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Altered cholesterol metabolism has been identified as a critical feature of

cancers. Cholesterol functions as the main component of cell membrane,

cholesterol and is required for sustaining membrane integrity and mediating

signaling transduction for cell survival. The intracellular level of cholesterol is

dynamically regulated. Excessive cholesterol could be converted to less toxic

cholesteryl esters by acyl-coenzyme A:cholesterol acyltransferases (ACATs).

While ACAT2 has limited value in cancers, ACAT1 has been found to be widely

participated in tumor initiation and progression. Moreover, due to the important

role of cholesterol metabolism in immune function, ACAT1 is also essential for

regulating anti-tumor immunity. ACAT1 inhibition may be exploited as a potential

strategy to enhance the anti-tumor immunity and eliminate tumors. Herein, a

comprehensive understanding of the role of ACAT1 in tumor development and

anti-tumor immunity may provide new insights for anti-tumor strategies.
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Introduction

A hallmark of cancer is the deregulated metabolism (1). As an integral component of

cell membrane, cholesterol is crucial for maintaining membrane integrity and signaling

transduction for cell survival (2). Besides, cholesterol also participates in the regulation of

multiple biological processes, including lipid metabolism, inflammation, apoptosis, and cell

survival (3–5). Cholesterol-derived metabolites exert a wide variety of biological effects in

tumor development and anti-tumor immunity responses (6). As fast-proliferating cells,

tumor cells rely on cholesterol for membrane biogenesis and various biological processes

(7). Therefore, targeting cholesterol metabolism may provide novel therapeutic strategies

for cancer management.

Intracellular cholesterol is dynamically transported for maintaining membrane

integrity (8). Excessive cholesterol is either exported by ATP-binding cassette proteins,

or converted to less toxic cholesteryl esters by acyl-coenzyme A: cholesterol acyltransferases

(ACATs) to store in the form of lipid droplets or lipoproteins (3). ACATs belong to

membrane-bound O-acyltransferase family, are composed of two enzymes localizing in the

mitochondria and cytoplasm, respectively (9). ACAT1 and ACAT2 catalyze acyl transfer

from acyl-coenzyme A (CoA) to cholesterol and produce cholesterol esters that are used for
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storage and intercellular transport of sterol, which is important for

cellular cholesterol homeostasis (10). ACAT1 is expressed in

nucleated eukaryotic cells and its products are incorporated into

lipid droplets (LDs) in the cytoplasm (11). ACAT2 is primarily

expressed in intestinal epithelial cells and hepatocytes, and its

products are incorporated into lipoproteins in the endoplasmic

reticulum (12). While ACAT2 has limited value in tumors, ACAT1

has been found to be implicated in tumor occurrence and

development. Recent studies introduced the complex role of

ACAT1 in tumor development and anti-tumor immunity, which

may provide new insights for anti-tumor strategies.
ACAT1 structure, regulation,
and function

Structure analysis has identified human ACAT1 as a tetramer

with two homodimers (13). Each monomer is composed of nine

transmembrane segments, which enclose a cytosolic tunnel and a

transmembrane tunnel that converge at the predicted catalytic site

(14). ACAT1 tetramers, but not monomers, are phosphorylated and

stabilized by enhanced Y407 phosphorylation observed in multiple

human cancer cells. It has also been indicated that CoA could enter

through the cytosolic tunnel, while cholesterol enters via the

transmembrane tunnel (13). The structure of ACAT1 has been

deciphered previously (13, 14). ACAT1 exerts its catalytic role in

ketolysis, ketogenesis, fatty acid oxidation and isoleucine

degradation (12). ACAT1 senses free cholesterol by its allosteric

site. ACAT1 cannot exert its catalytic role for esterification with

high efficiency under low cholesterol concentrations, whereas high

amounts of cholesterol could facilitate esterification allosterically

under high cholesterol concentrations (13). Herein, ACAT1 activity

is determined by the level of free cholesterol to regulate cholesterol

homeostasis of the endoplasmic reticulum (15). In addition

to mediating cholesterol homeostasis, ACAT1 exerts its

acetyltransferase activity capable of specifically acetylating various

enzymes. For instance, ACAT1 regulates pyruvate dehydrogenase

complex (PDC) by acetylating pyruvate dehydrogenase (PDH) and

PDH phosphatase to promote glycolysis (16). ACAT1-mediated

K128 acetylation of GNPAT could protect FASN from degradation

and promote lipid metabolism (17). ACAT1-mediated K337

acetylation of ME1 dimerize and activate ME1 to regulate
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NADPH generation and lipid metabolism (18). The structure and

