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Auranofin and reactive oxygen
species inhibit protein synthesis
and regulate the level of the
PLK1 protein in Ewing
sarcoma cells
Joseph A. Haight1, Stacia L. Koppenhafer2, Elizabeth L. Geary2

and David J. Gordon2*

1Carver College of Medicine, University of Iowa, Iowa City, IA, United States, 2Department of
Pediatrics, Division of Pediatric Hematology/Oncology, University of Iowa, Iowa City, IA, United States
Novel therapeutic approaches are needed for the treatment of Ewing sarcoma

tumors. We previously identified that Ewing sarcoma cell lines are sensitive to

drugs that inhibit protein translation. However, translational and therapeutic

approaches to inhibit protein synthesis in tumors are limited. In this work, we

identified that reactive oxygen species, which are generated by a wide range of

chemotherapy and other drugs, inhibit protein synthesis and reduce the level of

critical proteins that support tumorigenesis in Ewing sarcoma cells. In particular,

we identified that both hydrogen peroxide and auranofin, an inhibitor of

thioredoxin reductase and regulator of oxidative stress and reactive oxygen

species, activate the repressor of protein translation 4E-BP1 and reduce the

levels of the oncogenic proteins RRM2 and PLK1 in Ewing and other sarcoma cell

lines. These results provide novel insight into the mechanism of how ROS-

inducing drugs target cancer cells via inhibition of protein translation and identify

a mechanistic link between ROS and the DNA replication (RRM2) and cell cycle

regulatory (PLK1) pathways.
KEYWORDS
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1 Introduction

Ewing sarcoma is an aggressive bone and soft-tissue tumor that is characterized by a

recurrent chromosomal translocation involving the EWSR1 and FLI1 genes (1–3). The

current treatment for Ewing sarcoma, which consists of cytotoxic chemotherapy combined

with surgery and/or radiation, has changed very little in the past two decades and is

associated with suboptimal outcomes (1, 4, 5). The EWS-FLI1 oncoprotein, which is

required for tumorigenesis and only expressed in tumor cells, is an attractive therapeutic

target in Ewing sarcoma, but has proven difficult to directly target (6–8). A complementary
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approach is to identify unique vulnerabilities incurred by the EWS-

FLI1 oncoprotein (9, 10).

Recent studies identified protein translation as a potential

therapeutic vulnerability and target in Ewing sarcoma tumors (11,

12). However, translational and therapeutic approaches to inhibit

protein synthesis in tumors are lacking (13). Notably, reactive

oxygen species (ROS), which are generated by a range of drugs via

different mechanisms, have been linked to inhibition of protein

synthesis in cancer cells (14–17). Furthermore, Ewing sarcoma

tumors are reported to be sensitive to reactive oxygen species and to

the manipulation of oxidative stress (18–24). For example, treatment of

Ewing sarcoma tumors with fenretinide, a synthetic retinoid, causes

ROS-dependent toxicity in vitro and in vivo in xenograft experiments

(21, 22). Similarly, auranofin, an inhibitor of thioredoxin reductase and

regulator of ROS, was identified using a multipronged screening

approach as a drug with activity against Ewing sarcoma tumors (23).

Moreover, from a mechanistic standpoint, SOX6, a transcriptional

target of the EWS-FLI1 oncoprotein, was shown to increase ROS and

oxidative stress in Ewing sarcoma cells via upregulation of thioredoxin

interacting protein (TXNIP), an inhibitor of thioredoxin and inducer of

ROS (24, 25). However, despite the sensitivity of Ewing sarcoma cells to

ROS-inducing drugs, it is unknown whether ROS targets protein

synthesis in this and other sarcoma types.

