC prognostic model. Abbreviations: TCGA (The Cancer Genome Atlas), DEGs (Differentially Expressed
Genes), WGCNA (Weighted Gene Co-expression Network Analysis), MSI (Microsatellite Instability), ROC (Receiver Operating Characteristic), AUC
(Area Under the Curve), and GEO (Gene Expression Omnibus). Model I (MSI-Related Gene Prognostic Model), Model II (Clinical Prognostic Model),
Model III (Integrated Multi-Layered Prognostic Model).
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a comprehensive multi-tiered prognosis model for CRC. Through

the integration of genes and clinical indicators, a multivariate Cox

regression analysis was utilized to construct a multi-tiered CRC

prognosis model.
2.5 Model comparison

To compare the performance of Model I, Model II, and Model

III prognosis models, Receiver Operating Characteristic (ROC)

curve analysis was conducted, and area Under the Curve (AUC)

values were calculated. Ultimately, the model with the highest AUC

value was chosen for external validation to assess its generalizability

and stability.
2.6 Survival analysis

Survival analysis was conducted on factors used to build the

models, Kaplan-Meier survival curves were plotted, and inter-group

comparisons were performed using the Log-rank test. All survival

curves were generated using R 4.3.2 software.
2.7 Model visualization

Nomogram was constructed for the optimal-performing model

to visually demonstrate its performance. Furthermore, ROC curves

for 1-year, 2-year, and 3-year predictions were plotted to evaluate

the model’s predictive accuracy, and calibration curves were used to

validate the model’s calibration.
2.8 Statistical analysis

Statistical analysis of the experimental data in this study was

conducted using R software version 4.3.1. Kaplan-Meier survival

curves were compared between groups using the Log-rank test, with

statistical significance set at P-value < 0.05.
2.9 Data availability statement

The data employed in this study are accessible through publicly

available repositories. The gene expression data and clinical records

for patients with CRC were sourced from TCGA database (https://

www.cancer.gov/tcga). Specifically, the dataset employed is denoted as

“Coad,” encompassing comprehensive gene expression profiles and

associated clinical characteristics. For external validation, we made use

of the GEO database (https://www.ncbi.nlm.nih.gov/geo/), with the

selected dataset identified as “GSE39582.” All datasets utilized in this

research are openly accessible for retrieval, subject to the terms of use

and data access policies stipulated by the respective databases. Should

any further details or inquiries pertaining to data availability be

required, they may be directed to the corresponding author.
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3 Results

3.1 WGCNA modules with MSI and
identification of DEGs

WGCNA analysis identified 19 gene modules and their

associations with MSI in CRC (Figure 2A). We excluded obvious

outlier samples by setting appropriate thresholds. A soft threshold of

20 was applied, resulting in high average connectivity (R (2) = 0.87,

Figure 2B). Modules were associated with clinical features based on

module eigengenes’ correlation with clinical symptoms, and a total of

12,405 genes were screened out (Figure 2C). The blue module

contained 2,344 genes, which were strongly positive correlation

with MSI (r = 0.23, P = 0.02) and negatively correlation with low

MSI (r = -0.23, P = 0.02), which had clinical significance (Figure 2D).

A total of 5,505 DEGs were identified, consisting of 3,175 upregulated

genes and 2,330 downregulated genes. A volcano plot visually

represented the differential expression patterns (Figure 2E).
3.2 Model I: MSI-related gene
prognostic model

From the DEGs and modules derived fromWGCNA, 529 genes

were selected (Figure 2F). Subsequently, univariate Cox regression

analysis was conducted to identify genes associated with the

prognosis of CRC patients. This analysis revealed that 115 genes

had significant prognostic value (Supplementary Table 1). In the

multivariate Cox model, six independent prognostic-related genes

were identified, namely GNL3, VSIR, LY86, ARHGAP25, DERL3,

and JAML (Table 1). LASSO regression further validated these

genes (Supplementary Figure 1). Further analysis demonstrated that

the model had an AUC of 0.724 (Figure 3A), indicating robust

predictive performance. Additionally, Kaplan-Meier survival curves

showed a significant difference between high-risk and low-risk

patients (P < 0.001, Figure 3B).
3.3 Model II: clinical prognostic model

Univariate Cox regression analysis identified four features: T, N,

M, and stage (Supplementary Table 2). The multivariate Cox

regression model included two independent prognostic factors: M

and stage (Table 2). The model’s AUC was 0.684 (Figure 3C),

demonstrating reasonable predictive performance. Kaplan-Meier

survival curves also displayed a significant separation between high-

risk and low-risk patients (P = 0.012, Figure 3D).
3.4 Model III: integrated multi-layered
prognostic model