function of ACAT1 has been illustrated in Figure 1.
ACAT1 and immunity

Cholesterol metabolism has been identified to be essential for

immune function (4, 19). Cholesterol biosynthesis is critical for T cell

growth, activation, and anti-tumor function (4, 20, 21). It has been

demonstrated that elevated levels of cholesterol in T cells could boost

the anti-tumor immunity of T cells (22). CD8+ T cells play an

essential role in anti-tumor immunity, but their function is always

abrogated in the context of cancers (23). Therefore, remodeling the

anti-tumor ability of CD8+ T cells is a key strategy for improving the

efficacy of immunotherapy. ACAT1 inhibition could impair

cholesterol esterification, therefore potentiating anti-tumor effect

and strengthening cell proliferation of CD8+ T cells (22).

Mechanistically, elevated cholesterol level of CD8+ T cells could

enhance T-cell receptor clustering and signaling. ACAT1-deleted

CD8+ T cells exhibited impaired tumor growth and metastasis of

melanoma (22). An avasimibe-induced inhibition of cholesterol

esterification has been shown to improve the antitumor response of

CD8+ T cells in mice (24). Avasimibe exerted significant anti-tumor

effect. Moreover, avasimibe combined with PD-1 inhibitor exhibited

greater anti-tumor capabilities compared with PD-1 inhibitor alone.

Avasimibe could be restrained on the T cell surface to induce rapid T

cell receptor clustering and sustaine T cell activation (25). In addition,

paclitaxel and immunoadjuvant aGC were co-encapsulated in

liposomes modified with pH sensitive TH peptide (PTX/aGC-TH-
Lip). Avasimibe could elevate the level of free cholesterol and relieve

the inhibition of CD8+ T cells resulted from PTX/aGC-TH-Lip. The
combination of avasimibe and PTX/aGC-TH-Lip could enhance

immune responses and cytotoxic effects in xenografts of melanoma,

which is a potential strategy to improve the anti-tumor effects of

immune-chemotherapy (26) (Figure 2).
ACAT1 in different tumor types

The role of metabolic enzymes in various biological processes

has been gradually discovered. It has been well-established that

multiple metabolic enzymes could participate in epigenetic
BA

FIGURE 1

(A), Schematic illustration of ACAT1 structure. (B), Primary function of ACAT1 in cells.
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remodeling by providing substrates such as acetyl-CoA (27, 28).

Considering the catalytic role of ACAT1 in mediating acyl transfer

from CoA to cholesterol, ACAT1 may exert complex and dynamic

role in tumorigenesis and progression. Mounting evidence has

elucidated the significance of ACAT1 in multiple malignances.

Here, we summarized the role of ACAT1 in the contexts of

different cancers.
ACAT1 and colorectal cancer

Colorectal cancer (CRC) is the third most diagnosed tumor

worldwide (29). 25% of newly diagnosed CRC patients are diagnosed

at the metastatic stage (30). The crosstalk between cholesterol

metabolism and CRC has been under vast investigations. An

elevated cholesterol level could accelerate CRC progression by

activating b-catenin oncogenic signaling pathway (29). Specific liver

metastases of CRC display an aberration of cholesterol biosynthesis

(31). Thus, aberrant cholesterol metabolism is a hallmark of CRC,

which may be exploited as potential therapeutic targets.

Numerous evidence illustrated that various molecular

mechanisms are engaged in the tumorigenesis and development

of CRC (32). The cytoplasmic form of malic enzymes (ME), ME1,

has been identified as a primary source of NADPH for lipogenesis

and glutamine biosynthesis. In CRC cells, depletion of ACAT1

could dramatically impair ME1 acetylation without influencing its

protein level, whereas ACAT1 overexpression exerts the opposite

effect. Moreover, ACAT1 overexpression enhances ME1

dimerization whereas deletion of ACAT1 expression impair ME1

dimerization. This ACAT1-mediated K337 acetylation positively

regulates ME1 dimerization. PGAM5, a mitochondrial serine/

threonine phosphatase, could dephosphorylate ME1 at S336,

further promoting acetylation by ACAT1 at the adjacent K337.

