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Predictive model based on
multiple immunofluorescence
quantitative analysis for
pathological complete response
to neoadjuvant
immunochemotherapy in lung
squamous cell carcinoma
Meng Xiao †, Lili Tu †, Ting Zhou, Ye He,
Xiaohui Li* and Qiunan Zuo*

The Geriatric Respiratory Department, Sichuan Provincial People’s Hospital, University of Electronic
Science and Technology of China, Chengdu, China
Objective: This study aims to establish a prediction model for neoadjuvant

immunochemotherapy (NICT) in lung squamous cell carcinoma to guide

clinical treatment.

Methods: This retrospective study included 50 patients diagnosed with lung

squamous cell carcinoma who received NICT. The patients were divided into the

pathological complete response (PCR) group and the non-PCR group. HE

staining and multiple immunofluorescence (mIF) techniques were utilized to

analyze the differences in the immunemicroenvironment between these groups.

LASSO regression and optimal subset regression were employed to identify the

most significant variables and construct a prediction model.

Results: The PCR group showed higher densities of lymphocyte nuclei and

karyorrhexis based on HE staining. Furthermore, based on mIF analysis, the PCR

group showed higher cell densities of CD8+, PD-L1+, and CD8+PD-L1+ in the

tumor region, while showing lower cell densities of CD3+Foxp3+, Foxp3+, and

CD163+. Logistic univariate analysis revealed CD8+PD-L1+, PD-L1+, CD8+, CD4

+LAG-3+, lymphocyte nuclei, and karyorrhexis as significant factors influencing

PCR. By using diverse screening methods, the three most relevant variables (CD8

+, PD-L1+, and CD8+PD-L1+ in the tumor region) were selected to establish the

prediction model. The model exhibited excellent performance in both the

training set (AUC=0.965) and the validation set (AUC=0.786). In the validation

set, In comparison to the conventional TPS scoring criteria, the model attained

superior accuracy (0.85), specificity(0.67), and sensitivity (0.92).

Conclusion: NICT treatment might induce anti-tumor effects by enriching

immune cells and reactivating exhausted T cells. CD8+, PD-L1+, and
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CD8+PD-L1+ cell abundances within the tumor region have been closely

associated with therapeutic efficacy. Incorporating these three variables into a

predictive model allows accurate forecasting of treatment outcomes and

provides a reliable basis for selecting NICT treatment strategies.
KEYWORDS

lung squamous cell carcinoma, neoadjuvant immunochemotherapy, pathological
complete response, predictive model, multiple immunofluorescence quantitative analysis
1 Introduction

Lung cancer is one of the most common and deadliest cancers

worldwide (1). Surgical resection is the main strategy for the treatment

of non-small cell lung cancer (NSCLC). However, even with complete

tumor removal, NSCLC patients have poor postoperative prognosis,

with a 5-year survival rate of approximately 50% for stage II and 20%

for stage III (2). This unfavorable outcome may be attributed to

residual tumor cells, tumor micro-metastases, or circulating tumor

cells (CTCs) and circulating tumor DNA (ctDNA) causing tumor

metastasis or recurrence. Even neoadjuvant chemotherapy only

improves the 5-year survival rate by 5%, which is relatively limited

(3, 4). Squamous cell carcinoma, compared to other subtypes of

NSCLC, lacks effective therapeutic targets and has a worse prognosis.

In recent years, our understanding of the role of the immune system in

regulating tumor development has significantly increased, leading to a

revolution in the field of cancer treatment with the emergence of

neoadjuvant immunochemotherapy (NICT). It can effectively activate

immune responses and potentially eliminate residual lesions or small

metastatic foci (5). NICT in NSCLC has shown significant advantages

in terms of short-term outcomes, such as safety, tolerability, and major

pathological response (6, 7). However, not all patients benefit from

NICT, which also imposes a substantial economic burden. Therefore,

identifying the potential beneficiaries of NICT, excluding low

responders, reducing healthcare costs, and avoiding overtreatment

are urgent issues that need to be addressed.