We began the current study with the aim to test the hypothesis

that reactive oxygen species regulate protein synthesis in Ewing

sarcoma cells. We found that both hydrogen peroxide and

auranofin inhibit protein translation in Ewing and other sarcoma

cells. Moreover, from a mechanistic standpoint, we also identified

that ROS activates eukaryotic translation initiation factor 4E binding

protein 1 (4E-BP1), a repressor of protein translation that binds to the

eukaryotic translation initiation factor eIF4E and prevents the

formation of the translation initiation complex (26, 27). Activation

of 4E-BP1 reduces the levels of the oncogenic proteins ribonucleotide

reductase M2 (RRM2) and polo-like kinase 1 (PLK1) in Ewing and

other sarcoma cell lines. Overall, these results define a link between

ROS and protein synthesis in sarcoma cells and identify a mechanistic

connection between ROS and the DNA replication (RRM2) and cell

cycle regulatory (PLK1) pathways.
2 Materials and methods

2.1 Cell lines and culture

Cell lines were maintained at 37°C in a 5% CO2 atmosphere.

The A673, TC71, and EW8 cell lines were provided by Dr. Kimberly

Stegmaier (Dana-Farber Cancer Institute, Boston, MA), the CB-
Nomenclature: ROS, reactive oxygen species; DCFDA, 2’,7’-dichlorofluorescin

diacetate; RRM2, ribonucleotide reductase M2; PLK1, polo-like kinase 1; 4E-BP1,

eukaryotic translation initiation factor 4E binding protein 1; TXNRD1,

thioredoxin reductase; EdU, 5-ethynyl-2’-deoxyuridine; PI, propidium iodide;

TSC, tuberous sclerosis complex; RPPA, reverse phase protein array; NAC, n-

acetylcysteine; H2O2, hydrogen peroxide; OPP, O-propargyl-puromycin; RIPA,

radioimmunoprecipitation assay.
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AGPN cell line was obtained from the Childhood Cancer

Repository (Children’s Oncology Group), the HT1080 (RRID:

CVCL_0317) and U2OS (RRID: CVCL_0042) cell lines were

obtained from ATCC, and the RD cell line was provided by Dr.

Munir Tanas (University of Iowa, Iowa City, IA). The non-

transformed BJ-tert (RRID: CVCL_6573) and RPE-tert (RRID:

CVCL_4388) cell lines were obtained from ATCC. Cells were

grown in Dulbecco ’s Modified Eagle ’s Media (DMEM)

supplemented with 10% FBS, 100 IU ml-1 penicillin and 100 µg

ml-1 streptomycin. DNA fingerprinting confirmation of cell lines

was performed using the short tandem repeat method and cell lines

were used within 8–10 passages of thawing.
2.2 Chemical compounds

Auranofin and TAK-228 (sapanisertib) were obtained from

MedChemExpress. N-acetylcysteine, hydrogen peroxide, and

doxycycline were obtained from Sigma. Puromycin was obtained from

ThermoFisher Scientific. Auranofin was dissolved in DMSO and then

used at a 1:1000 dilution in assays. TAK-228 was also prepared inDMSO

and used at a 1:1000 dilution in assays. N-acetylcysteine was prepared

fresh for each experiment in DMEM media.
2.3 Cell viability and drug dose
response assays

Cell proliferation was measured using the AlamarBlue

(resazurin; Sigma) fluorescence assay, as previously described (11,

12, 28, 29). Briefly, approximately 5 x 104 cells were plated per well

of a 96-well plate. Cells were then treated the next day with a range

of drug concentrations for 72 hours. Fluorescence measurements

were obtained, after adding the AlamarBlue reagent, using a

FLUOstar Omega microplate reader (BMG Labtech). IC50 values

were calculated using log-transformed and normalized data

(GraphPad Prism 10.1.0). Cell viability was quantified using 0.4%

Trypan Blue (ThermoFisher), which stains dead cells, with a

DeNovix Cell Drop BF automated cell counter.
2.4 Puromycin labeling

Protein synthesis was assessed using puromycin labeling

(SUnSET technique), as described (11, 12, 30, 31). For labeling of

newly synthesized proteins, puromycin (2 mg/mL) was added to

cells at a 1:400 dilution. The cells were then incubated with the

puromycin for one hour before cell lysates were collected, as

described in the Immunoblotting section. Protein loading for the

immunoblots was normalized using cell number.
2.5 O-propargyl-puromycin labeling

Protein synthesis was assessed using O-propargyl-puromycin

Click-iT labeling according to the manufacturer’s instructions
frontiersin.org
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(ThermoFisher Scientific) (32, 33). Flow cytometry was performed

using a Becton Dickinson LSR II instrument. Briefly, cells were

incubated with O-propargyl-puromycin (1:1000, 10 mM final

concentration) for one hour. Cells were then collected using

trypsin and fixed in a 4% paraformaldehyde fixative solution.