ACAT1-mediated ME1 K337 acetylation could enhance NADPH

generation, lipogenesis, and CRC tumorigenesis (18). b-
hydroxybutyrate (BHB) was previously identified as an oncogenic

metabolite of CRC, which was also found to be elevated in CRC
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tissues. BHB has been found to promote CRC progression by

ACAT1 by mediating acetylation of isocitrate dehydrogenase 1.

ACAT1 abrogation could impair CRC tumorigenesis and abrogate

the tumorigenic effects of BHB (33, 34). Small molecule inhibitors

that target ACAT1-mediated ME1 acetylation may be a potential

anti-tumor strategy for CRC patients. Besides, the development of

CRC is correlated with hyperinsulinemia. Insulin-induced tumor

progression of CRC is regulated by ACAT1. Insulin enhanced CRC

development by upregulating ACAT1, which can be exploited as a

promising therapeutic target for CRC (35). Collectively, the

understanding of CRC biological features associated with ACAT1

may be beneficial for diagnosis and treatment of CRC in the clinical

settings (36).
ACAT1 and hepatocellular carcinoma

Liver cancer is the sixth most diagnosed cancer worldwide (29).

Notably, it is highly refractory to most chemotherapeutic regimens.

Hepatocellular carcinoma (HCC) is the most common type of liver

cancer (37). In HCC cells, ACAT1 could stabilize and dimerize

glyceronephosphate O-acyltransferase (GNPAT), a rate-limiting

enzyme in plasmalogen synthesis and lipogenesis, by acetylation

at K128. Precisely, ACAT1-mediated GNPAT acetylation could

inhibit GNPAT degradation by repressing TRIM21-mediated

GNPAT ubiquitination, ultimately promoting tumor growth in

HCC xenografts. ACAT1 overexpression enhanced tumor growth

in HCC xenografts and GNPAT deletion could attenuate ACAT1-

induced HCC growth, and ACAT1 overexpression with GNPAT

inhibition diminish fatty acid synthesis and lipogenesis.

Combination treatment of ACAT1 inhibitor and sorafenib could

significantly inhibit tumor growth in HCC xenografts, indicating

that pharmaceutical inhibition of ACAT1 could be a promising

target in anti-HCC strategy (17). In HEK293 cells, ACAT1 has been

identified as a substrate of E3 ubiquitin ligase UBE3A/E6AP. High-

fat diet could downregulate UBE3A expression, while UBE3A

overexpression could lead to decreased ACAT1 protein level (38).
FIGURE 2

ACAT1 is a potential target to enhance the anti-tumor strategy.
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Future studies may require combination regimens that include

systemic therapies and molecularly targeted treatments, such

as ACAT1.
ACAT1 and glioblastoma

Glioblastoma (GBM) are the most frequently diagnosed

malignant primary brain tumors that originate from neuroglial

progenitor cells (39). Conventional treatment could bring limited

improvements in the survival of glioma patients, leading to poor

survival outcomes for GBM patients (40). Herein, it is desperately

required for effective molecularly targeted therapy to improve

prognosis of GBM patients. In GBM patients, ACAT1 has been

found to be upregulated and correlated with poor prognosis.

Moreover, pharmacological inhibition of ACAT1 in GBM cells

demonstrated that ACAT1 is required for GBM proliferation (41).

