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Quantitative dynamic contrast-enhanced (DCE) MRI as a promising method for

the prediction of breast cancer response to neoadjuvant chemotherapy (NAC)

has been demonstrated mostly in single-center and single-vendor platform

studies. This preliminary study reports the initial experience in implementing

quantitative breast DCE-MRI in multi-center (MC) and multi-vendor platform

(MP) settings to predict NAC response. MRI data, including B1 mapping, variable

flip angle (VFA) measurements of native tissue R1 (R1,0), and DCE-MRI, were

acquired during NAC at three sites using 3T systemswith Siemens, Philips, and GE

platforms, respectively. High spatiotemporal resolution DCE-MRI was performed

using similar vendor product sequences with k-space undersampling during

acquisition and view sharing during reconstruction. A breast phantom was used

for quality assurance/quality control (QA/QC) across sites. The Tofts model (TM)

and shutter-speed model (SSM) were used for pharmacokinetic (PK) analysis of

the DCE data. Additionally, tumor region of interest (ROI)- vs. voxel-based

analyses in combination with the use of VFA-measured R1,0 vs. fixed, literature-

reported R1,0 were investigated to determine the optimal analysis approach.

Results from 15 patients who completed the study are reported. Voxel-based PK
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analysis using fixed R1,0 was deemed the optimal approach, which allowed the

inclusion of data from one vendor platform where VFA measurements produced

≥100% overestimation of R1,0. The semi-quantitative signal enhancement ratio

(SER) and quantitative PK parameters outperformed the tumor longest diameter

(LD) in the prediction of pathologic complete response (pCR) vs. non-pCR after

the first NAC cycle, whereas Ktrans consistently provided more accurate

predictions than both SER and LD after the first NAC cycle and at the NAC

midpoint. Both TM and SSM Ktrans and kep were excellent predictors of response

at the NAC midpoint with ROC AUC >0.90, while the SSM parameters (AUC

≥0.80) performed better than their TM counterparts (AUC <0.80) after the first

NAC cycle. The initial experience of this ongoing study indicates the importance

of QA/QC using a phantom and suggests that deploying voxel-based PK analysis

using a fixed R1,0 may mitigate random errors from R1,0 measurements across

platforms and potentially eliminate the need for B1 and VFA acquisitions in MC

and MP trials.
KEYWORDS

breast cancer, therapy response, dynamic contrast-enhanced (DCE) MRI, pharmacokinetics,
Ktrans, water exchange, multi-center, multi-vendor platform
Introduction

Neoadjuvant chemotherapy (NAC) is frequently used in the

standard of care (SoC) to treat patients with locally advanced

breast cancer to downstage the disease and facilitate breast-

conserving surgery. In addition, the setting of NAC systemic

treatment affords the opportunity to assess the pathologic response

to NAC. Studies have shown that pathologic complete response

(pCR) or minimal residual disease following NAC is prognostic for

survival (1–6). However, since assessment of pathologic response can

only be ascertained from surgical tumor specimens after NAC has

already been completed, the treating clinician’s options to tailor

therapy regimens during NAC to improve pathologic response

outcome and consequently survival are limited. Therefore,

minimally invasive methods that can provide an accurate

prediction of response in the early stages of NAC are urgently

needed. With many innovative treatment regimens using targeted

therapies and/or immunotherapies being tested in clinical trials for

breast cancer treatment, improved capability of accurate and early

prediction of pathologic response to NAC may allow rapid

individualized regimen de-escalation/alteration for responding/non-

responding breast cancer patients in the future, facilitating precision

medicine and leading to improved treatment outcomes.

In current SoC and clinical trials, the measurement of imaging

tumor size change according to the Response Evaluation Criteria in

Solid Tumors (RECIST) guidelines (7, 8) is the standard approach to

assess tumor response to therapy. However, many studies have

shown that tumor size changes in response to therapy, especially

targeted therapies, often lag well behind changes in the underlying

tumor biological functions (9–11), such as perfusion/permeability,
02
cellularity, and metabolism. Therefore, the anatomic imaging

approach of tumor size measurement is generally less effective for

the early prediction of therapeutic response compared to functional

imaging methods. As a noninvasive method for evaluation of

microvascular perfusion and permeability, dynamic contrast-

enhanced (DCE) MRI has been increasingly used in research

settings, including early phase clinical trials, to evaluate breast

cancer responses to NAC. There are usually three approaches in

the analysis of DCE-MRI time-course data: qualitative curve shape

description, calculation of semi-quantitative metrics such as contrast

agent (CA) uptake and wash-out slopes, and quantitative

pharmacokinetic (PK) modeling to extract parameters, such as

Ktrans (CA volume transfer rate constant) and ve (extravascular,

extracellular volume fraction), which are more directly reflective of

the underlying biological functions and are in principle independent

of scanner vendor platforms and data acquisition details. Thus,

compared with qualitative and semi-quantitative DCE-MRI,

quantitative DCE-MRI is hypothetically a more desirable approach

for the assessment of cancer therapy response. Using summary

receiver operating characteristic (SROC) analysis, a recent meta-

analysis (12) of 14 published studies including 739 patients showed

that the area under the curve (AUC), sensitivity, and specificity of

Ktrans for early discrimination of pCR and non-pCR after one to two

NAC cycles were 0.90, 84%, and 83%, respectively. However, the

promise of Ktrans as an imaging biomarker for the prediction of breast

cancer response to NAC has been demonstrated mostly by single-site

and single-vendor platform DCE-MRI studies (13) that often

sacrificed spatial resolution and/or coverage for the high temporal

resolution necessary for PK modeling of the time-course data. There

remain significant technical challenges in implementing quantitative
frontiersin.org
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DCE-MRI in multi-center (MC) and multi-vendor platform (MP)

settings to assess breast cancer response to NAC, as many technical

aspects in data acquisition and analysis, from temporal resolution to

selection of the PK model and software tool, can affect the accuracy

and precision of the derived PK parameters (14–17). Therefore, it is

of paramount importance to standardize data acquisition and

analysis strategies in MC and MP study settings (14, 15).

In this study, through preliminary analysis of data from an

ongoing project, we report our initial experience in implementing

quantitative DCE-MRI with simultaneous high spatial and

temporal resolutions in an MC and MP setting to predict breast

cancer response to NAC, compare predictive performances among

quantitative and semi-quantitative DCE-MRI parameters, and

tumor size measurement, and make initial best-practice

recommendations with regard to PK analysis of breast DCE-MRI

data acquired from different sites with different vendor platforms.
Methods

Study schema and patient cohort

With local internal review board (IRB) approval, breast cancer

patients treated with SoC NAC were enrolled with informed

consent at three sites—Oregon Health & Science University

(OHSU), University of Washington (UW), and University of

Iowa (UI)—to participate in a longitudinal research MRI study.