Cells were washed by centrifugation and resuspended in Click-iT

saponin-based permeabilization and wash reagent. Click-iT Plus

reaction cocktail was added to the cell suspension for thirty

minutes, after which the cells were washed by centrifugation.

Flow cytometry was performed on a Becton Dickinson LSR II

flow cytometer.
2.6 Protein isolation and immunoblotting

Protein extracts for immunoblotting were prepared by

incubating cells in RIPA buffer (Boston BioProducts),

supplemented with protease and phosphatase inhibitors (Halt

Protease & Phosphatase Inhibitor Cocktail, EDTA-free;

ThermoFisher Scientific), for 20 minutes. Supernatants were

collected following a 15-minute centrifugation at 17,000 r.c.f. at

4°C. SDS-PAGE was used to separate proteins, which were then

transferred to polyvinylidene difluoride membranes (Millipore).

Antibodies to the following proteins were used in the

immunoblots: puromycin (Millipore, #AF488, 1:2000; RRID:

AB_2737590), 4E-BP1 (Cell Signaling, #9644, 1:1000; RRID:

AB_2097841), p-4E-BP1–37/46 (Cell Signaling, #2855, 1:1000;

RRID: AB_560835), RRM2 (Santa Cruz Biotechnology, #398294,

1:500; RRID: AB_2894824), PLK1 (Cell Signaling, #4513, 1:1000;

RRID: AB_2167409), tubulin (Proteintech, #66031, 1:2000; RRID:

AB_28834830), and vinculin (Proteintech, #26520, 1:5000; RRID:

AB_2919877). Protein loading for the immunoblots was normalized

using cell number.
2.7 Reactive oxygen species detection

ROS was quantified using a DCFDA (2’,7’-dichlorofluorescin

diacetate) assay kit according to the manufacturer’s instructions

(Abcam). Briefly, 1 x 104 cells were plated per well of a 96-well plate

in phenol red-free media. Drugs were then added the next day and

incubated for the amount of time indicated in the figure legends.

The DCDFA reagent, which was dissolved in the kit buffer at a 20

mM concentration, was added to the wells at a 1:800 dilution and

then incubated for 45 minutes at 37°C. Fluorescence measurements

(excitation 485 nM/emission 535 nM) were obtained using a

FLUOstar Omega microplate reader (BMG Labtech).
2.8 EdU labeling

Detection of DNA replication was performed in duplicate using

a Click-iT EdU-488 kit (ThermoFisher Scientific) (34). Briefly, cells

were labeled with 10 mM EdU for one hour and then harvested

using trypsin and fixed using the Click-iT fixative buffer. Cells were

then washed by centrifugation and resuspended in Click-iT
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saponin-based permeabilization and wash reagent. Click-iT Plus

reaction cocktail was added to the cell suspension for thirty

minutes, after which the cells were washed by centrifugation.