Integration of Model I and Model II resulted in a comprehensive

CRC prognosis model comprising six MSI-related genes (GNL3,

VSIR, LY86, ARHGAP25, DERL3, JAML) and two clinical features
frontiersin.org
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(M and stage). The AUC for this comprehensive model reached 0.825

(Figure 3E), indicating outstanding predictive performance. Kaplan-

Meier survival curves further demonstrated a significant difference

between high-risk and low-risk patients (P < 0.001, Figure 3F).
3.5 Models comparison and
external validation

Model III exhibited the highest AUC value compared to Model I

and Model II (0.825 vs. 0.724 vs. 0.684). Risk factor analysis
Frontiers in Oncology 05
indicated a positive correlation between risk scores and patient

mortality (Figure 3G). Moreover, higher risk scores were associated

with shorter patient survival times (P < 0.001, Figure 3H). External

validation confirmed the stability of Model III across different

datasets (AUC = 0.767, Figure 4A). Kaplan-Meier curves in the

external validation set further demonstrated the model’s ability to

effectively distinguish high-risk and low-risk patients (P < 0.001,

Figure 4B). Risk factor analysis in the external validation set

revealed a positive correlation between risk scores and patient

mortality (Figure 4C). Furthermore, higher risk scores were

associated with shorter patient survival times (P < 0.001,

Figure 4D). Kaplan-Meier curves for each factor in the external

validation set reaffirmed these findings (Figures 5A–H),

emphasizing the effectiveness of Model III. To further validate the

relevance of specific genes included in our analysis, we consulted the

Human Protein Atlas, where survival plots for the six genes show

significant prognostic associations (Supplementary Figure 2).
3.6 Visualization of model III

Visualization nomogram presented survival rate predictions at

1 year, 2 years, and 3 years (Figure 6A). ROC curves for 1 year, 2

years, and 3 years were included in the nomogram, all with AUC
TABLE 1 Genes Associated with CRC Prognosis.

Genes HR HR.95L HR.95H P-value

GNL3 0.346 0.219 0.546 <0.001

VSIR 0.440 0.275 0.704 <0.001

LY86 0.356 0.199 0.638 <0.001

ARHGAP25 9.243 2.764 30.903 <0.001

DERL3 0.315 0.178 0.557 <0.001

JAML 5.510 2.238 13.558 <0.001
A B

C D

E F

FIGURE 2

WGCNA module analysis and Identification of DEGs (A) Heatmap of Association of Gene Modules with MRI in CRC; (B). Log-log plot of whole-
network connectivity distribution; (C) Barplot of mean gene significance across modules; (D) Scatter plots of the blue module eigengene value
showing correlation with MSI status; (E) Volcano plot of DEGs; (F) Venn diagram of overlap between DEGs and module genes.
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values exceeding 0.7 (Figure 6B), indicating good capability in

differentiating patient survival rates. Additionally, calibration

curves at 1 year, 2 years, and 3 years were presented in

Figures 6C–E, respectively. These calibration curves demonstrated

the consistency between the model’s predicted risk and observed

risk, highlighting the model’s good calibration and enhancing its

reliability and practicality in clinical applications.
4 Discussion

In the realm of CRC prognosis research, we have effectively

crafted a sophisticated, multi-tiered comprehensive model that
Frontiers in Oncology 06
seamlessly integrates gene expression, clinical characteristics, and

MSI status. This achievement introduces a novel instrument for

tailored treatment strategies. Through the amalgamation of these

pivotal elements, we have not only enhanced the precision of CRC

prognosis predictions but also opened up an avenue for healthcare

practitioners and patients to delve deeper into tumor intricacies and

identify personalized treatment trajectories.