Four MRI sessions were performed before, during, and after the

NAC course: Visit 1 (V1, before NAC), Visit 2 (V2, after the first

cycle of NAC), Visit 3 (V3, at the midpoint of NAC; generally, after

the completion of the first drug regimen but before the start of the

second drug regimen), and Visit 4 (V4, after NAC but before

surgery). Each patient’s pCR (defined as no residual invasive

disease in the breast or axilla) or non-pCR status after NAC was

determined by pathological analysis of the surgical tumor

specimens as per the SoC procedures.

Fifteen patients across the three sites completed NAC treatment

andMRI studies with pathologic response outcomes to date. Table 1

lists the clinicopathological characteristics of these 15 patients, with

six of them achieving pCR (40%). The imaging results and

correlations with the pathological response outcomes are

reported below.
MRI data acquisition

A 3T MRI scanner was used at each site for MRI data

acquisition with each site employing a unique vendor platform,

including Siemens (Siemens Healthineers, Erlangen, Germany),

General Electric (GE Healthcare, Waukesha, WI), and Philips

(Philips Healthcare, Best, the Netherlands). The vendor platform

and software versions are listed in Table 2. Each MRI session

consisted of a scout scan and the following scans in the axial

plane with bilateral full breast coverage: T2-weighted MRI with fat

suppression, T1-weighted MRI without fat suppression, axial

diffusion-weighted MRI (DWI), B1 mapping, variable flip angle
Frontiers in Oncology 03
(VFA) gradient-echo (GRE) MRI for mapping of native tissue T1

(T1,0) (18), and DCE-MRI. Since this study mainly reports the

results of DCE-MRI for the prediction of breast cancer response to

NAC, only the sequences and acquisition parameters relevant to

DCE-MRI quantification on the three vendor platforms are

summarized in Table 2.

To achieve simultaneous high spatial and high temporal

resolution DCE-MRI, similar product 3D GRE-based sequences

employing Cartesian k-space undersampling in acquisition and

view-sharing in reconstruction were used at the three sites for

DCE-MRI data acquisition: Time-resolved angiography WIth

Stochastic Trajectories (TWIST) (19–21), 4D Time-Resolved

Angiography using keyhole (4D-TRAK) (22), and DIfferential

Subsampling with Cartesian Ordering (DISCO) (23, 24) on

Siemens, Philips, and GE platforms, respectively. Except for the

first DCE time frame where full k-space data were acquired, the k-

space data acquired for each remaining frame included the center

region of the k-space and a portion of the peripheral k-space. For

each of the three vendor sequences, the center region of the k-space

was set at 15% of the full k-space, and the peripheral portion was set

at 20% of the peripheral k-space. For VFA acquisitions, full k-space

GRE MRI data were acquired, and three FAs of 3°, 9°, and 15° were

used with the estimated Ernst angle positioned between the largest

and smallest angles. The selection of these three FAs was

automatically determined by a product T1 mapping sequence from

one vendor following the entry of literature breast tumor R1 (= 1/T1)

value of approximately 0.6 s−1 at 3T (25–27). B1 mapping, VFA-MRI,

and DCE-MRI were spatially aligned during postprocessing.

For DCE-MRI, the same gadolinium-based CA, Prohance

(Bracco Diagnostics Inc., Township, NJ, USA), dose (0.1 mmol/

kg), injection rate (2 mL/s using a programmable power injector),

and injection site (antecubital vein) were used at all three

institutions. Intravenous administration of CA was initiated at the

beginning of the third DCE frame acquisition, followed by a 20-mL

saline flush at the same injection rate.

For quality assurance and quality control (QA/QC) of this MC

and MP study, a bilateral breast phantom with a diffusion side and

T1 side (CaliberMRI, Boulder, CO, USA; https://qmri.com/product/

premium-single-wall-breast/) was scanned monthly at the three

sites with the same DWI, B1 mapping, and VFA-MRI protocols

used for the patient study. Data from the T1 side with

compartments containing breast fibroglandular tissue- and

adipose tissue-mimicking materials were used for the QA/QC of

quantitative DCE-MRI. B1 maps and VFA data from the phantom

T1 side were used to generate B1-corrected R1 maps, which were

compared with the known ground-truth R1 values of the phantom

at the experimental temperature.
MRI data analysis

Tumor size measurement and region of interest
Breast tumor longest diameter (LD) was measured by a site

radiologist from post-contrast DCE-MRI images according to

the RECIST 1.1 guidelines (8) for cases of a single primary tumor

or the presence of multiple tumors in the same breast. Under the
frontiersin.org
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supervision of the site radiologist, tumor regions of interest (ROIs)

were manually drawn by the site investigators on each image slice

containing the contrast-enhanced tumor. If multiple tumors were

present, ROIs were drawn independently for each tumor.

Together with the ROIs, de-identified B1 mapping, VFA-MRI,

and DCE-MRI data from the patients enrolled at the two sites (UW

and UI), as well as from the phantoms (not de-identified), were

submitted to a secure server at the management site (OHSU) for

further centralized analysis.

Semi-quantitative analysis of DCE-MRI data
In a large multicenter clinical trial (28, 29), functional breast

tumor volume calculated based on a semi-quantitative DCE-MRI

parameter, the signal enhancement ratio (SER), was shown to be a

promising imaging biomarker for predicting breast cancer response

to NAC and survival. Following a similar approach, voxel-based

SER values within the tumor ROIs were derived from the DCE

time-course data using the following equation:

SER = (S9 � S2)=(S26 � S2) (1)

where S2 is the signal intensity from the second DCE frame, a

pre-contrast baseline frame, and S9 and S26 are the post-contrast

signal intensities from the 9th (early phase, approximately 110 s
Frontiers in Oncology 04
after contrast injection) and 26th (delayed phase, approximately

380 s after contrast injection) DCE frames, respectively.

Quantitative PK analysis of DCE-MRI data
R1,0 calculation with B1 correction

To estimate the intrinsic tissue R1 (R1,0) value before CA arrival

for each voxel, a B1-corrected R1 map was computed from the VFA

data for both the phantom and de-identified patient data. Briefly, B1
DICOM images were first converted to a B1 ratio map based on

vendor-provided formalisms. Therefore, voxel-based ratio value

quantifies the fractional FA deviation from the nominal input

value prescribed in the sequence. For example, a value of 1.0

reflects perfect agreement between the actual and prescribed FA

values and 1.2 reflects an FA that is 20% larger than the nominal FA

prescribed in the sequence. Each B1 acquisition had one or more

accompanying image sets (used to calculate B1) which provided

more anatomical details than the actual B1 map; therefore, we used

these to co-register the B1 maps to the VFA images with the most

similar contrast using publicly available ANTs software (30). B1
maps were interpolated to allow voxel-wise FA correction in the

VFA data. When fitting an R1 value for each voxel against the VFA

data, B1-corrected FA was used instead of the nominal value. Voxel-

by-voxel fitting was performed using the standard nonlinear fitting

approach using (Equation 2),

S(a) = S0
(1 − e−(TR·R1))sin(a)
1 − cos(a)e−(TR·R1)

(2)

where a is the B1-corrected FA that acts as the independent

variable in the VFA R1 fitting and TR is the repetition time. R1 and

S0 in (Equation 2) are the fitting parameters. The R1 in Equation 2

becomes R1,0 when the patient VFA data collected before DCE-MRI

are fitted to the equation. In addition, it has been shown that

potentially different scaling factors may be applied to image

intensities across the three different FAs in VFA acquisition on a

particular vendor platform (31). Before quantifying phantom R1 or

tumor R1,0 from the VFA data obtained from that platform,

corrections of signal intensities were made if differences in scaling

factors were observed in the DICOM tags (31).