Flow cytometry was performed on a Becton Dickinson LSR II

flow cytometer.
2.9 Doxycycline-inducible 4E-BP1-Ala

The full-length 4E-BP1 cDNA, with alanine substitutions at

Thr37, Thr46, Ser65, and Thr70 and a FLAG-tag, was obtained as a

gene block (IDT; Coralville, IA) and cloned into a lentiviral vector

as described in previous publications (12, 34).
2.10 Reverse phase protein array

RPPA analysis of cell lines were performed by the RPPA Core

Facility at the MD Anderson Cancer Center. Cells were provided to

the core facility as frozen pellets and the protein extraction, data

normalization, and analysis were performed according to facility

protocols (https://www.mdanderson.org/research/research-

resources/core-facilities/functional-proteomics-rppa-core/

education-and-references.html) (RRID: SCR_016649).
2.11 Statistical analysis

Student’s t-test two-tailed was used to calculate P-values for the

comparison of two groups. Statistical analyses were conducted

using GraphPad Prism 10.1.0 (RRID: SCR_002798).
3 Results

3.1 Hydrogen peroxide inhibits protein
synthesis in sarcoma cell lines

To directly test the hypothesis that ROS inhibits protein synthesis

in Ewing sarcoma cells we treated two cell lines, EW8 and TC71, with

hydrogen peroxide for three hours and then measured nascent protein

synthesis using puromycin labeling (SUnSET technique) and

immunoblotting (30, 31). Figure 1A shows that hydrogen peroxide

decreases protein synthesis in Ewing sarcoma cells and that this effect is

attenuated by co-treatment of the cells with the ROS-scavenger n-

acetylcysteine (NAC). We also used a flow cytometry approach (O-

propargyl-puromycin) to quantify, in single cells, the effect of hydrogen

peroxide on protein synthesis (32, 33). Notably, hydrogen peroxide

reduced protein synthesis to the same extent as cycloheximide, a well-

established inhibitor of protein synthesis that blocks translation

elongation, and this effect was blocked by co-treatment with NAC

(Figures 1B, C). We then tested additional sarcoma cell lines, HT1080

(fibrosarcoma), RD (rhabdomyosarcoma), and U2OS (osteosarcoma),

that represent other sarcoma subtypes and found that hydrogen
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https://www.mdanderson.org/research/research-resources/core-facilities/functional-proteomics-rppa-core/education-and-references.html
https://www.mdanderson.org/research/research-resources/core-facilities/functional-proteomics-rppa-core/education-and-references.html
https://www.mdanderson.org/research/research-resources/core-facilities/functional-proteomics-rppa-core/education-and-references.html
https://doi.org/10.3389/fonc.2024.1394653
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Haight et al. 10.3389/fonc.2024.1394653
peroxide also inhibited protein synthesis, similar to the results obtained

with the Ewing sarcoma cell lines (Figure 1D).

Next, we treated the Ewing sarcoma cells lines with hydrogen

peroxide for one hour, in contrast to the three hours used in the

previous experiments, and identified a significant decrease in

protein synthesis at this earlier time point, albeit to a lesser extent

than at the later time point (Figure 1E). We also treated Ewing

sarcoma cells lines with hydrogen peroxide for three hours and then
Frontiers in Oncology 04
removed the hydrogen peroxide and allowed the cells to recover for

twenty-one hours before measuring nascent protein synthesis.

Figure 1F shows that a three-hour treatment with hydrogen

peroxide is sufficient to cause prolonged inhibition of protein

synthesis, that extends after the hydrogen peroxide is removed. In

addition, this more prolonged inhibition of protein synthesis also

reduced the level of the protein loading control, tubulin.

Furthermore, staining total protein with Ponceau S showed a
B

C D

E F

A

FIGURE 1

Hydrogen peroxide inhibits protein synthesis in sarcoma cell lines. (A) EW8 and TC71 cells were treated with hydrogen peroxide, NAC, or the
combination for three hours. Cells were labeled with puromycin to quantify protein synthesis and then lysates were collected for immunoblotting.
(B, C) EW8 (B) and TC71 (C) cells were treated with hydrogen peroxide (100 mM), NAC (5 mM), or the combination for three hours and then labeled
with O-propargyl-puromycin for quantification of protein synthesis by flow cytometry. (D) Additional sarcoma cell lines were treated with hydrogen
peroxide, NAC, or the combination for three hours and then labeled with puromycin for immunoblotting. (E) EW8 and TC71 cells were treated with
hydrogen peroxide for one hour and then protein synthesis was assessed using puromycin. (F) Ewing sarcoma cells were treated with hydrogen
peroxide (100 mM) for three hours and then allowed to recover for twenty-one hours before protein synthesis was assessed using puromycin.
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significant reduction in total protein levels at the later time point. Of

note, the loading for these and subsequent immunoblots were

normalized using cell number and not total protein due to the

effects of the drugs on protein synthesis.
3.2 Auranofin inhibits protein synthesis in
Ewing sarcoma cell lines