Pathological complete response (PCR) is a critical indicator for

evaluating NICT efficacy in lung squamous cell carcinoma (8)..

Previous studies have aimed to identify biomarkers associated with

PCR. In the context of esophageal, breast, and colorectal solid tumors,

biomarkers such as PD-L1 score, tumor mutation burden (TMB),

tumor-infiltrating lymphocytes (TILs), and microsatellite instability

(MSI) have been considered closely linked to the effectiveness of NICT.

However, the findings from certain clinical trials exhibit inconsistency

and even contradictory results (9–11). These discrepancies highlight

significant variations in NICT response across different tumor types

and individuals, possibly attributable to the intricate nature of the

tumor immune microenvironment. Therefore, analyzing the immune

microenvironment could serve as a reliable approach for predicting the

efficacy of NICT in lung squamous cell carcinoma.
02
The efficacy of anti-tumor therapy is closely related to the complex

tumor immune microenvironment (TME). The complexity of the

TME is determined by factors including the quantity, spatial

distribution, and function of immune cells. Previous studies have

shown that the distance from immune cells to tumor nests is a

critical factor affecting prognosis Moreover, the separation among

CD20+ B cells, CD4+ T cells, and CD8+ T cells leads to

distinguished spatial immune architectures affecting the functional

state of immune cells (12). Furthermore, the density of functionally

suppressed CD8+ T cells can accurately predict NICT’s treatment

response. One possible mechanism is to reverse the immune

suppression state of exhausted killer T cells (CD8+PD-L1+ T cells)

by using PD-L1 inhibitors, thereby activating immune cell killing

functions and achieving pathological remission (13). Hence,

analyzing the quantity, functionality, and spatial distribution of

immune cells is a viable option for predicting the attainment of PCR

in NICT.

With the development of multiplex immunofluorescence

technology (mIF), it becomes possible to directly observe the

quantity, spatial distribution, and phenotype of immune cells in

the microenvironment. By leveraging machine learning, the

aforementioned image features can be quantitatively analyzed. This

study aims to utilize these approaches to identify and characterize

immune cell features within the tumor microenvironment (TME),

select the most informative features, and establish a concise and

efficient predictive model for assessing the efficacy of neoadjuvant

therapy. The findings will serve as a valuable reference for clinical

decision-making.
2 Methods

2.1 Sample treatment

Fifty fiberoptic bronchoscopy biopsy samples of lung squamous

cell carcinoma were selected for this study. The specimens were

fixed in 10% neutral formalin, embedded in paraffin, sectioned

using routine procedures, and subjected to hematoxylin and eosin

(HE) staining. The HE staining process followed the operating

instructions of an automated HE instrument. All patients
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underwent NICT prior to surgery. Chemotherapy regimens

included single drugs or combinations of drugs such as albumin-

bound paclitaxel, carboplatin, cisplatin, docetaxel, and oxaliplatin.

All 50 patients received one of the following immune checkpoint

inhibitors: Pembrolizumab (9 patients), Nivolumab (7 patients),

Camrelizumab (26 patients), Atezolizumab (7 patients), or

Durvalumab (1 patient). All patients received 1 to 4 cycles of

treatment, with an average of (3.13 ± 0.58) cycles.

The mIF staining, which was completed at Genecast

Biotechnology Co., Ltd., detected two panels comprising a total of

10 markers: CD4 (EP204), CD8 (SP16), PD-L1 (SP142), TIM3

(EPR22241), and LAG-3 (EPR20261) in panel 1; and CD3 (LN10),

CD20 (L26), CD21 (EP3093), CD163 (10D6), and Foxp3 (236A/E7)

in panel 2. CD3, CD20, and CD21 were also employed to mark

tertiary lymphoid structures (TLS). CD20 is a marker of B cells, CD21

is a marker of dendritic cells, and CD163 is a marker of histiocytes.