PK analysis of patient DCE-MRI data

A generalized MRI modeling fitting package written in Python

was developed at OHSU’s Advanced Imaging Research Center

(AIRC). This package includes several DCE PK models. Using

this package and several other software tools, a processing

workflow was developed specifically for for this MC and MP

study. Although the goal of the near future is to make the

software package available to all three sites in this study (and

eventually to the broader research community) for localized data

processing, centralized data processing was used for this initial

effort. The PK models used in data analysis are the fast-exchange-

limit (FXL) Tofts model (TM) (32, 33) and the simplest fast-

exchange-regime (FXR) exchange-sensitized shutter-speed models

(SSM) (34, 35). The CA volume transfer rate constant, Ktrans, and

extravascular extracellular space (EES) volume fraction, ve, were

modeled using the TM. For SSM, the unidirectional cellular water
TABLE 1 Clinicopathological characteristics of the patient cohort (N = 15).

Age (mean ± SD) 50.4 ± 11.2 years

Tumor type

IDC 13

ILC 2

Tumor grade

III 9

II 6

Pre-NAC tumor LD
(mean ± SD) 37.8 ± 18.2 mm

Breast cancer subtypes

HR (ER or PR) + 8

HER2 + 4

TN 5

Pathologic response to NAC

pCR 6

non-pCR 9

RCB Class I 4

RCB Class II 3

RCB Class III 2
SD, standard deviation; IDC, invasive ductal carcinoma; ILC, invasive lobular carcinoma;
NAC, neoadjuvant chemotherapy; LD, longest diameter; HR, hormonal receptor; ER, estrogen
receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor 2; TN,
triple negative; RCB, residual cancer burden; pCR, pathologic complete response.
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TABLE 2 MRI data acquisition details for the three vendor platforms (Siemens, Philips, and GE).

F coil transmit RF coil receiver

lt-in T/R body coil Sentinelle bilateral 16 channel breast coil

Q-body Mammotrak/dStream 16 channel breast coil

lt-in T/R body coil Sentinelle bilateral 16 channel breast coil

ucted slice
ess (mm)

number of slices
in-plane matrix size

as acquired

10 18 64 × 64

6 28 90 × 96

5 34 64 × 64

1.4 130 320 × 320

1 170 240 × 360

1.4 112–128 160 × 160

1.4 130 320 × 320

1.5 113 240 × 360

1.4 112–128 320 × 320

w (cm) temporal resolution (s) acquisition time(min)

NA 0:40

NA 3:47

NA 0:19

NA 1:26

NA 1:15

34 NA 2:12

(Continued)

M
o
lo
n
e
y
e
t
al.

10
.3
3
8
9
/fo

n
c.2

0
2
4
.13

9
5
5
0
2

Fro
n
tie

rs
in

O
n
co

lo
g
y

fro
n
tie

rsin
.o
rg

0
5

A. Platform and Hardware

vendor field strength & platform Software version R

GE 3T Signa Premier RX29.1_R04_2313.a bu

Philips 3T Achieva/Ingenia 5.7.1sp2/sp3

Siemens 3T Prisma Syngo VE11C/XA30 bu

B. Relevant Pulse Sequence Details

sequence name TR (ms) TE (ms) FA (°)
reconst
thickn

B1

GE Block-Siegert 2D B1map 19 6.3 23

Philips 3D FFE 30 2.3 60

Siemens 2D TFL 9,280 2.0 8

VFA

GE 3D GRE* 5.5 1.008 3, 9, 15

Philips 3D GRE* 5.6 2.8 3,9,15

Siemens 3D GRE* 10 2.8 3,9,15

DCE

GE DISCO 5 0.944 10

Philips 4D TRAK XD 5.9 2.8 10

Siemens TWIST 3D 6.2 2.9 10

B. Relevant Pulse Sequence Details (Continued)

sequence name
in-plane matrix

size reconstructed
in-plane field of vi

B1

GE Block-Siegert 2D B1map 64 × 64 34 × 34

Philips 3D FFE 144 × 144 24 × 36

Siemens 2D TFL 64 × 64 32 × 32

VFA

GE 3D GRE* 512 × 512 34 × 34

Philips 3D GRE* 480 × 480 24 × 36

Siemens 3D GRE* 320 × 320 32 × 32 or 34 ×
i

i

r

e
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Continued

ence Details (Continued)

× 512 34 × 34 15 8:30–9:30

× 528 24 × 36 15 9:29

× 320 32 × 32 or 34 × 34 12–16 9:00–9:30

ence Details (continued)

parallel imaging
method

parallel imaging
acceleration factor

receiver bandwidth
(Hz/pix)

number of frames

NA NA 488.4 1

NA NA 499 1

NA NA 490 1

ARC 3 781.25 1

SENSE 2 947 1

GRAPPA 2 490 1

ARC 3 781.25 32

SENSE
2.5

(P reduction RL), 1.1
(S reduction FH)

947 34

GRAPPA 3 630 30–36

uction for Cartesian imaging; GRAPPA, GeneRalized Autocalibrating Partially Parallel Acquisition; ASPIR/SPAIR, Adiabatic Spectral
D Time-Resolved Angiography using Keyhole; TWIST, Time-resolved angiography WIth Stochastic Trajectories. *: The same k-space-
ver, when used for a single-time-point acquisition like VFA, these sequences are equivalent to a conventional GRE sequence without

M
o
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n
e
y
e
t
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.3
3
8
9
/fo

n
c.2
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2
4
.13

9
5
5
0
2

Fro
n
tie

rs
in

O
n
co

lo
g
y

fro
n
tie

rsin
.o
rg

0
6

B. Relevant Pulse Sequ

DCE

GE DISCO 512

Philips 4D TRAK XD 528

Siemens TWIST 3D 320

B. Relevant Pulse Sequ

sequence name fat saturation method

B1

GE Block-Siegert 2D B1map NA

Philips 3D FFE NA

Siemens 2D TFL NA

VFA

GE 3D GRE* ASPIR/SPAIR

Philips 3D GRE*
Water selective excitation

with binomial
pulses (proset)