Auranofin is an inhibitor of thioredoxin reductase and regulator

of oxidative stress that is used for the treatment of rheumatoid

arthritis (35, 36). Auranofin was previously identified, using a

multipronged drug screening approach, as a drug that inhibits the

growth of Ewing sarcoma cells in vitro and in vivo (23). Of note, this

sensitivity of Ewing sarcoma cell lines to auranofin was dependent

on expression of the EWS-FLI1 oncoprotein (23). Consistent with

this result, analysis of Cancer Dependency Map data (Broad

Institute) identifies that Ewing sarcoma cell lines are significantly

more sensitive to CRISPR-mediate knockout of thioredoxin

reductase than other cancer cell lines (Figure 2A) (37, 38).

Figure 2B demonstrates that treatment of Ewing sarcoma cells

with auranofin increases reactive oxygen species, as detected using

the fluorescent ROS-detector DCFDA (2’,7’-dichlorofluorescin

diacetate). Auranofin, as previously reported, also decreases the

growth of Ewing sarcoma cell lines in a 72 hour growth assay

(Figure 2C) (23). Next, we assessed the effect of auranofin dose on

protein synthesis using a 24 hour drug treatment and identified that

inhibition of protein synthesis occurred in the low (2–5)

micromolar dose range (Supplementary Figure 1). To confirm

that the effect of auranofin on protein synthesis is mediated by

ROS we performed a co-treatment experiment with NAC and found

that the ROS scavenger was able to block the effects of auranofin on

nascent protein synthesis (Figure 2D). We also used flow cytometry

(O-propargyl-puromycin) to investigate the effect of auranofin on

protein synthesis in single cells and confirmed that the drug reduces

protein synthesis (Figures 2E, F). The effect of auranofin on protein

synthesis was then assessed at an earlier time point, 6 hours after

drug addition, compared to the timepoint of 24 hours used in the

previous experiments. Figure 2G demonstrates that auranofin

inhibits protein synthesis in Ewing sarcoma cells as early as 6

hours after drug addition, although the effect is larger with a longer

duration of drug treatment. We also used flow cytometry and

O-propargyl-puromycin labeling to validate that auranofin

inhibits protein synthesis at this earlier (6 hour) time point

(Supplementary Figures 1B, C). Cell viability was not significantly

compromised at either the 6 hour or 24 hour timepoints

(Supplementary Figures 1D, E). We then tested additional

sarcoma cell lines that represent other sarcoma subtypes and

found that auranofin also inhibited protein synthesis, similar to

the results obtained with the Ewing sarcoma cell lines (Figure 2H).

Finally, we treated two non-transformed cell lines, BJ-tert and RPE-

tert, with auranofin and then labeled newly synthesized proteins

with puromycin. Supplementary Figure 2A shows that auranofin
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inhibits protein synthesis in these non-transformed cell lines, and

the effect is rescued by treatment with NAC. However, in contrast to

the Ewing sarcoma cell lines, auranofin had minimal effect on the

growth of the BJ-tert and RPE-tert cell lines in dose response assays,

suggesting that the differential toxicity of the drug with the Ewing

sarcoma and non-transformed cells is due to an increased reliance

on active protein synthesis in the cancer cells (Supplementary

Figures 2B, C).
3.3 Auranofin reduces the level of the
RRM2 protein and blocks DNA replication
Ewing sarcoma cells

In previous work, we identified that Ewing sarcoma cell lines

require active protein synthesis to maintain a stable level of the

ribonucleotide reductase M2 (RRM2) protein, which is a potential

therapeutic target in Ewing sarcoma tumors (12, 34, 39, 40).