Upon inhibition of mTORC1, ACAT1 could catalyze acetylation of

glycine decarboxylase (GLDC), a critical enzyme of glycine

metabolism that catalyzes the conversion of glycine into one-

carbon units. The acetylation of GLDC at K514 inhibits its

enzymatic activity, which promoted K33-linked polyubiquitination

at K544 by NF-X1, resulting in GLDC degradation by the

proteasomal pathway (42). Acetylation of GLDC at K514 could

suppress glycine catabolism, pyrimidines synthesis and GBM

development. K604, a potent ACAT1 inhibitor, could impair the

proliferation of U251−MG cells and inactivate Akt signaling pathway

in GBM cells (43). Avasimibe, another specific inhibitor of ACAT,

exerts anti-tumor effect on U87, A172 and GL261 GBM cells. In

GBM cell lines, avasimibe could inhibit the expression of ACAT1 and

biosynthesis of cholesterol ester. Moreover, avasimibe could impair

the proliferation of GBM cells resulted from caspase-8 and caspase-3

activation (44). Herein, ACAT1 functions as a novel target for HCC,

providing effective assistance to the treatment of GBM.
ACAT1 and lung cancer

Lung cancer is a heterogenous disease composed of multiple

genetic and molecular subtypes, which is still the leading cause of

cancer-related death worldwide (45). Considering that molecularly

defined subtypes are potentially targetable, novel anti-tumor

strategies in for lung cancer are required to be explored. Excessive

intracellular cholesterol is catalyzed to cholesteryl esters via ACAT1

and exported via the cholesterol transporter ABCA1. In a cohort of

patients with lung adenocarcinoma, ACAT1 has been found to be

upregulated, while ABCA1 is downregulated in the lung cancer

tissues. In H1299 cells, ACAT1 has been identified as the

acetyltransferase of PDHA1 and PDP1. Mechanistically, PDP1

phosphorylation at Y381 recruits ACAT1 and dissociates SIRT3

to promote lysine acetylation of PDP1 and PDHA1. ACAT1

predominantly signals through inhibition of PDC by PDP1 and

PDHA acetylation to enhance glycolysis and tumor growth,

indicating the ACAT1-PDP1-PDHA axis a promising anti-cancer

target (46). lncRNA DARS-AS1 inhibition attenuated non-small

cell lung cancer development by activating miR-302a-3p to inhibit
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ACAT1 expression (47). It has been demonstrated that Kras-

specific antigenic peptides in combination of avasimibe could

promote CD8+ T cell infiltration and impair lung tumor

progression (48). Collectively, ACAT1 may function as a

promising therapeutic target for lung cancer.
ACAT1 and breast cancer

Breast cancer is a heterogeneous malignancy with multiple

molecular subtypes based on histological and genomic features

(49). Gene expression profiling has proposed four intrinsic

molecular subtypes: Luminal A, Luminal B, HER 2+ and basal

like (50). It has been demonstrated that ER-negative breast cancer

cells display accumulation of LDs, increased LDL uptake, a higher

ratio of cholesteryl ester to triacylglycerol, lower cholesterol

biosynthesis, increased expression of ACAT1, higher ACAT

activity as compared to ER-positive breast cancer cells (51). CP-

113,818, a ACAT inhibitor, could inhibit proliferation of breast

tumor cells and reduce LDL-mediated proliferation of ER-negative

cells. In MDA-MB-231 cells, LDL receptor (LDLR) mRNA could be

markedly impaired by ACAT inhibition, indicating that high

ACAT1 activity is correlated with higher LDLR expression (52).

It has been found that ACAT1 upregulation in breast tumor cells

could promote tumor initiation and metastasis, indicating ACAT1

as a metabolic tumor promoter (53). Nuclear receptor subfamily 2

group F member 6 (NR2F6) could transcriptionally activate ACAT1

and enhance the suppressive role of ACAT1-induced METTL3

acetylation on cell migration and invasion of breast cancer (54).
ACAT1 and leukemia

Leukemia is a heterogeneous malignancy with different genetic,

morphologic and molecular feature, which is composed of multiple

subtypes including acute myeloid leukemia (AML) and chronic

myeloid leukemia (CML) (55). ACAT1 and SIRT3 have been

identified as the upstream acetyltransferase and deacetylase of

mutant isocitrate dehydrogenase 2 (mIDH2) in AML to regulate

K413-acetylation of mIDH2 and inhibit mIDH2 activity (56).

Spectromicroscopic analysis in multiple leukemia cell lines has

revealed that aberrant accumulation of CE was found in CML

(chronic myelogenous leukemia), which may be resulted from

altered BCR-ABL kinase activity. Inhibiting cholesterol esterification

via avasimibe could significantly suppress CML cell proliferation.