An eminent innovation in this investigation is the assimilation

of MSI status as a prominent prognostic indicator within the model.

Although MSI is a recognized prognostic biomarker for CRC (19),

our research bestows a new dimension upon its integration and

application. Firstly, the inclusion of MSI status in our model

inherently augments CRC prognosis predictions. The well-

established association between elevated MSI levels in CRC and

improved prognosis bolsters the predictive accuracy of the model.

Secondly, MSI can be viewed as an intermediate milestone

connecting downstream molecular events, thereby aiding in the

prediction of ultimate survival outcomes (20). Through WGCNA

analysis, we have unearthed a strong correlation between MSI status

and specific gene modules, further substantiating the scientific

soundness of our model strategy. This underscores not only the
TABLE 2 Clinical Features Associated with CRC.

Clinical
Features

HR HR.95L HR.95H
P-

value

M 4.014 2.721 5.921 <0.001

Stage 2.768 1.306 5.869 <0.001
A

B

C

D

E

F

G H

FIGURE 3

Construction and comparison of prognostic models. (A, B). ROC curve and Kaplan-Meier curves of Model I; (C, D) ROC curve and Kaplan-Meier
curves of Model II; (E, F). ROC curve and Kaplan-Meier curves of Model III; (G) Scatter plot showing risk score stratification and mortality for Model
III; (H) Scatter plot depicting the correlation between Model III risk score and survival time.
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significance of MSI in CRC biology but also furnishes a robust

foundation for future explorations into MSI mechanisms (21, 22).

Our study has formulated a comprehensive, multi-layered

model, which following rigorous validation. In comparison to

single-feature models, this multi-layered model incorporates a

medley of features, encompassing gene expression and clinical

characteristics. This results in heightened effectiveness and

consistent performance, even when applied to external datasets.

This underlines the notion that single biomarkers or clinical

features inadequately capture the intricacies of CRC. However,

our model adeptly amalgamates information from various levels,

thus bridging the divide between genomics and clinical data. This

integrative approach expands the scope of our predictive system,

spanning multiple strata from molecular to individual, and

consequently, it significantly enhances predictive accuracy,

thereby providing robust support for future clinical applications.

The study has identified six gene expression-related biomarkers:

GNL3, VSIR, LY86, ARHGAP25, DERL3, and JAML—linked to key

biological processes such as cytokine metabolism and oxidative

stress, which are vital for regulating cell proliferation, apoptosis, and

invasion in CRC. Additionally, the study suggests that MSI may

influence these biomarkers, potentially intensifying cancer

progression in MSI-high CRC cases. GNL3 encodes nucleolin, a

critical regulator of cell proliferation. It maintains normal cell

growth by modulating the p53 pathway and facilitating DNA
Frontiers in Oncology 07
damage repair. Prior research (23) has established that reduced

expression of GNL3 may compromise DNA replication and

genomic stability, contributing to CRC progression. In MSI-high

CRC, the disruption of nucleolar processes and DNA repair by

MSI-induced mutations may further exacerbate genomic instability,

underlining the crucial role of GNL3 in maintaining genomic

integrity. VSIR encodes a receptor in the VEGF pathway,

promoting angiogenesis in tumors. Elevated expression of VSIR

activates downstream pathways such as MAPK and AKT,

enhancing the potential for CRC cell invasion and metastasis

(24). This effect might be amplified in MSI-high CRC, where

genetic alterations could heighten the responsiveness of CRC cells

to VEGF signaling, leading to more aggressive tumor phenotypes.

LY86 participates in Toll-like receptor signaling and tumor

microenvironment regulation. Dysregulated LY86 expression can

lead to abnormal inflammatory responses and diminished immune

surveillance, promoting CRC development (25). In MSI-high

tumors, altered LY86-mediated signaling could contribute to an

immunosuppressive microenvironment that favors tumor escape.