These cells are widely involved in antigen presentation and humoral

immunity. CD3 is a marker of T cells, CD4 is a marker of helper T

cells, CD8 is a marker of cytotoxic T cells, and Foxp3 is a marker of

regulatory T cells. These cells are widely involved in cellular

immunity. PD-L1, LAG-3 and TIM3 are immune checkpoint

markers. And the above-mentioned immune cell markers can be

used to mark the exhausted immune cells. Multiple images were

obtained from serial sections of the same block per patient, and they

were stained with DPAI and five markers in either panel 1 or panel 2.

Each panel was detected using a 4-mm thick slide cut from FFPE

NSCLC tissues. After deparaffinization and rehydration, epitope

retrieval was performed by boiling the slides in Tris-EDTA buffer

at 97°C for 20 min. Subsequently, endogenous peroxidase was

blocked by incubation for 10 min in Antibody Block/Diluent,

followed by blocking of protein in 0.05% Tween solution at 26°C

for 30 min. The five antigens in each panel were then labeled by cyclic

staining, which included incubation with primary and secondary

antibodies, tyramine signal amplification (TSA) visualization, and

removal of the TSA-antibody complex in Tris-EDTA buffer using

microwave treatment at 97°C for 20 min. In each cycle, antibody

labeling was performed after epitope retrieval and protein blocking as

mentioned above. Following cyclic staining, each slide was

counterstained with DAPI for 5 min and mounted in Pro-Long

Diamond Antifade Mountant (Thermo Fisher).
2.2 Quantitative image analysis

The HD-Staining deep learning model, developed based on the

Mask-RCNN architecture (https://github.com/matterport/

Mask_RCNN), utilized 12,000 cells from pathological image

patches (500 × 500 pixels) as the training set. It was validated and

tested with 1,127 and 1,086 cells, respectively, confirming the

reliability of the HD-Staining algorithm model (14). The HD-

Staining deep learning model was used to classify and segment

cell nuclei in HE images. The segmented cell nuclei were divided

into six categories: tumor cells, stromal cells, lymphocytes,

macrophages, red blood cells, and nuclear bleeding. Any other

structures or spaces were considered background. The model then

outputted the data accordingly.
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The images were acquired using the TissueFAXS panoramic

tissue cell imaging quantitative analysis system (TissueFAXS SL

Plus S, Austria, TissueGnostics). The specific operational method

was as follows: A preview of the entire slide at 2.5X magnification

was conducted to determine the tissue’s position on the slide. Based

on the targets’ expression in each dye channel, the optimal exposure

time, exposure value, and other parameters were adjusted to

determine the best scanning conditions. The sample scanning

area was selected according to the results of the image preview.

The selected area was then scanned at 20X magnification under the

specified scanning conditions. Cell and tissue type identification, as

well as protein expression quantification, were performed on

panoramic images using the StrataQuest 7.1.129 image analysis

software (Austria, TissueGnostics). Firstly, an intelligent algorithm

was applied to segment all cells in the tissue area surrounding the

nucleus. Additionally, tissue type recognition was achieved through

a combination of manual training and machine learning methods,

enabling the division of tissues into different regions such as tumor

and stroma. Finally, protein expression was quantified by

determining the average fluorescence threshold for each detection

marker, which facilitated the calculation of the number of positively

labeled cells. Positive cells were defined as those exhibiting an

immunofluorescence signal greater than the threshold and

displaying the appropriate expression pattern.
2.3 Statistical analysis

Logic regression, Wilcoxon test, Least Absolute Shrinkage and

Selection Operator (LASSO) regression, and Optimal Subset

Regression were employed for data analysis. Thirty samples were

allocated as training sets, while twenty samples were designated as

validation sets to construct and validate the model. Receiver

Operating Characteristic (ROC) curves were utilized to assess the

model’s performance. Data analysis was conducted using the R

statistical software (The R Foundation, http://www.R-project.org)