Siemens 3D GRE* Water excitation

DCE

GE DISCO ASPIR/SPAIR

Philips 4D TRAK XD proset

Siemens TWIST 3D Water excitation

FFE, fast field echo; SENSE, SENSitivity Encoding; TFL, turbo-Flash; FL, Flash; GRE, gradient echo; ARC, Autocalibrating Reconstr
Inversion Recovery/Spectral Attenuated Inversion Recovery; DISCO, DIfferential Subsampling with Cartesian Ordering; 4D TRAK, 4
undersampling and view-sharing sequence used for DCE acquisition was used for VFA acquisition on each vendor platform. Howe
performing k-space-undersampling and view-sharing.
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efflux rate constant, kio, is modeled in addition to Ktrans and ve. The

rate constant kep was calculated as Ktrans/ve in both models. The

population-averaged arterial input function (AIF) (36) measured

from an axillary artery in a previous single-breast DCE study in the

sagittal plane was adopted for all PK modeling in this study. The PK

modeling details are provided in the Supplementary Material.

ROI- and voxel-based PK analysis with measured and
fixed R1,0

In addition to the use of TM and SSM for PK data analysis, some

additional practical considerations in PK modeling were also

investigated. These included ROI- vs. voxel-based PK analysis in

combination with the use of fixed, literature-reported R1,0 (fR1,0 =

0.60 s−1) (25–27) vs. VFA-measured R1,0 (mR1,0) for four analysis

conditions for each PK model: ROI_ fR1,0, ROI_mR1,0, voxel_ fR1,0,

and voxel_mR1,0. WhenmR1,0 is used, the VFA series with FA (= 9°)

closest to that of the DCE were used to coregister the measured R1,0

maps to DCE baseline data. For ROI-based analysis, multi-slice

tumor ROIs were concatenated to form a 3D tumor ROI with a

single averaged DCE time course for PK modeling. For voxel-based

(within ROIs) analysis, each voxel DCE time course underwent PK

modeling. The ROI-based analysis has the advantage of significantly

increasing the signal-to-noise ratio (SNR) of the time-course data and

much less computing time required for PKmodeling, whereas the use

of fR1,0 reduces the imaging time for data acquisition and simplifies

data post-processing. Ktrans has been shown by many research studies

to be the best quantitative DCE-MRI biomarker for prediction of

breast cancer response to NAC (13). For this MC and MP study,

Ktrans was used as the reference biomarker to investigate the effects of

these four different quantitative DCE-MRI analysis approaches using

either TM or SSM for PK modeling.

Bolus arrival time

The bolus arrival time (BAT) is defined as the delay in the

arrival of the CA in the tissue of interest from the artery where the

AIF is measured. In general, it is assumed that the CA concentration

time-course in the blood plasma (or AIF), Cp(t), is temporally

aligned to match the CA concentration time-course in the tissue,

Ct(t). Typically, this is performed manually or by convention (e.g.,

based on when the injection occurs), and a single global alignment

is chosen. However, the time at which the CA bolus arrives at any

given voxel is different owing to differing blood transit times. Even

in studies where a high-quality AIF can be measured directly from

some arterial voxels visible in the DCE acquisition, it is likely that

the AIF needs to be time-shifted for accurate PK analysis of the

tissue time-course data of any given voxel. Misalignment can cause

biases in all estimated PK model parameters. To reduce these biases

(and reduce manual work in time-shifting AIF) we adopted a

model-based approach to align the AIF for each tissue voxel

curve. To achieve this, we fit a linearized version of TM (37),

wrapped in a nonlinear optimizer that solves for a single parameter:

BAT. Because this nonlinear problem can have multiple local

minima, we performed the optimization in two phases, starting
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with a brute force search using a coarse grid, followed by an iterative

solver (using Powell’s method) for fine-tuning.

kio filtering

The sensitivity of DCE-MRI data to water exchange depends on

many factors such as CA dosage, CA extravasation kinetics, and

DCE-MRI pulse sequence parameters (38). With the standard CA

dose and a DCE-MRI sequence optimized for better SNR, that is

also inherently water exchange sensitive (38), such as the case in this

study, the most important factor that drives the DCE data

sensitivity to kio is tissue-specific CA extravasation. It has been

shown that when a DCE-MRI time-course is insensitive to water

exchange and kio is still fitted as a variable, the returned kio
parameter often hits the FXL-limit fitting boundaries (39). In this

study, the fitting upper boundary for kio was set at 1,000 s−1 to

minimize the occurrence of fitting procedures stopping at a

parameter boundary prematurely. Because the fitting sensitivity

of kio for each voxel-based DCE time-course within the tumor ROIs

strongly depends on voxel-based CA extravasation, which was

unknown before PK modeling, voxel-based SSM modeling was

initially performed for all voxel data within the tumor ROIs.

These fitted kio values were then filtered with a biologically

meaningful and DCE-MRI achievable range of 0.1 s−1–20 s−1. A

kio of 0.1 s−1 or lower reflects that its reciprocal, the mean

intracellular lifetime, is on the order of 10 s or larger. This is an

unrealistically large value for relatively small sizes of breast tissue

cells. For example, based on a spherical cell model, Sehy et al.

estimated that for an intracellular water lifetime of 10 s, the “cell

size” is on the order of ~300 mm (40), at least an order of magnitude

higher than that of breast cancer cells (41). For the upper limit, a kio
value of 20 s−1 or higher indicates that the transmembrane water

molecule exchange process represented by k (= kio + koi, where koi is

the rate constant defining the process of water molecules entering

the intracellular space from EES (42)) is even greater. An in vivo

system with k >20 s−1 will appear to be closer to the FXL than the

FXR condition in a breast DCE experiment with a single-dose CA

administered intravenously. After this simple voxel-based

kio filtering, the fraction of tumor voxels with kio within the range

of 0.1 s−1–20 s−1 was recorded, and descriptive statistics were then

used to summarize the filtered kio results.
Reporting of MRI metrics

For each patient at each MRI visit, the tumor LD, SER, and

quantitative parameters from PK modeling were reported. For

voxel-based analysis (SER and PK parameters), the mean tumor

parameter value was calculated by averaging voxel parameter

values. In addition, the median and width of the interquartile

range (iqr = 75 percentile voxel parameter value − 25 percentile

voxel parameter value) from the histogram analysis of the voxel

parameter distribution were also obtained. For ROI-based analysis

(PK parameters only), the derived parameter values from PK
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modeling of the single DCE time course were reported as the mean

tumor parameter values. If multiple tumors were present, the

average of the parameter value from each tumor was reported.
Statistical data analysis

Descriptive statistical analysis was performed for each MRI metric

at each visit, as well as the percent change relative to baseline (V1), such

as V21% (percent change at V2 relative to V1) and V31% (percent

change at V3 relative to V1), for each response group (pCR and non-

pCR). Differences between the groups were assessed using the

Wilcoxon rank-sum test. Student’s t-test was used to evaluate the

differences in Ktrans among the four PK analysis approaches of ROI-

and voxel-based analysis in combination with fR1,0 and mR1,0, and

between TM and SSM. Statistical significance was set at P-values <0.05.