Besides, combinational treatment of avasimibe and imatinib brought

synergistic effects on blocking cell proliferation in K562R cells (57).
Implications for targeting ACAT1 in
anti-tumor therapy

Targeting ACAT1 has been identified as a potential anti-tumor

strategy (58). Avasimibe, also named as avasimin, has been

developed as a potent non-specific ACAT1 inhibitor to impair

cholesterol esterification in multiple cancer models. In vitro studies
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have elucidated that avasimibe could reduce cholesteryl-ester

storage in LDs and increase levels of free cholesterol, leading to

cell apoptosis and impaired proliferation (59). ACAT1 inhibitor

could also enhance the cytotoxic effects of CD8+ T cells by

reprogramming cholesterol metabolism. A combination of

avasimin and anti-PD-1 treatment exhibited synergistic cytotoxic

effects in suppressing melanoma development (22). Avasimin

combined with nanoparticles of doxorubicin showed better anti-

tumor efficacy in impairing breast cancer progression (60). The

combination of avasimibe and immune-chemotherapy could

enhance the anti-tumor effects of immune-chemotherapy. The

combinational treatment could increase the level of free

cholesterol and relieve the inhibition of CD8+ T cells resulted

from PTX/aGC-TH-Lip. The combination of avasimibe and PTX/

aGC-TH-Lip could enhance immune responses and cytotoxic

effects in xenografts of melanoma, which is a potential strategy to

improve the anti-tumor effects of immune-chemotherapy (26). It

has been demonstrated that vaccine of Kras-specific antigenic

peptides combines with avasimibe could eliminate regulatory T

cells and promote CD8+ T cell infiltration (48).

Targeting tetrameric ACAT1 has been proposed as a promising

anti-tumor strategy. Arecoline hydrobromide (AH) is a covalent

ACAT1 inhibitor that specifically binds to and disrupts ACAT1

tetramers, thereby AH treatment leads to impaired ACAT1 activity.

Due to the inhibitory effect of ACAT1 on PDC by acetylating PDH

and PDH phosphatase, AH treatment could enhance PDC flux and

oxidative phosphorylation to impair tumor growth, making ACAT1

a potential anti-tumor target. Combination treatment of AH with

other anti-tumor strategy have shown greater anti-tumor efficacy.

In HCC, AH treatment combined with sorafenib could significantly

inhibit tumor growth in HCC xenografts (16). CI-976, a small

molecule ACAT1 inhibitor, can bind inside the catalytic chamber

and blocks the accessibility of the active site residues of ACAT1. CI-

976 has been found to reduce atherosclerotic plaques and decrease

plasma cholesterol levels in animals fed with high cholesterol diet

(61). Another selective ACAT1 inhibitor K604 has been found to
Frontiers in Oncology 05
impair the proliferation of U251−MG cells and inhibit Akt signaling

in glioblastoma cells (43). The current reported ACAT1 inhibitors

have been illustrated in Table 1. The anti-tumor effect of ACAT1

inhibitors should be further verified in more cancer types in vitro

and vivo models to explore the cancer types that can be effectively

treated with ACAT1 inhibitors. Clinical trials should be accelerated

to evaluate the anti-tumor effects of more ACAT1 inhibitors in

different cancer types (62).
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TABLE 1 Current ACAT1 inhibitors tested in human cancers.

Inhibitors Disease Struture Binding
sites

Mechanism
of action

Target Models Combined
therapy

Reference

Arecoline
hydrobromide

Hepatocellular
carcinoma

– Cysteine
residue
(C126) in
the ACAT1
catalytic
site

Binds to and
disrupts
ACAT1 tetramers

Cancer cell
proliferation
and
tumor
growth

Cellular
or
mice
models

Sorafenib (16)

Avasimibe Melanoma,
Lewis
lung
adenocarcinoma

– A chemical group
that conferred
ACAT inhibitory
properties (the 2,6-
diisopropylphenyl
moiety)

Tumor
growth

Mice
models

Anti-PD-
1 antibody

(23)

Chronic
myeloid
leukemia

– Tumor
growth

Mice
models

Imatinib (57)

K604 Glioblastoma – – Cancer
cell
proliferation

Cellular
models

– (43)
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