and the FreeStatistics statistical analysis platform. A significance

level of P < 0.05 was employed.
3 Results

3.1 Pathological and clinical features

The mean age of all 50 patients was 56.00 [53.25, 66.75] years

old, and 44 (88%) of them were male. In addition, 12 (24%) of the

patients achieved PCR during clinical stage II-III. There were no

statistically significant differences in the basic clinical characteristics

between the PCR and Non-PCR groups (refer to Table 1).
3.2 HE images quantitative analysis results

We employed machine learning to utilize the results of

quantitative analysis of Hematoxylin and Eosin (HE) images for
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specific cell type identification in HE slices. The PCR group

exhibited significantly higher densities of Lymphocyte Nuclei and

Karyorrhexis (P<0.05) (refer to Figure 1B), with a more pronounced

observation of this phenomenon in the tumor interior and at the

invasive margin (refer to Figure 1A).
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3.3 Multiple immunofluorescence
quantitative analysis results

Panel 1 (P1) detection indicators included PD-L1, LAG3, TIM3,

CD4, and CD8. The detection indexes of Panel 2 (P2) included
TABLE 1 The clinicopathological characteristics of PCR group and Non-PCR group were compared.

Characteristic Total (n = 50) PCR
(n = 38)

Non-PCR
(n = 12)

p

Gender, n (%) 0.314

Male 44 (88.0) 32 (84.2) 12 (100)

Female 6 (12.0) 6 (15.8) 0 (0)

Age, n (%) 0.071

≤65 36 (72.0) 30 (78.9) 6 (50)

>65 14 (28.0) 8 (21.1) 6 (50)

Cigarette smoking history,
n (%)

0.621

Yes 44 (88.0) 34 (89.5) 10 (83.3)

No 6 (12.0) 4 (10.5) 2 (16.7)

Alcohol drinking history,
n (%)

1

Yes 34 (68.0) 26 (68.4) 8 (66.7)

No 16 (32.0) 12 (31.6) 4 (33.3)

Family history, n (%) 1

Yes 9 (18.0) 7 (18.4) 2 (16.7)

No 41 (82.0) 31 (81.6) 10 (83.3)

cT, n (%) 0.226

T2 32 (64.0) 22 (57.9) 10 (83.3)

T3 12 (24.0) 10 (26.3) 2 (16.7)

T4 6 (12.0) 6 (15.8) 0 (0)

cN, n (%) 0.496

1 31 (62.0) 25 (65.8) 6 (50)

2 19 (38.0) 13 (34.2) 6 (50)

stage, n (%) 0.485

II 21 (42.0) 17 (44.7) 4 (33.3)

III 29 (58.0) 21 (55.3) 8 (66.7)

Differentiation, n (%) 0.077

Well 11 (22.0) 9 (23.7) 2 (16.7)

Middle 29 (58.0) 19 (50) 10 (83.3)

Poor 10 (20.0) 10 (26.3) 0 (0)

Primary tumor location, n (%) 0.294

Central 33 (66.0) 27 (71.1) 6 (50)

Peripheral 17 (34.0) 11 (28.9) 6 (50)
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CD20, CD21, CD3, CD163, and Foxp3. Common positive areas of

CD3, CD20, and CD21 indicated tertiary lymphoid structure (TLS).