Consequently, we next evaluated whether auranofin and ROS

downregulate RRM2 levels in Ewing sarcoma cells. Figure 3A

demonstrates that auranofin depletes RRM2 in Ewing sarcoma

cell lines and that this effect is blocked by co-treatment of the

cells with the ROS-scavenger NAC. Knockdown or inhibition of

RRM2 in Ewing sarcoma is lethal and Figure 3B shows that

auranofin significantly impairs the growth of four different Ewing

sarcoma cell lines and that this effect is abrogated by co-treatment

with NAC. RRM2 is a subunit of ribonucleotide reductase, which is

the rate limiting complex in the synthesis of deoxyribonucleotides,

and required for progression through S-phase (41–43). Cell cycle

analysis demonstrates that auranofin blocks DNA replication, as

assessed using EdU labeling, and arrests cells throughout S-phase,

as expected for a drug that inhibits ribonucleotide reductase

activity (Figure 3C).
3.4 Auranofin and reactive oxygen species
activate the translational repressor 4E-BP1
in sarcoma cell lines

Reactive oxygen species are reported to inhibit protein synthesis

via multiple mechanisms, including modification of cysteines in

ribosomal proteins and activation of the translational repressor 4E-

BP1 (14–16). Specifically, 4E-BP1 binds to the eukaryotic

translation initiation factor eIF4E and prevents the formation of

the translation initiation complex (26, 27). Notably, in previous

work, we identified a role for 4E-BP1, which is regulated by

phosphorylation, in blocking protein synthesis in Ewing sarcoma

cells (11, 12). Consequently, we tested whether ROS activates 4E-

BP1 in Ewing sarcoma cells. Figure 4A shows that hydrogen

peroxide decreases the phosphorylation of 4E-BP1, which reflects

activation of the translational repressor, in Ewing sarcoma cell lines

and this effect is blocked by co-treatment with NAC. Similarly,

auranofin also inhibits the phosphorylation of 4E-BP1 and, thereby,
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activates the repressor of cap-dependent protein translation

(Figure 4B). To investigate the effect of active 4E-BP1 we

previously generated multiple sarcoma cell lines that express a

doxycycline-inducible, constitutively-active 4E-BP1 protein with
Frontiers in Oncology 06
alanine substitutions at the phosphorylation sites Thr37, Thr46,

Ser65, and Thr70 (TO-4E-BP1-Ala) (12, 44). Figure 4C shows that

the expression of constitutively-active 4E-BP1-Ala in Ewing

sarcoma cells inhibits protein synthesis and reduces the level of
B

C D

E

F

G

H

A

FIGURE 2

Auranofin inhibits protein synthesis in Ewing sarcoma cell lines. (A) Dependency Map data (https://depmap.org/portal/) showing the effect of CRISPR
knockout of thioredoxin reductase on the growth of cancer cell lines. (B) EW8 and TC71 cells were treated with auranofin (5 mM) for twenty-four
hours, or hydrogen peroxide (100 mM) for three hours, and then ROS was quantified using a DCFDA fluorescence assay and normalized to cells
treated with DMSO. Error bars represent the mean ± SD of three independent experiments with six technical replicates per drug treatment. (C) Dose
response curves for Ewing sarcoma cells treated with auranofin. Cell viability was assessed 72 hours after drug was added using the AlamarBlue
assay. Error bars represent the mean ± SD of three technical replicates. The results are representative of two independent experiments. (D) EW8 and
TC71 cells were treated with auranofin, NAC, or the combination for twenty-four hours. Cells were labeled with puromycin to quantify protein
synthesis and then lysates were collected for immunoblotting. (E, F) EW8 (E) and TC71 (F) cells were treated with auranofin (5 mM) for twenty-four
hours and then labeled with O-propargyl-puromycin for quantification of protein synthesis by flow cytometry. (G) EW8 and TC71 cells were treated
with auranofin, NAC, or the combination for either six or twenty-four hours and then labeled with puromycin to quantify protein synthesis. (H)
Additional sarcoma cell lines were treated with auranofin, NAC, or the combination for twenty-four hours and then labeled with puromycin for
immunoblotting. Protein loading for the immunoblots was normalized using cell number. ****P < 0.0001.
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the RRM2 protein, which we previously showed is regulated by 4E-

BP1 (12). To identify additional proteins that are regulated by 4E-

BP1 we evaluated the effect of the inducible, constitutively-active

4E-BP1-Ala on the proteome of multiple sarcoma cell lines,

described in an earlier publication, using reverse phase protein

arrays (RPPA) (Figure 4D; Supplementary Table 1) (12). Overlap of

the RPPA data for the five cell lines identified that the expression of

active 4E-BP1-Ala in all of the sarcoma cell lines results in the

downregulation of the level of the PLK1 protein (Figure 4E;