In this preliminary study, the discriminative performances of

V21% and V31% of each MRI metric for early prediction of pCR vs.

non-pCR were evaluated using univariate logistic regression with

ROC curves, and AUC values were calculated with 95% confidence

intervals (CIs). All statistical analyses were performed using R: A

Language and Environment for Statistical Computing (43).

Results

ROI- and voxel-based PK analysis with fR1,0
and mR1,0

The results of the tumor mean Ktrans from V1 to V3 (two patients

missed V3 scans) and its performance for early prediction of NAC

response are reported here. Figure 1 shows column graphs of TM and

SSM mean ± SD Ktrans of the patient cohort under the analysis

conditions of ROI_ fR1,0, ROI_mR1,0, voxel_ fR1,0, and voxel_ mR1,0.
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The VFA-measured phantom R1 and in vivo breast tumor R1,0 values

from the two vendor platforms were in excellent agreement with the

ground truth R1 of the fibroglandular tissue mimicking material and

literature reported breast tumor R1,0 at 3T (25–27), respectively.

However, due to technical reasons still under investigation, the

corresponding VFA-measured R1 and R1,0 values from the other

vendor platforms were overestimated by ≥100%, resulting in failure in

PKmodeling of patient DCE data from that platform. Thus, patient data

from that platform (N= 2) were not included under themR1,0 condition

in Figure 1. SSM Ktrans was significantly (P <0.05) larger than TM Ktrans

under all conditions, while Ktrans from the voxel-based analysis was

significantly (P <0.05) larger than that from the ROI-based analysis.

There was no statistically significant difference in Ktrans between fR1,0
andmR1,0 for either ROI- or voxel-based PK analysis using TM or SSM.

Figure 2 shows voxel-based V1 Ktrans parametric maps of pCR and non-

pCR tumors obtained from TM and SSM PK analyses using fR1,0. For

each patient, color Ktrans maps from the same image slice are shown for

comparison of the TM and SSM analyses. It can be clearly observed that

SSM Ktrans was substantially greater than TM Ktrans in both tumors.

Table 3 lists the ROC AUC values of Ktrans percent changes,

V21% and V31%, for the early prediction of pCR (N = 6) vs. non-pCR

(N = 9). SSM Ktrans from voxel-based analysis exhibited a better

predictive performance than TM Ktrans, with SSM Ktrans under the

condition of voxel_fR1,0 showing the highest predictive accuracy.

Overall, for both TM and SSM Ktrans, voxel-based PK analysis using

fR1,0 was the optimal approach for early prediction of NAC response

at both V2 and V3. Additionally, the use of fR1,0 for PK analysis also

allowed for inclusion of patient data from the vendor platform that

produced substantial errors in VFA R1 measurement, which would

otherwise be discarded if mR1,0 was used for PK analysis. Therefore,

we proceeded to compare the quantitative DCE-MRI parameters

derived with the voxel_fR1,0 approach with SER and tumor LD for

early prediction of NAC response.
FIGURE 1

Column graphs of mean TM (blue) and SSM (orange) Ktrans of the patient cohort under the analysis conditions of ROI_ fR1,0, ROI_mR1,0, voxel_ fR1,0,
and voxel_ mR1,0 from Visit 1 (V1) to Visit 3 (V3). Error bars represent the positive standard deviation (SD). N: patient number; *statistically significant
(P <0.05, t-tests) difference in Ktrans between TM and SSM under the same analysis conditions; #statistically significant (P <0.05, t-tests) difference in
Ktrans between ROI- and voxel-based analyses under the same R1,0 and PK model conditions.
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Early prediction of breast cancer
response to NAC

Table 4 shows the percent changes in MRI metrics (V21% and

V31%) of the pCR and non-pCR groups, P-values from the

Wilcoxon test comparing the two groups, and ROC AUC values

for the early prediction of pCR vs. non-pCR. For the semi-

quantitative SER parameter, percent changes in tumor mean SER

showed higher AUC values than those of median SER and are listed

in Table 4. The results for the PK parameters reported here were all

obtained using the voxel_fR1,0 approach, and only those with

percent changes showing AUC ≥0.80, indicating good predictive

performance, are summarized in Table 4. After the first NAC cycle,

V21% of LD was a poor predictor of response with AUC = 0.56,

whereas V21% of SER and several SSM PK parameters showed fair

to good predictive performance with SSM Ktrans (mean), ve (mean),

Ktrans (iqr), and kep (iqr) showing AUC values of 0.83, 0.81, 0.80,
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and 0.81, respectively. None of the TM parameters demonstrated an

AUC ≥0.80 after the first NAC cycle. At NAC midpoint, while

V31% of both LD and SER demonstrated similar good predictive

performances with AUC = 0.86 and 0.83, respectively, V31% of TM

and SSM Ktrans and kep, whether the mean or median value, were

excellent predictors with AUC >0.90. Furthermore, both SSM Ktrans

(iqr) and kep (iqr) percent changes separated the two groups

completely, with AUC = 1. The associated, representative ROC

curves are shown in Figure 3. Figure 4 shows the tumor SSM Ktrans

parametric color maps at V1, V2, and V3 for a non-pCR and pCR

patient. There were no noticeable changes in Ktrans of the non-pCR

tumor from V1 to V3. However, the decrease in Ktrans was

substantial in the pCR tumor from V1 to V2, and the values

remained low at V3. Figure 5 shows histograms of voxel SSM

Ktrans values for a pCR and a non-pCR tumor, from V1 to V3. The

Ktrans iqr values indicated by widths of the grey columns were 0.33

min−1, 0.44 min−1, and 0.21 min−1 for the non-pCR and 0.42 min−1,
TABLE 3 Early prediction of breast cancer response to neoadjuvant chemotherapy using Ktrans percent change under different analysis conditions.