ARHGAP25, governing cell cytoskeleton organization and

movement, exhibits increased expression in CRC cells, correlating

with enhanced migration and invasion capabilities (26). The role of

ARHGAP25 might be particularly pronounced in MSI-high CRC,

potentially leading to increased tumor invasiveness and metastatic

capacity due to heightened mutation rates affecting cell motility.
A B

C D

FIGURE 4

External validation of Model III (A) ROC curve in validation cohort; (B) Kaplan-Meier curve showing survival stratification in validation cohort; (C)
Scatter plot depicting risk score stratification and mortality in the external validation cohort; (D) Scatter plot illustrating the correlation between risk
score and survival time in the external validation cohort.
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DERL3 mediates the endoplasmic reticulum stress response.

Aberrant function in DERL3 can lead to unfolded protein

accumulation and apoptosis suppression, enhancing CRC cell

survival and progression (27). In the context of MSI-high CRC,

exacerbated protein folding disorders could intensify reliance on

DERL3 for maintaining cell survival under stress conditions. JAML,

an adhesion molecule on myeloid cells, interacts with JAM-C,

promoting tumor cell extravasation and metastasis. Elevated

expression of JAML indicates advanced disease progression and

poorer prognosis (28). In MSI-high CRC, enhanced interaction

with JAM-C could increase metastatic potential and worsen

prognosis due to altered adhesion dynamics. These speculative

interactions between MSI status and gene expression highlight

potential targets for future research and therapeutic intervention,

suggesting that MSI might significantly influence the

pathophysiological landscape of CRC through these key

molecular pathways.

Furthermore, the study emphasizes the significance of these two

critical clinical characteristics: Stage and M. They have consistently

been recognized as fundamental parameters for evaluating CRC

patient prognosis according to guidelines (29). Stage reflects not

only the tumor’s size and degree of infiltration but also serves as a
Frontiers in Oncology 08
crucial foundation for assessing the patient’s condition’s severity

(30). Advancing stage typically indicates tumor spread to

surrounding tissues or lymph nodes, consequently heightening

treatment complexity and the risk of a worse prognosis. And M,

indicating the presence of metastatic lesions in distant organs. This

factor directly influences the selection of treatment regimens and

the assessment of prognosis (31). When the tumor disseminates to

distant organs, patients frequently face more complex and

aggressive treatments, leading to a poorer prognosis. The study’s

findings reaffirm the close connection between Stage and M in the

context of CRC prognosis, emphasizing their crucial roles in CRC

prognosis assessment.

In addition to our multi-layered comprehensive model, we have

developed an intuitive visualization tool known as a nomogram.

The development of this nomogram is aimed at enhancing

clinicians’ ability to assess the prognosis risk of patients with

CRC more effectively, thereby facilitating the formulation of

personalized treatment strategies (32, 33). The utilization of the

nomogram is straightforward, as clinicians can input patients’ gene

expression data and clinical features into the chart, resulting in the

generation of individualized prognosis risk scores. The chart

transparently presents survival rate predictions for CRC patients
A B

C D E

F G H

FIGURE 5

Survival analysis (A-H). Kaplan-Meier curves of individual factors in validation cohort.
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at 1 year, 2 years, and 3 years. This visualization method empowers

clinicians to swiftly distinguish between high-risk and low-risk

patients, thereby facilitating the development of more tailored

treatment plans.

Our prognostication model has demonstrated potential in

enhancing the accuracy of predictions in CRC. However, this

study, despite its significant innovations, does exhibit certain

limitations. Firstly, it is important to note that the model has not

yet been tested in clinical settings. We acknowledge that field-

testing is crucial to confirm the model’s applicability and reliability

in real-world scenarios. Plans are underway to conduct such

validation, which we believe will be pivotal in establishing the

model’s true effectiveness. This crucial step will help bridge the

gap between theoretical research and practical clinical application,

ensuring that our model can be reliably used in the management of

CRC. Secondly, the precise mechanisms underlying the biomarkers

included in the model remain unelucidated, necessitating further

experimental research to uncover their modes of action. Lastly,

despite the integration of multi-layered information, it is

conceivable that other unconsidered biological factors may exist.

Future research endeavors should aim to refine the model by

incorporating these factors.

In summary, this study successfully constructed a multi-layered

prognostic model for CRC that seamlessly integrates gene expression

and clinical features. This model not only enhances predictive
Frontiers in Oncology 09
accuracy but also provides robust support for future clinical

practice through the use of a nomogram as a visualization tool.
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