Supplementary Table 2).
3.5 Auranofin and active 4E-BP1 reduce
the level of the PLK1 protein in sarcoma
cell lines

PLK1 is a well-described therapeutic target in multiple types of

cancer, including Ewing sarcoma (45–49). To validate PLK1 as a

target of 4E-BP1 we treated the 4E-BP1-Ala cells with doxycycline

and performed immunoblotting for PLK1. Figure 5A shows that the

expression constitutively-active 4E-BP1 reduces the level of the

PLK1 protein, consistent with the RPPA results. Auranofin also
Frontiers in Oncology 07
reduced the level of the PLK1 protein in Ewing (Figure 5B) and

other (Figure 5C) sarcoma cell lines. In previous work, we identified

that inhibition of mTORC1/2 activates 4E-BP1 and inhibits protein

synthesis in sarcoma cell lines (12). Figure 5D shows that treatment

of sarcoma cell lines with the mTORC1/2 inhibitor TAK-228

activates 4E-BP1 and downregulates the level of the PLK1

protein (Figure 5D).
4 Discussion

Ewing sarcoma is an aggressive sarcoma of the bone and soft

tissue that is treated with chemotherapy in combination with

surgery and/or radiation (1, 2). Unfortunately, the standard

treatment regimen for Ewing sarcoma is unchanged in over two

decades and this therapy is associated with significant on- and off-

treatment morbidities (4, 5). Consequently, there is an urgent need

to identify new therapeutic approaches and targets in Ewing

sarcoma tumors (8). This study investigated the effects of reactive

oxygen species (ROS) on protein synthesis in Ewing sarcoma cell

lines. We found that hydrogen peroxide or auranofin, an inhibitor

of thioredoxin reductase and ROS inducer, inhibited protein
B

CA

FIGURE 3

Auranofin reduces the level of the RRM2 protein and blocks DNA replication Ewing sarcoma cells. (A) EW8 and TC71 cells were treated with
auranofin, NAC, or the combination for twenty-four hours and then cell lysate was collected for immunoblotting for RRM2. Protein loading for the
immunoblots was normalized using cell number. (B) Ewing sarcoma cell lines were treated with auranofin (5 mM), NAC (5 mM), or the combination
for 72 hours and then cell viability was quantified using AlamarBlue. Error bars represent the mean ± SD of four technical replicates. The results are
representative of two independent experiments. (C) Ewing sarcoma cell lines were treated with auranofin for twenty-four hours and then the cell
cycle distribution was analyzed using EdU labeling and propidium iodide. ****P < 0.0001.
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FIGURE 5

Auranofin and active 4E-BP1 reduce the level of the PLK1 protein in sarcoma cell lines. (A) TO-4E-BP1-Ala cell lines were treated with doxycycline
for 48 hours to induce expression of 4E-BP1-Ala and then cell lysates were collected for immunoblotting. (B) EW8 and TC71 cells were treated with
auranofin for either six or twenty-four hours and then cell lysates were collected for immunoblotting. (C) Additional sarcoma cell lines were treated
with auranofin, NAC, or the combination for twenty-four hours and then cell lysates were collected for immunoblotting for PLK1. (D) Sarcoma cell
lines were treated with the mTORC1/2 inhibitor TAK-228 for twenty-four hours and then cell lysates were collected for immunoblotting. Protein
loading for the immunoblots was normalized using cell number.
B