PK Model ROC AUC (95% CI)

ROI_fR1,0 ROI_mR1,0 voxel_fR1,0 voxel_mR1,0

V21% Ktrans

TM 0.65 (0.35, 0.94) 0.71 (0.39, 1.0) 0.70 (0.42, 0.99) 0.67 (0.37, 0.96)

SSM 0.62 (0.39, 0.91) 0.70 (0.39, 1.0) 0.83 (0.62, 1.0) 0.78 (0.53, 1.0)

V31% Ktrans

TM 0.88 (0.68, 1.0) 0.77 (0.44, 1.0) 0.93 (0.79, 1.0) 0.86 (0.64, 1.0)

SSM 0.82 (0.54, 1.0) 0.72 (0.39, 1.0) 0.98 (0.91, 1.0) 0.95 (0.84, 1.0)
ROC, receiver operating characteristic; AUC, area under the curve; CI, confidence interval; PK, pharmacokinetic; fR1,0, fixed R1,0; mR1,0, measured R1,0; V21%, MRI visit 2 (V2) relative to visit 1
(V1) percent change; V31%, MRI visit 3 (V3) relative to visit 1 (V1) percent change; TM, Tofts model; SSM, Shutter-Speed model.
FIGURE 2

Voxel-based tumor Ktrans color parametric maps for 43-year old pCR (left breast cancer, top row) and 53-year old non-pCR (left breast cancer,
bottom row) patients at V1, obtained from TM (left column) and SSM (right column) PK analysis, respectively. For each patient, the Ktrans maps
(overlaid on post-contrast DCE images) from the same slice are shown, and the color scale is kept the same to allow the comparison of TM and SSM
Ktrans. It can be clearly observed that SSM Ktrans was substantially greater than TM Ktrans in both tumors.
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FIGURE 3

ROC curves of V21% (left) and V31% (right) of LD, SER (mean), TM Ktrans (mean), SSM Ktrans (mean), and SSM Ktrans (iqr) for the early discrimination of
pCR and non-pCR. AUC values are shown in parentheses in the figure legends.
TABLE 4 Early prediction of breast cancer response to neoadjuvant chemotherapy.

% Change of
MRI Metric

Non-pCR (N = 9)
Median (IQR)

pCR (N = 6)
Median (IQR)

Wilcoxon P-Value ROC AUC(95% CI)

V21%

LD −9 (−22, 0) −9 (−12, −7) 0.80 0.56 (0.24, 0.87)

SER (mean) 0 (−19, 2) −11 (−17, −8) 0.40 0.65 (0.34, 0.96)

SSM Ktrans (mean) 1 (−55, 55) −71 (−72, −59) 0.036 0.83 (0.62, 1.0)

SSM ve (mean) 0 (−9, 2) 8 (6, 11) 0.050 0.81 (0.57, 1.0)

SSM Ktrans (iqr) −40 (−61, 6) −78 (−83, −61) 0.066 0.80 (0.55, 1.0)

SSM kep (iqr) −48 (−51, 27) −64 (−71, −57) 0.050 0.81 (0.58, 1.0)

V31%

LD −33 (−43, −16) −60 (−91, −51) 0.038 0.86 (0.64, 1.0)

SER (mean) −4 (−30, 3) −43 (−49, −33) 0.051 0.83 (0.60, 1.0)

TM Ktrans (mean) −17 (-29, 13) −83(−88, −74) 0.0080 0.93 (0.79, 1.0)

TM Ktrans (median) −21 (−32, −7) −82 (−86, −70) 0.0050 0.95 (0.84, 1.0)

SSM Ktrans (mean) −27 (−55, −5) −91 (−95, −86) 0.0020 0.98 (0.91, 1.0)

SSM Ktrans(median) −23 (−48, 6) −88 (−90, −84) 0.0020 0.98 (0.91, 1.0)

TM kep (mean) −1 (−12, 30) −81 (−89, −74) 0.0050 0.95 (0.84, 1.0)

TM kep (median) −17 (-25, 14) −82 (−92, −71) 0.0050 0.95 (0.84, 1.0)

SSM kep (mean) −27 (−39, −8) −88 (−94, −82) 0.0080 0.93 (0.78, 1.0)

SSM kep (median) −24 (−34, 38) −91 (−94, −83) 0.0020 0.98 (0.91, 1.0)

SSM Ktrans (iqr) −62 (−65, −33) −96 (−97, −93) 0.0010 1.0 (1.0, 1.0)

TM kep (iqr) −15 (−23, −5) −80 (−87, −65) 0.0080 0.93 (0.78, 1.0)

SSM kep (iqr) −39 (−45, −21) −93 (−95, −91) 0.0010 1.0 (1.0, 1.0)
F
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V21%, MRI visit 2 (V2) relative to visit 1 (V1) percent change; V31%, MRI visit 3 (V3) relative to visit 1 (V1) percent change; LD, longest diameter; SER, signal enhancement ratio; TM, Tofts
model; SSM, Shutter-Speed model; IQR, interquartile range; iqr, width of interquartile range = 75 percentile voxel parameter value—25 percentile voxel parameter value; ROC, receiver operating
characteristic; AUC, area under the curve; CI, confidence interval.
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FIGURE 4

Voxel-based tumor SSM Ktrans parametric maps in color (overlaid on a cropped post-contrast DCE image slice through the center of the tumor) at
V1, V2, and V3 from a 52-year old non-pCR patient with left breast cancer (top) and 57-year old pCR patient with right breast cancer (bottom). For
each tumor, the Ktrans color scale was kept the same from V1 to V3 to allow the visual assessment of Ktrans changes.
FIGURE 5

V1–V3 histograms of voxel SSM Ktrans within the tumor ROIs from a non-pCR patient (top; the same patient as shown in Figure 4) and a 42-year old
pCR patient with right breast cancer (bottom). The width of the gray column in each panel represents the iqr value. For each patient, the x-axis
(Ktrans) scale was kept the same from V1 to V3 to demonstrate longitudinal changes in Ktrans iqr. For the V3 histogram of the pCR patient, an inset
with a much smaller Ktrans scale (0 min−1–0.1 min−1) is shown for better visualization of this histogram.
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0.21 min−1, and 0.0072 min−1 for the pCR, respectively, from V1 to

V3. The difference in iqr changes at V2 and V3 relative to V1 is

striking between these two tumors: a 33% increase at V2 and 36%

decrease at V3 for the non-pCR, while a 50% decrease at V2 and

98% decrease at V3 for the pCR group.
Advanced processing involving kio filtering
in SSM analysis

Figure 6 summarizes the fraction means (SD error bars) of the

filtered kio within the tumor ROIs for the two response groups. The

fractions of voxels with filtered, meaningful kio generally decreased

from V1 to V4. The difference between V1 and V4 was substantial

for both the non-pCR (gray) and pCR (blue) groups. Furthermore,

the V4 fractions of pCRs were much smaller than those of non-

pCRs. In addition, fraction means showed little R1,0-selection

dependence between the use of fR1,0 and mR1,0 (data not shown).

Both V21% and V31% of filtered kio mean or median had ROC

AUC values <0.80 for early prediction of NAC response.