The PCR group in Panel 1 (top right) exhibited more abundant

immune cell infiltration and a higher PD-L1 expression rate in and

around the tumor nest, while the non-PCR group in Panel 1 (top

left) showed more sparse immune cell infiltration and a lower PD-

L1 expression rate in and around the tumor nest. The PCR group

(lower right) had fewer macrophages and FOXP3-positive

regulatory T cells in and around the tumor nest, whereas the

non-PCR group (lower left) had more macrophages and FOXP3-

positive regulatory T cells in and around the tumor nest (refer to

Figure 2). Quantitative analysis of Panel 2 revealed that the cell
Frontiers in Oncology 05
density of CD8+, PD-L1+, and CD8+PD-1+ in the PCR group was

significantly higher than that in the non-PCR group in the tumor

area (P<0.05). There was no statistical difference in TLS density

between the two groups. Quantitative analysis of Panel 1

demonstrated that CD3+Foxp3+, Foxp3+, and the cell density of

CD163+ in the PCR group were significantly lower than those in the

non-PCR group (P < 0.05) (refer to Figure 2). The cell densities of

CD4+TIM3+, CD4+PD-L1+, CD8+TIM3+, and CD4+LAG-3+ in

the PCR group were higher than those in the non-PCR group. In the

stroma region, CD8+LAG-3+, CD8+TIM3+ and LAG-3+ cell

density in the PCR group exhibited a higher trend compared to

the non-PCR group (refer to Figures 3, 4).
A B

FIGURE 2

Multiple immunofluorescence technology was used to analyze the immune microenvironment. Panel 1and Panel 2 (P1, P2)Schematic diagram
showed The PCR group exhibited a higher abundance of immune cell infiltration and PD-L1 expression within and around the tumor nests, along
with fewer macrophages and Foxp3-positive regulatory T cells (A) and image quantitative analysis results demonstrated that in the tumor area, the
densities of CD8, PD-L1+, and CD8+PD-L1+ cells were significantly higher in the PCR group compared to the Non-PCR group, while the densities
of CD3+Foxp3+, Foxp3+, and CD163+ cells were significantly lower in the PCR group than in the Non-PCR group (B).
A B

FIGURE 1

Machine learning identifies different cell types on HE-stained slices and compares the differences between PCR and Non-PCR groups (A). The PCR
group exhibits higher densities of Lymphocyte Nuclei and Karyorrhexis (B).
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3.4 Univariate and multivariate analyses

Univariate and multivariate analyses revealed that CD8+PD-L1

+, PD-L1+, CD8+, CD4+LAG-3+, lymphocyte nuclei and

karyorrhexis in the tumor region were independent factors

influencing pathological complete response (PCR) (refer

to Table 2).
3.5 Establishment and verification of the
prediction model

Six significantly different variables from the Non-PCR and PCR

groups in panels 1 and 2 were analyzed for their predictive value in

neoadjuvant therapy response using ROC curves. The AUC values,

in descending order, were as follows: Tumor region CD8+PD-L1+

(95.8333%), Tumor region PD-L1 +(91.6667%), Tumor region CD8

+(93.0556%), Tumor region Foxp3+ (79.1667%), Tumor region

CD163+ (77.7778%), and Tumor region CD3+Foxp3+ (77.4306%).

Following LASSO regression analysis of all variables, the l
coefficient decreased with an increasing number of variables. Five

variables with a non-zero coefficient were selected at the optimal

value. The five variables selected were Tumor region CD8+, Tumor

region PD-L1+, Tumor region CD8+PD-L1+, Tumor region Foxp3

+, and Lymphocyte Nuclei, respectively. After conducting optimal

subset regression analysis on all variables, when the Mallows Cp

coefficient reached a minimum of 2.1, four variables were identified:

Tumor region CD8+, Tumor region PD-L1+, Tumor region CD8

+PD-L1+, and Lymphocyte Nuclei (refer to Figure 5). The common

variables identified by different methods were visualized in a Venn

diagram (refer to Figure 5). Subsequently, three variables were
Frontiers in Oncology 06
selected to establish a model with high clinical applicability, and a

nomogram was developed for predicting PCR in patients (refer to

Figure 6). The AUC value of the model reached 0.965 in the training

set and 0.786 in the verification set (Figure 6). Through the hosmer-

lemeshow model fitting test, it was considered that there was no

significant difference between the model prediction result and the

actual result (X2 = 11.234 P = 0.189). Compared to the traditional

PD-L1 scoring standards of TPS > 1% and TPS > 50% (15), the

predictive model demonstrated improved accuracy, sensitivity, and

specificity (refer to Table 3).
4 Discussion

We utilized multiplex immunofluorescence technology and

image quantitative analysis techniques to examine the pre-

treatment immune microenvironment of lung squamous cell

carcinoma patients. Our analysis revealed disparities in the

immune microenvironment between the PCR and non-PCR

groups, specifically in terms of immune cell quantity, distribution,

and function. We identified the most valuable differences for

predicting the effect of NICT treatment, namely the density of

CD8+ T cells, PD-L1+ T cells, and PD-L1+CD8+T cells within the

tumor nest (rather than the stroma). The prediction model

established using these differences performed well in both the

training and validation sets, providing an accurate and easy-to-

implement plan for clinical prediction of NICT efficacy.

Initially, we analyzed the spatial distribution of immune cells

and identified their predominant concentration within tumor nests

and invasive margins. Likewise, the differences in markers,

including CD8+, PD-L1+, Foxp3+, and CD163+, were primarily
FIGURE 3

No Significant Differences Found in Multiplex Immunofluorescence Panel 1 Results.
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observed in these regions. Importantly, no statistically significant

differences were observed in the stroma. Consequently, we

hypothesized that immune cells responsible for immune function

were primarily distributed within the tumor rather than the stromal

area. In a study investigating neoadjuvant therapy for breast cancer,

researchers discovered a notable association between the quantity of

immune cells within tumor nests and pathological response,

whereas no such correlation was observed within the stroma (16).

Similarly, a separate study focusing on gastric cancer reported a

significant relationship between the quantity of immune cells
Frontiers in Oncology 07
infiltrating tumor nests and invasive margins and patient overall

survival (OS) (17). Collectively, these findings suggest that immune

cells exert their anti-tumor effects primarily within the tumor nests

and invasive margins.

Additionally, we performed an analysis of immune cell densities

in this study. The PCR group exhibited higher quantities of CD20+

B lymphocytes, CD4+ helper T lymphocytes, and CD8+ killer T

lymphocytes, while demonstrating lower levels of Foxp3+

regulatory T cells and CD163+ M2 macrophages. These findings

suggest that both humoral immunity and cellular immunity play
FIGURE 4

No Significant Differences Found in Multiplex Immunofluorescence Panel 2 Results.
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TABLE 2 Logistic regression univariate and multivariate analysis.