C D E
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FIGURE 4

Auranofin and reactive oxygen species activate the translational repressor 4E-BP1 in sarcoma cell lines. (A) EW8 and TC71 cells were treated with
hydrogen peroxide, NAC, or the combination for three hours and then cell lysates were collected for immunoblotting. Protein loading for the
immunoblots was normalized using cell number. (B) EW8 and TC71 cells were treated with auranofin, NAC, or the combination for twenty-four
hours and then cell lysates were collected for immunoblotting. Protein loading for the immunoblots was normalized using cell number. (C) TO-4E-
BP1-Ala cell lines were treated with doxycycline for 48 hours to induce expression of 4E-BP1-Ala and then cell lysates were collected after labeling
the cells with puromycin. (D) Comparison of protein expression (RPPA) in TO-4E-BP1-Ala sarcoma cell lines treated with vehicle or doxycycline for
48 hours. (E) Venn diagram showing the overlap of the RPPA data for proteins that are downregulated by >1.25-fold in the TO-4E-BP1-Ala sarcoma
cell lines in the presence of doxycycline.
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synthesis, activated the repressor of cap-dependent protein

translation 4E-BP1, and reduced the levels of the proteins RRM2

and PLK1, both of which promote tumorigenesis in Ewing sarcoma

tumors (12, 34, 39, 40, 45–47).

Our findings provide novel insight into the mechanism of how

ROS-inducing drugs target cancer cells. It is well-established that

ROS can damage DNA, leading to apoptosis or cell cycle arrest (50,

51). However, our results demonstrate that ROS can also target

protein synthesis, which is another essential process for cell survival

and proliferation (13). Of note, we found that auranofin also

inhibits protein synthesis in non-transformed cells (BJ-tert and

RPE-tert), but the drug had minimal effects on the growth and

proliferation of these cells. This suggest that that the differential

toxicity of auranofin between the Ewing sarcoma and non-

transformed cells is due to an increased reliance on active protein

synthesis in the cancer cells, which is well-described in the literature

(11, 13, 26, 52–57).

Although we identified that ROS activates 4E-BP1 we expect that

the mechanism of how ROS inhibits protein synthesis is complex and

not limited to only activation of 4E-BP1. For example, recent work

identified that ROS selectively targets and modifies cysteine residues

in ribosomal proteins and, thereby, reduces protein synthesis (15).

Future work will focus on delineating the contributions of these

different targets of ROS and their effects on protein synthesis. In

addition, we also plan to investigate the mechanism of how ROS

activates 4E-BP1 in sarcoma cell lines. Work in other cell types has

shown that ROS can inhibit mTOR activity and activate 4E-BP1 via

activation of the peroxisome-bound tuberous sclerosis complex

(TSC) and this will be a focus of future investigation (16, 58, 59).

Finally, future work will also investigate the impact of the different

types of ROS on protein synthesis.

Auranofin, an inhibitor of thioredoxin reductase, is approved for

the treatment of rheumatoid arthritis (35, 36). Notably, Pessetto et al.

previously described in vitro and in vivo sensitivity of Ewing sarcoma

cells to auranofin (23). In addition, the sensitivity of Ewing sarcoma

cell lines to auranofin was dependent on the expression of the EWS-

FLI1 oncoprotein, which suggests that thioredoxin reductase may

target a unique vulnerability in Ewing sarcoma tumors (23). Other

groups have also identified that Ewing sarcoma cells are sensitive to

reactive oxygen species and to the manipulation of oxidative stress,

using drugs such as fenretinide (18, 21, 22). Furthermore, a number

of drugs commonly used in the clinic, including doxorubicin and

cisplatin, are known to generate ROS, although it is currently

unknown whether inhibition of protein synthesis may contribute to

the mechanisms of action of these drugs (15). Recent work also

identified that checkpoint kinase 1 (CHK1), which we and others

previously identified as therapeutic target in Ewing sarcoma tumors,

functions as a nuclear H2O2 sensor and regulates a cellular program

that dampens ROS (15). Notably, CHK1 inhibition was shown to

increase steady-state levels of nuclear H2O2, which suggests that

combining auranofin, or other ROS-inducing drug, with a CHK1

inhibitor could enhance toxicity (15, 60). These drug combinations

will be investigated in future work.
Frontiers in Oncology 09
Overall, our data demonstrate that reactive oxygen species

activate 4E-BP1, which blocks cap-dependent protein translation,

and inhibit protein synthesis in sarcoma cells. We also identified a

mechanistic link between ROS and the DNA replication (RRM2)

and cell cycle regulatory (PLK1) pathways.
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