In Figure 7, filtered tumor ROI kio results at two visits (V1, V3)

for a non-pCR (A, B) and a pCR (C, D) patient are shown. In each

panel, the filtered kio color map overlaid on a zoomed post-contrast

DCE image is shown on the left, and the voxel-based S[CAo] map

on the right shows the summation of the EES CA concentration,

[CAo], over the entire DCE time-course within the tumor ROI. In

all four panels, the results from the center slice of the respective

tumors are shown. The white arrows in (C) and (D) indicate

artifacts caused by a metal biopsy clip. In the pCR tumor, a larger

area of kio was filtered out at V3 (D, orange arrow) compared to

a smaller filtered-out area at V1 (C, orange arrow) due to kio
filtering, in addition to our built-in quality control that masked
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out unenhanced voxels. S[CAo] approximates the total CA

extravasation during the entire DCE acquisition and serves as a

simple quantitative surrogate for monitoring the sensitivity of the

voxel DCE time-course to water exchange kinetics. Cold spots in the

S[CAo] maps, where CA extravasation was low, matched the areas

of the filtered-out kio quite well, supporting the validity of our

filtering approach to a certain degree.
Discussion

To the best of our knowledge, this is the first MC and MP study

using quantitative DCE-MRI to predict breast cancer response to

NAC, where GRE-based product sequences of k-space

undersampling during acquisition and view-sharing during

reconstruction from Siemens, Philips, and GE platforms were

used for high spatial and temporal resolution breast DCE-MRI.

The data acquisition scheme used for DCE-MRI in this MC and MP

setting allows for bilateral full breast coverage with adequate spatial

resolution for accurate morphological evaluation, as well as

sufficient temporal resolution for quantitative PK analysis of the

breast DCE time-course data (14, 15). In today’s SoC breast DCE-

MRI protocols, owing to trade-offs between spatial and temporal

resolution in conventional sequences, the necessity for accurate

tumor morphology assessment with high spatial resolution and

spatial coverage results in low temporal resolutions between 60 s

and 120 s, which precludes meaningful PK modeling of time-course

data with acceptable accuracy (15, 16). With potentially faster

dynamic imaging methods available from vendors through

combinations of accelerated data acquisition approaches and

advanced reconstruction algorithms (15), the ability to acquire

breast DCE-MRI with simultaneous high spatial and temporal
FIGURE 6

Fraction means (SD error bars) of the filtered kio within the tumor ROIs for the two response groups were plotted. The fraction of voxels with filtered
kio values generally decreased from V1 to V4. The difference between V1 and V4 was highly substantial for both the non-pCR (gray) and pCR (blue)
groups. Furthermore, the V4 fraction of filtered kio was much smaller for pCRs than for non-pCRs.
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resolutions using vendor product sequences may facilitate the

translation of quantitative DCE-MRI into clinical workflow.

With inherent differences in hardware and software among the

three major MRI vendor platforms, standardizations in VFA and

DCE acquisition parameters were implemented across the three

sites to minimize differences in the acquired data and consequently,

variations in results from data analysis (14, 15, 17). These included

the use of the same three FAs in VFA acquisition for R1,0 mapping,

and the same center and peripheral portions of the k-space in the

three vendor-specific k-space undersampling and view-sharing

product sequences for DCE-MRI acquisition. In addition, the

same FA (10°), minimal TE (0.9 ms–2.9 ms), and similar TR in

the range of 5.0 ms–6.2 ms were used across the platforms to ensure

DCE data sensitivity to the water exchange effects (38), supporting

the use of the SSM for PK analysis. Despite efforts in data

acquisition standardization and centralized data analysis using a

single software tool for both VFA R1 fitting and DCE-MRI PK

modeling, VFA measurements of phantom R1 and patient tumor

R1,0 on one vendor platform resulted in substantial biases compared

to ground truth values in the phantom and measurements on the

other two platforms, as well as literature reported breast tumor R1,0

values (25–27). The ≥100% overestimation of tumor R1,0 on this

platform also caused patient data fitting failures when using either

the TM or SSM. Therefore, PK modeling of patient data from this

vendor platform was performed using fR1,0 only, excluding the use
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of mR1,0 from the analysis. The sources of errors in VFA R1

mapping on this platform are still under investigation. VFA

fitting is inherently challenging owing to the need to fit multiple

variables, which requires numerous individual images of unique

FAs. Because this is not practical owing to the scan time, several

assumptions are typically made to simplify the fitting, including the

linearity and spatial uniformity of B1 over multiple transmitted

power settings, as well as the direct correspondence between the

delivered FA of the independent B1 mapping sequence and the VFA

sequence. These assumptions rely on the use of non-clinically

validated research tools from vendor platforms. However, these

assumptions may not always hold true on specific vendor

implementations. Furthermore, each vendor uses a different

method to map the FA. There are no standards for the reporting

of FA or B1 maps, including units, presenting challenges when

assimilating data across multivendor platforms. One valuable lesson

learned here for implementing MC and MP quantitative DCE-MRI

is the importance of QA/QC scans of phantoms with ground truth

R1 values to determine whether all vendor platforms provide

reliable R1 measurements. If this is not the case, either error

sources should be identified and corrective actions taken, or an

alternative solution, such as the use of fR1,0 for PK analysis, should

be found.

In this study, using Ktrans as the reference imaging biomarker

for the prediction of breast cancer response to NAC, we found that
FIGURE 7

Filtered tumor ROI kio results at two visits (V1 and V3) for a non-pCR (A, B) and a pCR (C, D) patient are shown. In each panel, kio color map overlaid
on a zoomed post-contrast DCE image is shown on the left, and the S[CAo] map on the right shows the voxel-based summation of the EES CA
concentration, [CAo], over the entire DCE time course within the tumor ROI. In all four panels, results from the center slice of the respective tumors
are shown. The white arrows in (C, D) point to the artifacts caused by a metal biopsy clip. A larger area of the pCR tumor was filtered out in the V3
kio map [(D), orange arrow] compared to a smaller filtered-out area in the V1 kio map [(C), orange arrow]. There were no noticeable filtered kio areas
in the non-pCR tumor at either V1 or V3.
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voxel-based analysis using a literature-reported fR1,0 value was the

optimal approach for PK analysis of DCE-MRI data collected from

the MC and MP settings, whether the TM or SSM was used for data

modeling. This approach allowed the inclusion of data from one

platform, where the mR1,0 values calculated from VFA

measurements were unreliable. The statistically insignificant

differences in Ktrans between the use of fR1,0 and mR1,0 (Figure 1)

suggest that it is reasonable and practical to use fR1,0 for PK

modeling (44), which can mitigate random and systematic errors

from R1,0 measurement across vendor platforms and potentially

eliminate the need for B1 mapping and VFA acquisition in MC and

MP trials. Although the use of fR1,0 instead ofmR1,0 in PK analysis is

expected to cause systematic errors in the estimated PK parameters,

unlike random errors, the impact of systematic errors is lessened

when percent changes in PK parameters, such as V21% and V31%,

are used in a longitudinal study to predict breast cancer response to

NAC. Compared with voxel-based analysis, ROI-based analysis

dilutes tumor heterogeneity in perfusion and permeability,

resulting in significantly smaller Ktrans values and a narrower

range of Ktrans changes in response to therapy. The latter may

potentially reduce the predictive performance of Ktrans for NAC

response. Another disadvantage of ROI-based analysis is the

inability to assess changes in PK parameter heterogeneity in

response to treatment.