Variable Univariate Analysis Multivariate Analysis

OR 95CI P value OR 95CI adj.P value

Tumor region CD3+ 1 (1~1) 0.89

Tumor region CD20+ 1 (1~1) 0.096

Tumor region CD21+ 1.01 (0.96~1.06) 0.715

Tumor region CD163+ 0.99 (0.98~1) 0.116

Tumor region Foxp3+ 1 (0.99~1) 0.065

Tumor region CD3+Foxp3+ 0.99 (0.99~1) 0.185

Stroma region CD3+ 1 (1~1) 0.877

Stroma region CD20+ 1 (1~1) 0.254

Stroma region Foxp3+ 1 (1~1) 0.644

Stroma region CD163+ 1 (1~1.01) 0.393

Stroma region CD21+ 1 (1~1.01) 0.27

Stroma region CD3+Foxp3+ 1 (0.99~1) 0.262

Stroma region CD4+ 1 (1~1) 0.669

Stroma region CD8+ 1.01 (1~1.01) 0.01 0.97 (0~ Inf) <0.001

Tumor region TIM3+ 1 (1~1) 0.796

Tumor region LAG3+ 1.01 (1~1.01) 0.128

Tumor region PD-L1+ 1.01 (1~1.02) 0.011 1.24 (0~Inf) <0.001

Tumor region CD4+PD-L1+ 1.06 (0.97~1.16) 0.201

Tumor region CD8+PD-L1+ 1.03 (1~1.06) 0.023 1.61 (0~Inf) <0.001

Tumor region CD8+TIM3+ 1 (0.99~1.01) 0.439

Tumor region CD8+LAG3+ 1.02 (0.99~1.06) 0.18

Tumor region CD4+LAG3+ 1.07 (1~1.13) 0.038 1.26(0~Inf) <0.001

Tumor region CD4+TIM3+ 1 (1~1.01) 0.32

Stroma region CD4+ 1 (1~1) 0.32

Stroma region CD8+ 1 (1~1) 0.668

Stroma region TIM3+ 1 (1~1) 0.378

Stroma region LAG3+ 1 (1~1) 0.44

Stroma region PD-L1+ 1 (1~1) 0.44

Stroma region CD4+PD-L1+ 1 (0.99~1.01) 0.83

Stroma region CD8+PD-L1+ 1 (0.99~1.02) 0.551

Stroma region CD8+TIM3+ 1 (0.99~1.01) 0.895

Stroma region CD8+LAG-3+ 1 (1~1.01) 0.474

Stroma region CD4+LAG-3+ 1 (1~1.01) 0.347

Stroma region CD4+TIM3+ 1 (1~1) 0.926

Gender Male 12155660.62 (0~Inf) 0.994

Age >65 3.8 (0.58~24.88) 0.164

Cigarette smoking history 1.67 (0.16~17.26) 0.668

Alcohol drinking history 0.82 (0.12~5.57) 0.842

(Continued)
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crucial roles in anti-tumor activity when there is increased immune

cell infiltration. Conversely, the presence of regulatory T cells and

M2 macrophages hindered the anti-tumor effect within the immune

microenvironment. Notably, previous research indicated that a 10%

rise in infiltrating immune cells (TILs) in breast cancer reduced the

risk of death by 20% (18). Furthermore, a study focusing on T3N0

esophageal squamous cell carcinoma reaffirmed the close

correlation between the quantity of TILs and overall survival (OS)

within each subgroup (19). Another study illustrated the predictive

value of various TILs subpopulations in melanoma for patient

response to immunotherapy (20). Moreover, regulatory T cells

have the capability to suppress bodily immunity (21),

consequently impeding the body’s anti-tumor activity by

inhibiting the activation and proliferation of reactive T cells

within the body’s microenvironment. Considering the collective
Frontiers in Oncology 09
findings from prior studies and our own, we have compelling

grounds to suspect that the quantity of immune cells and

macrophages may represent crucial factors influencing the

response to neoadjuvant therapy.

Lastly, we conducted an analysis of cell functions. Additionally, our

study reveals higher levels of CD20+ cell density and TLS numbers in

the PCR group, although this disparity did not reach statistical

significance. Notably, CD20+ B lymphocytes not only contribute to

humoral immunity but also form a critical component of tertiary

lymphoid structures. Numerous studies underscore the significance of

CD20+ B cells and TLS in tumor immunochemotherapy (22), thereby

indirectly elucidating the elevated levels of CD20+ B cells and TLS in

the PCR group. However, T cells appear to constitute the primary anti-

tumor component. The densities of CD8+ cells in the PCR group are

significantly greater than those in the other groups, suggesting that a
TABLE 2 Continued