The preliminary results from this MC and MP study show that

after only one NAC cycle, semi-quantitative and quantitative DCE-

MRI metrics outperformed tumor size measurement in the early

prediction of breast cancer response to NAC. The quantitative

parameter Ktrans consistently provided a more accurate prediction

of NAC response than both size measurement (LD) and SER after

the first NAC cycle and at the NAC midpoint. These findings agree

with many similar studies that used DCE-MRI to assess the breast

cancer response to NAC (12, 13). The larger decreases in Ktrans (iqr)

and kep (iqr) in pCRs compared to non-pCRs at V2 and especially

V3 indicate greater decreases in tumor perfusion/permeability

heterogeneity in patients responding to NAC regimens.

Consistent with previous studies (36, 45), SSM Ktrans was

substantially greater than TM Ktrans in this cohort of malignant

breast tumors when DCE-MRI acquisition was sensitive to the

water-exchange effect (38). Since there is no significant difference

between SSM and TM Ktrans in benign breast lesions or normal

tissue (36, 45), SSM Ktrans potentially has better predictive

performance than TM Ktrans due to the former’s greater dynamic

ranges of change in response to therapy, assuming that

microvascular properties of a responding tumor shift towards

those of a benign lesion or normal tissue. This is manifested by

the fact that, after the first NAC cycle, while V21% of mean SSM

Ktrans was a good predictor of NAC response with an ROC AUC

value of 0.83, V21% of mean TM Ktrans was only a fair predictor

with ROC AUC = 0.70 (not shown in Table 4). Although at the

NAC midpoint, both SSM and TM V31% Ktrans (and kep) are

excellent predictors of NAC response, the percent changes of SSM

Ktrans and kep were larger than those of the TM counterparts, and

the P-values from comparing the two response groups were

generally smaller for the SSM parameters.
Frontiers in Oncology 14
Our initial experience shows that when the water exchange

effect is explicitly modeled in the SSM analysis of DCE-MRI data,

the kio parameter may provide complementary information to the

more commonly modeled Ktrans parameter, which only focuses on

CA kinetics. Recent studies have shown that kio is an imaging

biomarker of metabolic activity (46). In fact, V31% of the tumor

mean kio was a fair early predictor of NAC response with an ROC

AUC value of 0.71 (not shown in Table 4). Combining Ktrans and kio
in a multivariate predictive model may further improve the

predictive accuracy for NAC response. NAC regimens often

reduce tumor permeability/vascularity (21), resulting in reduced

interstitium [CA] during a DCE study. This, in turn, makes kio
quantification less reliable. In other words, reduced CA

extravasation results in a smaller R1 difference between

extracellular and intracellular spaces. This decreases the DCE-

MRI sensitivity to the water exchange effect and, consequently,

negatively impacts the accuracy and precision of SSM quantification

of kio. Therefore, caution should be exercised when evaluating the

estimated kio values from the SSM analysis. Unreliable voxel kio
values should be filtered out. The smaller fraction of filtered kio at

V4 in pCRs compared to non-pCRs quantitatively reflected lower

CA extravasation in the former, consistent with the Ktrans and kep
results. The right side of each panel in Figure 7 represents a simple

method for quantitatively estimating the extent of CA extravasation

using S[CAo]. As expected, the pCR tumor at V3 showed low

S[CAo] owing to reduced perfusion and permeability in response to

NAC treatment, resulting in large areas of unreliable kio being

filtered out. A more accurate measure of voxel DCE data sensitivity

to water exchange should include an estimation of the extent and

duration of |R1i − R1o| absolute difference between intracellular and

extracellular R1 exceeding (or at least close to) the exchange kinetics

defined by k, the transmembrane water molecule exchange process

(42). However, this may add complications in translational studies,

such as this MC and MP study.

Our model-based approach for estimating BAT eliminated the

need to manually align the AIF with voxel-based tissue DCE curves

in PK analysis, which improves automation in the entire data

processing workflow. Manual inspection of the model-selected

BATs showed robust and qualitatively good performance. Future

work will include quantifying the performance using a digital

phantom for comparison with manual alignment.

There are several limitations to this preliminary MC and MP

study. The main limitation is the small sample size of 15 patients in

total, which caused large 95% CI ranges of the ROC AUC values for

the prediction of NAC response and may artificially inflate the

predictive performances of the quantitative PK parameters. The

small sample size at each site also renders cross-vendor platform

comparison of results unreliable, and therefore, was not performed.

Second, for correlation analysis between MRI metrics and

pathologic response outcomes, the small sample size precluded

meaningful analysis stratified by breast cancer subtypes, as shown in

Table 1. Therefore, the results presented here are more reflective of

those from the general breast cancer population treated with SoC

NAC regimens. Third, we did not perform a multivariate analysis

by combining clinicopathological features with individual MRI
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metrics with high predictive performance, which may further

enhance the capability of early prediction of NAC response,

especially after the first NAC cycle. Fourth, we only used the iqr

of voxel-based parameters to characterize changes in tumor

heterogeneity in response to NAC, without performing a more

comprehensive radiomics analysis (47), which may provide better

predictive performance. Lastly, only three FAs within a relatively

narrow range were used in VFA measurements of phantom R1 and

breast tumor R1,0. In clinical practice, where breast tumor R1,0

values are unknown and could vary greatly, using more FAs over a

larger range may result in more accurate R1,0 mapping, and

consequently, more accurately estimated PK parameters.

However, the usual time constraint for a clinical MRI protocol

makes it difficult to add more FAs to the VFA acquisition.

Furthermore, the small number of FAs used in this study is

unlikely to be the reason why one vendor platform returned

substantially biased R1 and R1,0 values.

In conclusion, the initial results from this MC and MP study

validate findings from many single-site studies that quantitative

DCE-MRI is superior to tumor size measurement for the prediction

of breast cancer response to NAC. Both SSM and TM Ktrans showed

better predictive performance than the semi-quantitative SER

metric. Furthermore, Ktrans and kep derived from the SSM, using

DCE-MRI data acquired with sensitivity to the water exchange

effect, generally performed better than the TM counterparts in the

prediction of NAC response, especially after only one cycle of NAC.

Due to potential large variations in the accuracy of VFA-measured

R1,0 on different vendor platforms, SSM PK analysis using a fixed,

literature-reported breast tumor R1,0 could be a best-practice

approach in quantitative DCE-MRI prediction of breast cancer

response to NAC in an MC and MP setting.
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