Variable Univariate Analysis Multivariate Analysis

OR 95CI P value OR 95CI adj.P value

Family history 1 (0.09~11.03) 0.999

Differentiation poor- moderately 1.92 (0.18~20.82) 0.591

Primary tumor location
central-type

0.63 (0.06~7.03) 0.703

Lymphocyte Nuclei 1 (1~1) 0.023 1.05 (0~Inf) <0.001

Karyorrhexis 1.02 (1~1.03) 0.041 1.39 (0~Inf) <0.001

Stroma Nuclei 1 (1~1) 0.697

Macrophage Nuclei 1.01 (0.98~1.03) 0.608

Tumor Nuclei 1 (1~1) 0.724

Red Blood Cells 1 (1~1) 0.631
“Inf” means positive infinity.
A B

FIGURE 5

Variable selection was performed using ROC curve analysis, LASSO regression analysis, and optimal subset regression analysis (A). The intersection of
the selected variables was visualized in a Venn diagram, which revealed that three variables were most reliable for predicting PCR (B).
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higher quantity of killer T cells corresponds to a more pronounced

pathological response.

Our study corroborates previous reports indicating that a higher

quantity of effector T cells is associated with pathological complete

remission of breast cancer. This association could be attributed to the

direct involvement of CD8+ T cells in tumor eradication (23).

Furthermore, the density of CD8+PD-L1 depleting killer cells was

higher in the PCR group in our study, indicating a greater presence of

these depleting T cells exerting an anti-tumor effect through the

reactivation of immune checkpoint inhibitors (23). While previous

studies suggested that CD8+ killer T cells were the primary anti-tumor
Frontiers in Oncology 10
cells, recent research has demonstrated that CD4+ T cells are also

capable of secreting granase B to eliminate cancer cells and enhancing

the killing function of CD8+ T cells through the secretion of

interleukin-2 (IL-2) (24). While previous studies suggested that CD8

+ killer T cells were the primary anti-tumor cells, recent research has

demonstrated that CD4+ T cells are also capable of secreting granase B

to eliminate cancer cells and enhancing the killing function of CD8+ T

cells through the secretion of interleukin-2 (IL-2) (25). These findings

indicate the significant roles of both CD4+ and CD8+ T cells in the

anti-tumor process, highlighting their potential for cooperative

interactions (26). According to the univariate analysis in this study,

CD4+LAG-3+ appeared to be a significant influencing factor for PCR,

providing support for this hypothesis. However, not all T cells

contribute to immune killing. Immune killing by Foxp3+ regulatory

T cells is regulated by negative feedback, and an excessive presence of

regulatory T cells inhibits immune killing while promoting tumor

escape (27). This study found a high density of Foxp3 and CD3+Foxp3

+ in the non-PCR group, providing evidence for the aforementioned

perspective. The function of M2 macrophages in restricting immune

response and promoting angiogenesis (28) indirectly facilitates

immune escape and tumor metastasis. The higher presence of

CD163+ macrophages in the non-PCR group in this study aligns
A

B

FIGURE 6

A predictive model was constructed using the selected three variables, and a line graph was obtained to predict patient PCR (A). The model achieved
an AUC value of 0.965 in the training set and an AUC value of 0.786 in the validation set (B).
TABLE 3 Comparison of predictive efficacy.

Model TPS 1 TPS 50

prediction
sensitivity

0.92 1.00 0.40

prediction
specificity

0.67 0.13 0.55

prediction
accuracy

0.85 0.4 0.65
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with this perspective. In summary, disparities are observed between the

PCR group and the non-PCR group in the density, spatial distribution,

and function of immune cells, potentially contributing to the

occurrence of PCR. Building upon the aforementioned analysis, we

employ optimal subset regression and LASSO regression to identify the

three most effective variables: CD8+, CD8+PD-L1+, and PD-L1+ for

improved prediction of PCR. Subsequently, a PCR prediction model is

developed and internally validated. The training set exhibits excellent

performance, while there is a noticeable decline in performance on the

validation set. This may be due to issues such as overfitting and a

limited number of samples. The study is conducted in a single center,

and the lack of external validation is a limitation of this research.

Nevertheless, compared to traditional TPS > 1 or TPS > 50 scores, the

model demonstrates strong performance in improving sensitivity,

specificity, and accuracy. This provides a reliable basis for selecting

clinical treatment strategies.
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